Di- and trihedral (2-)representation theory I

Or: Who colored my Dynkin diagrams?
Marco Mackaay \& Daniel Tubbenhauer

July 2018

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsitev polmomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsitev polmomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& \mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& \left.\mathrm{A}_{3}=\stackrel{1}{2} \quad 2 \longrightarrow\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow \mathrm{A}_{3}\right)=S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebesine polymmill.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& \mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{2} \sim 2\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{4} \rightarrow \int_{3}^{2} A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebersey polvomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{gathered}
\mathrm{U}_{3}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
\mathrm{A}_{3}=
\end{gathered}
$$

(1) The dihedral group revisited

- Dihedral groups as Coxeter groups
- Dihedral representation theory
(2) Dihedral representation theory
- A brief primer on \mathbb{N}_{0}-representation theory
- Dihedral \mathbb{N}_{0}-representation theory
(3) Dihedral 2-representation theory
- A brief primer on 2-representation theory
- Dihedral 2-representation theory

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

Lowest cell.

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

Lowest cell.
Highest cell.

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

```
I will explain in a few minutes
    what cells are.
For the moment: Never mind!
```


Lowest cell.
Highest cell.
s-cell.

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

```
I will explain in a few minutes
    what cells are.
For the moment: Never mind!
```


Lowest cell.
Highest cell.
s-cell.
t-cell.

Kazhdan-Lusztig combinatorics of dihedral groups

Consider $W_{e+2}=\mathbb{C}\left[W_{e+2}\right]$ for $e \in \mathbb{Z}_{>0} \cup\{\infty\}$.
The Bott-Samelson (BS) basis is

$$
\begin{gathered}
\theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1 \\
\left\{\theta_{\bar{w}}=\theta_{w_{r}} \cdots \theta_{w_{1}} \mid w=w_{r} \cdots w_{1} \text { reduced word }\right\}
\end{gathered}
$$

The Kazhdan-Lusztig (KL) basis is

$$
\left\{\theta_{w}=w+\sum_{w^{\prime}<w} w^{\prime} \mid w, w^{\prime} \text { reduced words }\right\} .
$$

Relations for the BS generators:

$$
\begin{gathered}
\theta_{\mathrm{s}} \theta_{\mathrm{s}}=2 \theta_{\mathrm{s}}, \quad \theta_{\mathrm{t}} \theta_{\mathrm{t}}=2 \theta_{\mathrm{t}} \\
\text { some relation for } \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \text { tst }}_{e+2} .
\end{gathered}
$$

Example (e>2).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t s+2 s+t+2 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +3 t s+s t+3 s+3 t+3 \end{gathered}$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ \mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$

Relations for the BS generators:

$$
\begin{aligned}
& \qquad \theta_{\mathrm{s}} \theta_{\mathrm{s}}=2 \theta_{\mathrm{s}}, \quad \theta_{\mathrm{t}} \theta_{\mathrm{t}}=2 \theta_{\mathrm{t}}, \\
& \text { some relation for } \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \text { tst }}_{e+2} .
\end{aligned}
$$

Example $(e>2)$.

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t s+2 s+t+2 \end{gathered}$	tsts + sts + tst $+3 t s+s t+3 s+3 t+3$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ \mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ + \text { ts }+s t+s+t+1 \end{gathered}$

Relations | The magic formulas. |
| :---: |
| $\theta_{\mathrm{s}} \theta_{\mathrm{ts} \ldots}=\theta_{\mathrm{sts} \cdots}+\theta_{\mathrm{s} \cdots}$ and $\theta_{\mathrm{t}} \theta_{\mathrm{st} \ldots}=\theta_{\mathrm{tst} \ldots}+\theta_{\mathrm{t} \ldots}$ |
| Example $(e=2)$. |
| $\theta_{\mathrm{s}} \theta_{\mathrm{tst}}$ |

Example (e>2).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t s+2 s+t+2 \end{gathered}$	tsts + sts + tst $+3 t s+s t+3 s+3 t+3$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ t s+s t+s+t+1 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$

The magic formulas.
$\theta_{\mathrm{s}} \theta_{\mathrm{ts} \cdots}=\theta_{\mathrm{sts} \cdots}+\theta_{\mathrm{s} \cdots}$ and $\theta_{\mathrm{t}} \theta_{\mathrm{st} \ldots}=\theta_{\mathrm{tst} \ldots}+\theta_{\mathrm{t} \ldots}$
Example $(e=2)$.
$\theta_{\mathrm{s}} \theta_{\mathrm{tst}}=(\mathrm{s}+1)(\mathrm{tst}+\mathrm{st}+\mathrm{ts}+\mathrm{t}+\mathrm{s}+1)$

Example ($e>2$).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t \mathrm{~s}+2 \mathrm{~s}+\mathrm{t}+2 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +3 t s+s t+3 s+3 t+3 \end{gathered}$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ t s+s t+s+t+1 \end{gathered}$	$\begin{gathered} \text { tsts }+\mathrm{sts}+\mathrm{tst} \\ +\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$

Relations \begin{tabular}{c}
The magic formulas.

$\theta_{\mathrm{s}} \theta_{\mathrm{ts} \cdots}=\theta_{\mathrm{sts} \cdots}+\theta_{\mathrm{s} \cdots}$ and $\theta_{\mathrm{t}} \theta_{\mathrm{s} t}=\theta_{\mathrm{tst} \ldots}+\theta_{\mathrm{t} \ldots}$

Example $(e=2)$.

$\theta_{\mathrm{s}} \theta_{\mathrm{tst}}=$| $w_{0}+\mathrm{t}+\mathrm{sts}+\mathrm{st}+1+\mathrm{s}$ |
| :--- |
| $\mathrm{tst}+\mathrm{st}+\mathrm{ts}+\mathrm{t}+\mathrm{s}+1$ |

\hline
\end{tabular}

Example ($e>2$).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t \mathrm{~s}+2 \mathrm{~s}+\mathrm{t}+2 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +3 t s+s t+3 s+3 t+3 \end{gathered}$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ t s+s t+s+t+1 \end{gathered}$	$\begin{gathered} \text { tsts }+\mathrm{sts}+\mathrm{tst} \\ +\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$

Relations \begin{tabular}{c}
The magic formulas.

$\theta_{\mathrm{s}} \theta_{\mathrm{ts} \ldots}=\theta_{\mathrm{sts} \cdots}+\theta_{\mathrm{s} \ldots}$ and $\theta_{\mathrm{t}} \theta_{\mathrm{st} \ldots}=\theta_{\mathrm{tst} \ldots}+\theta_{\mathrm{t} \ldots}$

Example $(e=2)$.

$\theta_{\mathrm{s}} \theta_{\mathrm{tst}}=$| $w_{0}+\mathrm{tst}+\mathrm{sts}+\mathrm{st}+\mathrm{ts}+\mathrm{t}+\mathrm{s}+1$ |
| :---: |
| $\mathrm{st}+\mathrm{t}+\mathrm{s}+1$ |

\hline
\end{tabular}

Example (e>2).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t s+2 s+t+2 \end{gathered}$	tsts + sts + tst $+3 t s+s t+3 s+3 t+3$
KL	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ \mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ + \text { ts }+s t+s+t+1 \end{gathered}$

Relations | The magic formulas. |
| :---: |
| $\theta_{\mathrm{s}} \theta_{\mathrm{ts} \ldots}=\theta_{\mathrm{sts} \ldots}+\theta_{\mathrm{s} \ldots}$ and $\theta_{\mathrm{t}} \theta_{\mathrm{st} \ldots}=\theta_{\mathrm{tst} \ldots}+\theta_{\mathrm{t} \ldots}$ |
| Example $(e=2)$. |
| $\theta_{\mathrm{s}} \theta_{\mathrm{tst}}=\theta_{\mathrm{stst}}$ |
| θ_{stt} |

Example ($e>2$).

	1	s	ts	sts	tsts
BS	1	$s+1$	$t s+s+t+1$	$\begin{gathered} \text { sts } \\ +t s+2 s+t+2 \end{gathered}$	$\begin{gathered} t s t s+s t s+t s t \\ +3 t s+s t+3 s+3 t+3 \end{gathered}$
KL	1	$s+1$	$t s+s+t+1$	sts $\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1$	$\begin{gathered} \text { tsts }+ \text { sts }+ \text { tst } \\ +\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 \end{gathered}$

The magic formulas.

Relations

$$
\begin{gathered}
\theta_{\mathrm{s}} \theta_{\mathrm{ts} \ldots}=\theta_{\mathrm{sts} \ldots}+\theta_{\mathrm{s} \ldots} \\
\mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
\end{gathered} \quad \begin{gathered}
\theta_{\mathrm{t}} \theta_{\mathrm{st} \ldots}=\theta_{\text {tst }} \ldots+\theta_{\mathrm{t}} \ldots \\
\mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
\end{gathered}
$$

Example ($e=2$).

$$
\theta_{\mathrm{s}} \theta_{\mathrm{tst}}=\frac{\theta_{\mathrm{stst}}}{\theta_{\mathrm{st}}}
$$

Kazhdan-Lusztig combinatorics of dihedral groups

Consider $W_{e+2}=\mathbb{C}\left[W_{e+2}\right]$ for $e \in \mathbb{Z}_{>0} \cup\{\infty\}$.
The Bott-Samelson (BS) basis is

$$
\theta_{-}=s+1 \quad \theta_{+}=t+1
$$

The Kazhda The change of basis matrix between the BS and the KL basis is given by the coefficients d_{e}^{k} of the Chebyshev polynomials.

Example.
Relat

$$
\begin{gathered}
\mathrm{U}_{7}(\mathrm{x})=1 \cdot \mathrm{x}^{7}-6 \cdot \mathrm{x}^{5}+10 \cdot \mathrm{x}^{3}-4 \cdot \mathrm{x} \\
\& \\
\theta_{\mathrm{tstststs}}=1 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}-6 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}+10 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}-4 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} .
\end{gathered}
$$

Kazhdan-Lusztig combinatorics of dihedral groups

Consider $W_{e+2}=\mathbb{C}\left[W_{e+2}\right]$ for $e \in \mathbb{Z}_{>0} \cup\{\infty\}$.
The Bott-Samelson (BS) basis is

$$
\theta_{0}=s+1 \quad \theta=t+1
$$

$$
\text { Lusztig } \leq 2003
$$

The Kazhda The change of basis matrix between the BS and the KL basis is given by the coefficients d_{e}^{k} of the Chebyshev polynomials.

Example.
Relati

$$
\begin{gathered}
\mathrm{U}_{7}(\mathrm{x})=1 \cdot \mathrm{x}^{7}-6 \cdot \mathrm{X}^{5}+10 \cdot \mathrm{X}^{3}-4 \cdot \mathrm{X} \\
\& \\
\theta_{\text {tstststs }}=1 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}-6 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}+10 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} \theta_{\mathrm{t}} \theta_{\mathrm{s}}-4 \cdot \theta_{\mathrm{t}} \theta_{\mathrm{s}} .
\end{gathered}
$$

$$
\sum_{k} d_{e}^{k} \theta_{\overline{\mathrm{s}}_{k}}=\sum_{k} d_{e}^{k} \theta_{\bar{t}_{k}} \cdot \text { "Chebyshev-braid-like" }
$$

Dihedral representation theory on one slide

One-dimensional representations. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Two-dimensional representations. $\mathrm{M}_{\mathrm{z}}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), \theta_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide

Two-dimensional representations. $\mathrm{M}_{z}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), \theta_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide

One-dimensional representations. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Example.

$\mathrm{M}_{0,0}$ is the sign representation and $\mathrm{M}_{2,2}$ is the trivial representation.
In case e is odd, $\mathrm{U}_{e+1}(\mathrm{X})$ has a constant term, so $\mathrm{M}_{2,0}, \mathrm{M}_{0,2}$ are not representations.

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide

One-dimensional representations. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

$e \equiv 0 \bmod 2$		$e \not \equiv 0 \bmod 2$	
	$\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$	$\mathrm{M}_{0,0}, \mathrm{M}_{2,2}$	
	Exam		
Two-dimensi	M_{z} for z being a root of the Chebyshev polynomial is a representation because then $\sum_{k} d_{e}^{k} \theta_{\bar{s}_{k}}=0=\sum_{k} d_{e}^{k} \theta_{\bar{\tau}_{k}}$.		$\left(\begin{array}{ll}0 \\ \frac{0}{2} \\ 2\end{array}\right)$.
	$e \equiv 0 \mathrm{mod} 2$	$e \not \equiv 0 \mathrm{mod} 2$	
	$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}$	$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}$	
$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.			

Dih $¢$

Example.

One-c These representations are indexed by $\mathbb{Z} / 2 \mathbb{Z}$-orbits of the Chebyshev roots:

\mathbb{N}_{0}-algebras and their representations

An algebra P with a basis B^{P} with $1 \in \mathrm{~B}^{\mathrm{P}}$ is called a \mathbb{N}_{0}-algebra if

$$
\mathrm{xy} \in \mathbb{N}_{0} \mathrm{~B}^{\mathrm{P}} \quad\left(\mathrm{x}, \mathrm{y} \in \mathrm{~B}^{\mathrm{P}}\right)
$$

A P-representation M with a basis B^{M} is called a \mathbb{N}_{0}-representation if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right)
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

\mathbb{N}_{n}-algebras and their representations Example.

A Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular representation is a \mathbb{N}_{0}-representation.

A P-representation M with a basis B^{M} is called a \mathbb{N}_{0}-representation if

$$
\mathrm{xm} \in \mathbb{N}_{0} \mathrm{~B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{P}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right)
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2 -categories and 2 -representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

$\mathbb{N} n$-algebras and their representations
 Example.

A Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular representation is a \mathbb{N}_{0}-representation.

Example.

A P
The regular representation of group algebras decomposes over \mathbb{C} into simples.
However, this decomposition is almost never an \mathbb{N}_{0}-equivalence.
These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

\mathbb{N}_{n}-algebras and their representations Example.

A Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular representation is a \mathbb{N}_{0}-representation.

Cells of \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations

Kazhdan-Lusztig ~ 1979. $\mathrm{x} \leq_{L} \mathrm{y}$ if x appears in zy with non-zero coefficient for some $z \in B^{P} . x \sim_{L} y$ if $x \leq_{L} y$ and $y \leq_{L} x$.
\sim_{L} partitions P into left cells L . Similarly for right R , two-sided cells J or \mathbb{N}_{0}-representations.

A \mathbb{N}_{0}-representation M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-representation has a unique apex.

Example. Transitive \mathbb{N}_{0}-representations arise naturally as the decategorification of simple 2-representations.

C Example.
 Group algebras with the group element basis have only one cell, G itself.
 so Transitive \mathbb{N}_{0}-representations are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.
 \sim_{L} partitions P into left cells L. Similarly for right R, two-sided cells J or \mathbb{N}_{0}-representations.

A \mathbb{N}_{0}-representation M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-representation has a unique apex.

Example. Transitive \mathbb{N}_{0}-representations arise naturally as the decategorification of simple 2-representations.

Example. Transitive \mathbb{N}_{0}-representations arise naturally as the decategorification of simple 2-representations.

Group algebras with the group element basis have only one cell, G itself.

\mathbb{N}_{0}-repres \quad Example (Kazhdan-Lusztig ~ 1979)	

Hecke algebras for the symmetric group with KL basis
A \mathbb{N}_{0}-rep have colls coming from the Robinson-Schensted correspondence. me \sim_{L} equivalen

The transitive \mathbb{N}_{0}-representations are the simples with apex given by elements for the same shape of Young tableaux.

Group algebras with the group element basis have only one cell, G itself.

\mathbb{N}_{0}-repres \quad Example (Kazhdan-Lusztig ~ 1979)	

Hecke algebras for the symmetric group with KL basis
A \mathbb{N}_{0}-rep have cells coming from the Robinson-Schensted correspondence. me \sim_{L} equivalen

The transitive \mathbb{N}_{0}-representations are the simples with apex given by elements for the same shape of Young tableaux.
Example (Lusztig ≤ 2003).

Right cels
Exar
simp

H

Group algebras with the group element basis have only one cell, G itself.
so Transitive \mathbb{N}_{0}-representations are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.
\sim_{L} partitionc Dintalnft allel Cimilorlufar vicht D tonn
\mathbb{N}_{0}-repres \quad Example (Kazhdan-Lusztig ~ 1979)
Hecke algebras for the symmetric group with KL basis
A \mathbb{N}_{0}-rep have cells coming from the Robinson-Schensted correspondence. me \sim_{L} equivalen

The transitive \mathbb{N}_{0}-representations are the simples with apex given by elements for the same shape of Young tableaux.

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{c|c|ccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cc|c|cc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccc|c|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\begin{aligned}
& \theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|llll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ll|l|ll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lll|l|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\begin{aligned}
& \theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

\mathbb{N}_{0}-representations via graphs

Constru	The adjacency matrix $A(\Gamma)$ of Γ is $A(\Gamma)=\left(\begin{array}{ll\|lll} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$ These are W_{e+2}-representations for some e only if $A(\Gamma)$ is killed by the Chebyshev polynomial $\mathrm{U}_{e+1}(\mathrm{X})$. Morally speaking: These are constructed as the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
\text { It is not hard to see that the Chebsshev-braid-like relation can not hold othervise. } & 0 & 0 & 0 \\
0 & 2 & \overline{1} & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

\mathbb{N}_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

"Lifting" \mathbb{N}_{0}-representation theory

An additive, \mathbb{K}-linear, idempotent complete, Krull-Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

A simple transitive 2 -representation (2-simple) of \mathscr{C} is an additive, \mathbb{K}-linear 2-functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) },
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{0}-representation theory

Mazorchuk-Miemietz ~2014.

2-Simples $\longleftrightarrow \leadsto$ simples (e.g. 2-Jordan-Hölder theorem),
A but their decategorifications are transitive \mathbb{N}_{0}-representations and usually not simple.
2-functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}}(=2 \text {-cat of finitary cats })
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{0}-representation theory

Mazorchuk-Miemietz ~2014.

2-Simples \longleftrightarrow simples (e.g. 2-Jordan-Hölder theorem),
but their decategorifications are transitive \mathbb{N}_{0}-representations and usually not simple.
2-functor

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{0}-representation theory

Mazorchuk-Miemietz ~ 2014.
fi 2-Simples $\leadsto m$ simples (e.g. 2-Jordan-Hölder theorem),
but their decategorifications are transitive \mathbb{N}_{0}-representations and usually not simple.

2-functor

> Mazorchuk-Miemietz ~2011.

Define cell theory similarly as for \mathbb{N}_{0}-algebras and -representations.
2-simple \Rightarrow transitive, and transitive 2-representations have a 2 -simple quotient.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorific Chan-Mazorchuk ~2016. from 2-equiy

Every 2-simple has an associated apex not killing it.
Thus, we can again study them separately for different cells.

"Lifting" \mathbb{N}_{0}-representation theory

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{0}-representation theory

Anfini	Example.
	B-Mod ($+\mathrm{fc}=$ some finiteness condition) is a prototypical object of \mathscr{A}^{f}.
As 2-fumbur A 2-representation for us is very often on the category of quiver representations.	
$\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}}$ ($=2$-cat of finitary cats),	
such that there are no non-zero proper \mathscr{C}-stable ideals.	
There is also the notion of 2-equivalence.	

Examnle $\mathbb{N}_{\text {n-aloebras and }} \mathbb{N}_{n-\text { renresentations arise naturally as the }}$ Example (Mazorchuk-Miemietz \& Chuang-Rouquier \& Khovanov-Lauda \& ...).

2-Kac-Moody algebras (+fc) are finitary 2-categories.
Their 2-simples are categorifications of the simples.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).
Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0}. ')
Symmetric group: the 2-simples are categorifications of the simples.

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}}(=2 \text {-cat of finitary cats })
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: 'Indecomposable projective functors on $\mathcal{O}_{0} .{ }^{\text {. }}$)
Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft-Mackaay-Mazorchuk-Miemietz-Zhang \& ...). Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories. Except for the small quotients $+\epsilon$ the classification is widely open. Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-representations arise naturally as the decategorification of 2-categories and 2-representations, and \mathbb{N}_{0}-equivalence com from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

> Soergel bimodules for finite Coxeter groups are finitary 2-categories. (Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0}. ')

Symmetric group: the 2-simples are categorifications of the simples.

Excuse me?

"Lifting" \mathbb{N}_{0}-representation theory

An additive, \mathbb{K}-linear, idempotent complete, Krull-Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

A simple transitiv 2-functor	Question ("2-representation theory").	e, \mathbb{K}-linear
	Classify all 2-simples of a fixed finitary 2-category.	
such that there There is also th	This is the categorification of assify all simples a fixed finite-dimensional algebra',	
Example. $\mathbb{N}_{0-\mathrm{C}}^{-}$ decategorification from 2-equivalen	but much harder, e.g. it is unknown whether there are always only finitely many 2 -simples. ce upstairs.	e zuivalence comes

2-representations of dihedral Soergel bimodules

Theorem (Soergel ~1992 \& Williamson ~2010 \& Elias ~2013 \& ...). Dihedral singular Soergel bimodules $\boldsymbol{s}^{\mathscr{W}}{ }_{e+2}$ categorify the dihedral algebroid with indecomposables categorifying the KL basis.

The regular part \mathscr{W}_{e+2} is also known as the monoidal category of dihedral Soergel bimodules.

There is also the maximally singular part $\boldsymbol{m} \mathscr{W}_{e+2}$, which actually is semisimple.
Note that $\boldsymbol{s}^{\mathscr{W}_{e+2}}$ has a diegammatic incarnation.

2-representations of dihedral Soergel bimodules

There is also the maximally singular part $\boldsymbol{m} \mathscr{W}_{e+2}$, which actually is semisimple.
Note that $\boldsymbol{s}^{s} \mathscr{W}_{e+2}$ has a diessammatic incarnation.

2-representations of dihedral Soergel bimodules

A few words about the 'How to'

- Decategorification. What is the corresponding question about \mathbb{N}_{0}-matrices?
\triangleright Chebyshev-Smith-Lusztig \rightsquigarrow ADE-type-answer.
- Construction. Does every candidate solution downstairs actually lifts?
\triangleright "Brute force" (Khovanov-Seidel-Andersen-)Mackaay \rightsquigarrow zig-zag algebras.
\triangleright "Smart" Mackaay-Mazorchuk-Miemietz \rightsquigarrow "Cartan approach"
- Redundancy. Are the constructed 2-representations equivalent?
$\triangleright \mathscr{M}_{\boldsymbol{\Gamma}} \cong \mathscr{M}_{\boldsymbol{\Gamma}^{\prime}} \Leftrightarrow \boldsymbol{\Gamma} \cong \boldsymbol{\Gamma}^{\prime}$.
- Completeness. Are we missing 2-representations?
\triangleright This is where the grading assumption comes in.

N_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\mathbf{\Gamma}$:

$$
\mathrm{M}-\mathrm{C}(1,2,3,4,5)
$$

$$
\theta_{z} \cdots M_{1}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \theta_{2} \cdots M_{1}-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

2-representations of dihedral Soergel bimodules

$U_{0}(x)-1, \quad U_{1}(x)-x, \quad x U_{6+2}(x)-U_{t+2}(x)+U_{t}(x)$ Kronecher ~1857. Any complete set of conjugate algetraic integers in $]-2.2 \mid$ is a subset of roocs $\left[\mathrm{U}_{\mathrm{e}+1}(\mathrm{x}]\right)$ for some e.

Figure: The roots of the Chitryhter polymamiak (of the stecoad kind).
ω

A few words about the 'How to'

- Decategorification. What is the corrisponding question about Ne-matrices? Cheby_hev-Smith-Luszig M-ADE-typeanswer
- Construction. Does every candidate solution downstairs actually lifts?
- "Brute force" (Khovanow-Seidel-Andersen-)Mackazy wiz zig-zag algebras "Smart" Mackazy-Mazorchuk-Miemietz - "Cartan apporach"
- Redundancy. Are the constructed 2 -representations equivalent?
b. $A_{r} \simeq A_{r} \# r \simeq r$
- Completeness. Are we missing 2 -representations?
D. This is where the grading assumption comes in.

One cues show that theso hawe to be all by beking at

This was done Lry Elingol-Khovinox ~ 1995

N_{0}-representations via graphs

Construct a W_{∞}-representation M associated to a bipartite graph $\mathbf{\Gamma}$:

$$
\mathrm{M}-\mathrm{C}(1,2,3,4,5)
$$

$$
\theta_{x} \cdots+\mathrm{M}_{4}=\left(\begin{array}{llllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \theta_{2} \cdots M_{1}-\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

2-representations of dihedral Soergel bimodules

$U_{0}(x)-1, \quad U_{1}(x)-x, \quad x U_{t+2}(x)-U_{t+2}(x)+U_{t}(x)$ Kronecher ~1857. Any complete set of conjugarte algetraic integers in $]-2.2 \mid$ is a subset of racses $\left(U_{N+1}(x)\right\}$ for some e.

∞

\mathbb{N}_{0}-representations via graphs
$\mathrm{M}-\mathrm{C}(1,2,3.4 .5$)

$$
\theta_{2} \cdots \mathrm{M}_{2}=\left(\begin{array}{llllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \theta_{\mathrm{t}} \cdots \mathrm{M}_{\mathrm{z}}-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

A few words about the 'How to'

- Decategorification. What is the corrisponding question about Ne-matrices? Chebyshev-Smith-Lurztig wiot-type:answer
- Construction. Does every candidate solution downstairs actually lifts?

D "Brute force" (Khovanou-Seidel-Andersen-)Mackazy wiz zig-zag algebras "Smart" Mackazy-Mazorchuk-Miemietz - "Cartan apporach"

- Redundancy. Are the constructed 2 -representations equivalent?
b $-A_{r} \simeq \mu_{r^{\prime}}+r \simeq r^{r}$
- Completeness. Are we missing 2 -representations?
s This is where the grading assumption comes in.

One cues show that these have to be all by beking at

This was dene ty Eliagot-Khovinar ~ 1995

Thanks for your attention!

$$
\begin{array}{cc}
U_{0}(X)=1, & U_{1}(X)=X, \\
U_{0}(X)=1, & U_{1}(X)=2 X, \\
\hline X U_{e+1}(X)=U_{e+1}(X)=U_{e+2}(X)+U_{e}(X) \\
U_{e}(X)
\end{array}
$$

Kronecker $\boldsymbol{\sim}$ 1857. Any complete set of conjugate algebraic integers in] $-2,2$ [is a subset of roots $\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

	1	s	t	ts	st	w_{0}
$\square \square$	1	1	1	1	1	1
\square	2	0	0	-1	-1	0
\square	1	-1	-1	1	1	-1

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $S_{3} \cong W_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

	θ_{1}	θ_{s}	θ_{t}	θ_{ts}	θ_{st}	$\theta_{w_{0}}$
$\square \square$	1	2	2	4	4	6
\square	2	2	2	1	1	0
\square	1	0	0	0	0	0

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1,
$$

The first ever published character table (~ 1896) by Frobenius. Note the root of unity ρ.

[1011]

Fronenius: Über Gruppencharaktere.
samen Factor f abgesehen) einen relativen Charakter von 5 , und umSekehrt lässt sich jeder relative Charakter von $5, \chi_{0}, \cdots \chi_{k-1}$, auf eine
oder mehrere Arten durch Hinzufügung passender Werthe $\chi_{k}, \cdots \chi_{k-1}$
${ }^{2} 4$ einem Charakter von 5) ergänzen.

§ 8.

Ich will nun die Theorie der Gruppencharaktere an einigen BeiSpielen erlautern. Die geraden Permutationen von 4 Symbolen bilden cine Gruppe 5 der Ordnung $h=12$. Thre Elemente zerfallen in 4 Classen, $d_{i e}$ Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der Ordnung 3 zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei ρ eine primitive Cubische Wurzel der Einheit.

Tetraeder. $h=12$.

	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	h_{a}
χ_{0}	1	3	1	1	1
X_{1}	1	-1	1	1	3
X_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).
$1 \mathrm{~m} \rightarrow$ [1223, 11213

$$
w_{0}<m \rightarrow \frac{1}{\frac{2}{3}}, \frac{1}{\frac{1}{3}}
$$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

$$
\begin{array}{|l|}
\hline \text { Right cells } \\
\hline
\end{array}
$$

$1 \rightarrow m \rightarrow[12 / 3,112 \mid 3$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

$1 \leftrightarrow \square \square \square, \square \square$

$$
t \leadsto \square, \square
$$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979. Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right

	Apexes:						
		θ_{1}	$\theta_{\text {s }}$	$\theta_{\text {t }}$	$\theta_{\text {ts }}$	$\theta_{\text {st }}$	$\theta_{w_{0}}$
	$\square \square$	1	2	2	4	4	6
Exampl	\square	2	2	2	1	1	0
	\square	1	0	0	0	0	0
	The \mathbb{N}_{0}-representations are the simples.						

In case you are wondering why this is supposed to be true, here is the main observation of Smith ~1969:

$$
\mathrm{U}_{e+1}(\mathrm{X}, \mathrm{Y})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{~A}_{e+1}\right)\right)
$$

Chebyshev poly. $=$ char. poly. of the type A_{e+1} graph and

$$
\mathrm{XT}_{n-1}(\mathrm{X})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{D}_{n}\right)\right) \pm(-1)^{n \bmod 4}
$$

first kind Chebyshev poly. ' $=$ ' char. poly. of the type D_{n} graph ($n=\frac{e+4}{2}$).

The type A family
$e=0$
∇
$e=1$

$e=3$

. .
\star

The type D family

$e=4$

$e=6$

The type E exceptions

The type A family

The type D family
$e=8$
$e=10$

Note: Almost none of these are simple since they grow in rank with growing e.
This is the opposite from the symmetric group case.

Objects. Parabolic subsets $\emptyset, \mathrm{s}, \mathrm{t}$.
1 -morphism generators. Color changes $\emptyset \mathrm{s}$ or $\mathrm{s} \emptyset$ or $\emptyset \mathrm{t}$ or $\mathrm{t} \emptyset$.
2-morphism generators. Diagrams and polynomials.

s

Relations. Some relations coming from Frobenius extensions.

> Theorem (Mackaay-Mazorchuk-Miemietz ~ 2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2 -representations of \mathscr{C} having a non-trivial value at i.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For any simple 2 -representation \mathscr{M} of \mathscr{C}, there exists a simple algebra 1-morphism A in $\overline{\mathscr{C}}$ (the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent (as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}_{\operatorname{od}}^{\overline{\mathscr{C}}}(\mathrm{A})$.

Theorem (Mac | So it remains to study 2-representations of $\boldsymbol{m} \mathscr{W}_{\mathrm{e}+2}$. |
| :---: |
| But how to do that? | 2-category. For any 5 Idea: Chebyshev knows everything! xists a simple algebra 1-morphism A in $\overline{\mathscr{C}}$ that \mathscr{M} is equivalent (as a 2-representation So where have we seen the magic formula objects of $\mathscr{M}_{\mathrm{od}_{\overline{\mathscr{C}}}}(\mathrm{A})$.

$$
\begin{gathered}
\mathrm{X} \mathrm{U}_{m+1}(\mathrm{X})=\mathrm{U}_{m+2}(\mathrm{X})+\mathrm{U}_{m}(\mathrm{X}) \\
\text { before? }
\end{gathered}
$$

Here:

$[2]_{\mathrm{q}} \cdot[m+1]_{\mathrm{q}}=[m+2]_{\mathrm{q}}+[m]_{\mathrm{q}}$
$\mathrm{L}_{1} \otimes \mathrm{~L}_{m+1} \cong \mathrm{~L}_{m+2} \oplus \mathrm{~L}_{m}$
$\mathrm{L}_{m}=m^{\mathrm{th}}$ symmetric power of the vector representation of (quantum) $\mathfrak{s l}_{2}$.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of sir Quantum Satake (Elias ~2013).

Let \mathcal{Q}_{e} be the semisimplyfied quotient of the category of Tl (quantum) $\mathfrak{s l}_{2}$-modules for η being a $2(e+2)^{\text {th }}$ primitive, complex root of unity. | 2- $\begin{array}{l}\text { 1-1 } \\ \text { (as } \\ \\ \\ \mathrm{S}_{e}^{\mathrm{s}}: \mathcal{Q}_{e} \rightarrow \boldsymbol{m}^{2} \mathscr{W}_{e+2} \\ \text { and } \\ \mathrm{S}_{e}^{\mathrm{t}}: \mathcal{Q}_{e} \rightarrow \boldsymbol{m}^{2} \mathscr{W}_{e+2} .\end{array}$ |
| :--- |

The point: it suffices to find algebra objects in \mathcal{Q}_{e}.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representa Theorem (Kirillov-Ostrik ~2003).

Theorem (Mackad, The algebra objects in \mathcal{Q}_{e} are ADE classified., be a fiat 2-category. For any simple 2-representation \mathscr{M} of \mathscr{C}, there exists a simple algebra 1-morphism A in $\mathscr{\mathscr { C }}$ (the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent (as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}_{\operatorname{od}_{\overline{\mathscr{C}}}}(\mathrm{A})$.

The algebra object in type D :

$$
\mathrm{A}^{\mathrm{D}} \cong \mathrm{~L}_{0} \oplus \mathrm{~L}_{e} \cong \mathbb{C}_{\mathrm{v}} \oplus \operatorname{Sym}^{e}\left(\mathrm{~L}_{1}\right) \leftrightarrow \emptyset \emptyset \text { e. }
$$

The multiplication $m: D^{e} \otimes D^{e} \rightarrow D^{e}$ is

Check associativity, e.g.:

The algebra object in type D:

$$
\mathrm{A}^{\mathrm{D}} \cong \mathrm{~L}_{0} \oplus \mathrm{~L}_{e} \cong \mathbb{C}_{\mathrm{v}} \oplus \operatorname{Sym}^{e}\left(\mathrm{~L}_{1}\right) \leftrightarrow \emptyset \oplus e .
$$

The multiplication $m: D^{e} \otimes D^{e} \rightarrow D^{e}$ is

