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Outline

• Daniel’s talk: a close relation between Chebyshev polynomials, quantum sl2
and certain quotients of H(Â1) = H(I2(∞)) (dihedral Hecke algebras)

• This talk: a similar relation between two-variable Chebyshev-like
polynomials, quantum sl3 and a certain subquotients of H(Â2) (trihedral
Hecke algebras).

• Daniel’s talk: the 2-representation theory of certain quotients of Soergel
bimodules of type Â1 (involving zigzag algebras of ADE Dynkin type).

• This talk: the 2-representation theory of certain subquotients of Soergel
bimodules of type Â2 (involving trihedral zigzag algebras of generalized ADE
Dynkin type).
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Chebyshev-like polynomials

Definition (???, Koornwinder 1974)

The polynomials Um,n(x , y), m, n ∈ N0, are recursively defined by

U0,0(x , y) = 1, U1,0(x , y) = x , Um,n(x , y) = Un,m(y , x),

xUm,n(x , y) = Um+1,n(x , y) + Um−1,n+1(x , y) + Um,n−1(x , y),

yUm,n(x , y) = Um,n+1(x , y) + Um+1,n−1(x , y) + Um−1,n(x , y).

E.g.

U1,1(x , y) = xy−1, U2,1(x , y) = x2y−y2−x , U0,2(x , y) = y2−x , U1,0(x , y) = x ,

;

xU1,1(x , y) = U2,1(x , y) + U0,2(x , y) + U1,0(x , y)
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The zeros of the Um,n

The zeros of the Um,n are all of the form (z , z) with z ∈ d◦3 (..., Koornwinder 1974,
Evans-Pugh 2010, ...).
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C

d =
{z = 2 exp(it) + exp(−2it)

| t ∈ [0, 2π]}

d3 = {z ∈ C

| −z2z2+4z3+

z3−18zz+27≥0}

The disciod d3 = d3(sl3) bounded by Steiner’s hypocycloid d

Note the Z/3Z-symmetry of d3: (z , z) 7→ (e±2πi/3z , e∓2πi/3z).
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Relation with quantum sl3: generic case

Let q ∈ C be generic.

Theorem
There exists an isomorphism of algebras:[

Uq(sl3)−mod
]
C
∼= C[x , y ]

[Vm,n] =

m,n∑
k,l=0

dk,l
m,n

[
V⊗k1,0 ⊗ V⊗l0,1

]
7→ Um,n(x , y) =

m,n∑
k,l=0

dk,l
m,nx

ky l

for m, n ∈ N0.

The integers dk,l
m,n can be computed recursively. Note that they can be positive or

negative.
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Relation quantum sl3: root of unity case

Theorem

Suppose η2(e+3) = 1. Then there exists an isomorphism of algebras

[Uη(sl3)−modss]C
∼= C[x , y ]/ (Um,n(x , y) | m + n = e + 1)

[Vm,n] 7→ Um,n(x , y) (0 ≤ m + n ≤ e).
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The trihedral Hecke algebra of level ∞

• We are now going to define the trihedral analogue of H(I2(∞)) = H(Â1),

which is an infinite-dimensional algebra T∞ ⊂ H(Â2).

• There is no underlying group (that we know of), so we define T∞ directly in
terms of the trihedral Kazhdan-Lusztig generators.

Definition (MMMT 2018)

Let v be a formal parameter. Then T∞ is the associative, unital (C(v)-)algebra
generated by three elements θg , θo , θp, subject to the following relations:

θ2g = [3]v! θg , θ2o = [3]v! θo , θ2p = [3]v! θp,

θgθoθg = θgθpθg , θoθgθo = θoθpθo , θpθgθp = θpθoθp.
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Embedding into H(Â2)

• Let W (Â2) be the affine Weyl group with simple reflections b, r , y . Then

byb = yby , ryr = yry , brb = rbr

are the longest elements in the (finite) type A2 parabolic subgroups of W (Â2).

• Let
θbyb, θryr , θbrb

be the corresponding Kazhdan-Lusztig basis elements in H(Â2).

Lemma

There is an embedding of algebras T∞ ↪→ H(Â2) such that

θg 7→ θbyb, θo 7→ θryr , θp 7→ θbrb.
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The trihedral Bott-Samelson basis

Fixing a cyclic ordering on GOP := {g , o, p}, e.g.

p o

g
,

we can define the trihedral Bott-Samelson basis of T∞

{1} ∪
{
Hk,l

u | u ∈ GOP, m, n ∈ N0
}
.

Main idea: T∞ is “almost” a tricolored version of
[
Uq(sl3)−mod

]
C
∼= C[x , y ].

Example

H2,0
g = θpθoθg

! x2
,

H1,1
g = θgθpθg = θgθoθg
! xy = yx

,
H0,2

g = θoθpθg

! y2
,

where we think of x and y as counter-clockwise and clockwise color rotation, resp.
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The trihedral Kazhdan-Lusztig basis

For any u ∈ GOP and m, n ∈ N0, define

Cm,n
u :=

m,n∑
k,l=0

[2]−k−lv dk,l
m,n H

k,l
u .

Poposition

The set
{1} ∪

{
Cm,n

u | u ∈ GOP, m, n ∈ N0
}

forms a positive integral basis of T∞.

Main ingredient of the proof: the embedding T∞ ↪→ H(Â2) sends trihedral KL
basis elements to affine KL basis elements.
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The trihedral Hecke algebra of level e

Definition
For fixed level e, let Ie be the two-sided ideal in T∞ generated by

{Cm,n
u | m + n = e + 1, u ∈ GOP} .

We define the trihedral Hecke algebra of level e as

Te = T∞/Ie .

• Te is “almost” a tricolored version of
[Uη(sl3)−modss]C

∼= C[x , y ]/ (Um,n(x , y) | m + n = e + 1)

• Te is actually the analogue of the small quotient of the dihedral Hecke
algebra, obtained by killing θw0 .
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Semisimplicity

Theorem (MMMT 2018)

The algebra Te is semisimple and

dimTe = 3
(e + 1)(e + 2)

2
+ 1.

Example

There is a 3 : 1 correspondence between the non-trivial left cells of Te and the
generalized type A Dynkin diagram Ae , which is a cut-off of the fundamental Weyl
chamber of sl3 (integral dominant weights), e.g.
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Complex simples of Te

1-dimensional simples: for λu ∈ {0, [3]v! } s.t. relations hold.

3-dimensional simples: for 0 6= z ∈ d◦3 s.t. Um,n(z , z) = 0 for all
m + n = e + 1, the simple Vz is given by

θg 7→ [2]v

[3]v z z
0 0 0
0 0 0

 ,

θo 7→ [2]v

0 0 0
z [3]v z
0 0 0

 ,

θp 7→ [2]v

0 0 0
0 0 0
z z [3]v

 .

We have
Vz1
∼= Vz2 ⇔ z1 = e±2πi/3z2.
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N0-representations

For N0-representations of Qe
∼= C[x , y ]/(Um,n(x , y) | m + n = e + 1):

Question 1

Are there any X ∈ Mat(r ,N0), with r ∈ N, such that

• XXT = XTX ;

• Um,n(X ,XT ) = 0 if m + n = e + 1;

• Um,n(X ,XT ) ∈ Mat(r ,N0) if 0 ≤ m + n ≤ e.

For N0-representations of Te :

Question 2
How to build these from the matrices which answer Question 1?
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Tricolored graphs

Let Γ be a tricolored (multi)graph without loops, and group its vertices according
to color. Then the adjacency matrix A(Γ) becomes of the form:

A(Γ) =

G O P

G 0 AT C

O A 0 BT

P CT B 0

Consider also the oriented adjacency matrices A(ΓX) and A(ΓY):

A(ΓX) = A(ΓY)T =

G O P

G 0 0 C

O A 0 0

P 0 B 0
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Generalized Dynkin diagrams

Example (Type A, Di Francesco-Zuber 1990, Ocneanu 2002)

A3 =

1

1

2

3 3

2

4

1

3

2

•

•
••

�

�

�

�

�

�

,AX
3 =

•

•
••

�

�

�

�

�

�

,AY
3 =

•

•
••

�

�

�

�

�

�

A =

1 1 0 0
0 1 0 1
0 1 1 0

 B =

1 1 0
1 0 1
0 1 1

 C =

1 0 0
1 1 1
0 1 0
0 0 1
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Generalized Dynkin diagrams

Example (Type D, Di Francesco-Zuber 1990, Ocneanu 2002)
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Generalized Dynkin diagrams

Example (Conjugate type A, Di Francesco-Zuber 1990, Ocneanu 2002)

cA1
∼= A1

•

��

,

cA2
∼= A2

•

•

�

�

�

�

cA1

,

cA3

•

•

�

�

�

�

,

cA4

•

•

• �

�

�

�

�

�
cA3

· · ·

The graph of type cAe comes from an iterative procedure on the graph of type Ae .
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Generalized Dynkin diagrams

Example (Type E, Di Francesco-Zuber 1990, Ocneanu 2002)
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+ three more
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N0-representations of Qe = [Uη(sl3)−modss]C

Let Γ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter
number h = e + 3.

Theorem (MMMT 2018)

The assignment
x 7→ A(ΓX), y 7→ A(ΓY)

defines an integral representation of Qe
∼= C[x , y ]/ (Um,n(x , y) | m + n = e + 1).

In type A and D it is positive integral.

• In particular, we have A(ΓX)A(ΓY) = A(ΓY)A(ΓX).

• The first claim follows from the fact that all eigenvalues of ΓX (Evans-Pugh
2010) are roots of the Um,n with m + n = e + 1.

• Positivity in type A and D follows from categorification. We conjecture
positivity to hold in type cA and E as well.
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N0-representations of Te

Let Γ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter
number h = e + 3.

Theorem (MMMT 2018)

There exists a unique integral Te-representation MΓ s.t.

θg 7→ [2]v


[3]vId AT C

0 0 0
0 0 0

, θo 7→ [2]v


0 0 0
A [3]vId BT

0 0 0



θp 7→ [2]v


0 0 0
0 0 0
CT B [3]vId

.

It is positive integral in type A and D.

We conjecture positivity to hold in conjugate type A and type E as well.
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2-Representations of Qe = Uη(sl3)−modss using quivers

• Let Γ be the generalized type ADE Dynkin diagram with h = e + 3.

• Take T∇e
∼= CV (Γ) to be the trivial quiver algebra associated to Γ.

• Let Pi,j (resp. i,jP) be the left (resp. right) projective T∇e-module
associated to the vertex vi,j in Γ.

Conjecture

There exists a finitary 2-representation of Qe on T∇e − fpmod such that

V1,0 7→
⊕

(i,j)→(k,l)∈ΓX

Pk,l ⊗ i,jP,

V0,1 7→
⊕

(i,j)←(k,l)∈ΓY

Pk,l ⊗ i,jP,

which decategorifies to the positive integral representation of
C[x , y ]/ (Um,n(x , y) | m + n = e + 1) associated to Γ.
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Functorial representations of Te in generalized type A

Consider the following quiver:

y0,2 x1,1 z2,0

z0,1 y1,0

x0,0

αx

αy

αz
y|z

z|y

αx
αy

αz

z|x
x|z

x|z
z|x

x|y
y|x

αx

αy

αz
y|z

z|y

z|x
x|z

αx

αy

αz z|x
x|z

αx

αy

αzx|y
y|x

y|z
z|y

αx

αy

αz
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The trihedral zigzag algebra of generalized type A

Definition (MMMT 2018)

Let ∇e be the complex path algebra of Γ modulo the relations:

• Any path with more than one triangle to its left (right) is equal to zero.

• αx + αy + αz = 0, αxαy + αxαz + αyαz = 0, αxαyαz = 0.

• Loops commute with edges.

• αzy|x = 0 etc.

• Zig-zag relation: x |y |x = αxαy etc.

• Zig-zig equals zag times loop: x |y |z = αxx |z etc.

The grading on ∇e is given by twice the path length.

• Let ei,j be the idempotent at vertex vi,j . Paths of length > 3 are zero and

ei,j∇eek,l ∼=


H∗(F l3,C), if vi,j = vk,l ,

C{2} ⊕ C{4}, if vi,j − vk,l ,

{0}, else.
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Functorial representations of Te in generalized type A

Let Pi,j (resp. i,jP) be the left (resp. right) graded projective ∇e-module
corresponding to vertex vi,j in Γ.

Theorem
The assignment

θg 7→
⊕

i−j≡0 mod 3

Pi,j ⊗ i,jP

θo 7→
⊕

i−j≡1 mod 3

Pi,j ⊗ i,jP

θp 7→
⊕

i−j≡2 mod 3

Pi,j ⊗ i,jP

defines a functorial representation of Te on ∇e−fpmodgr .
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Remarks

• By using the Z/3Z-symmetry on ∇e , for e ≡ 0 mod 3, one can easily define
the corresponding type D trihedral zigzag algebra. For other generalized types
it is not clear what the right definition is.

• Unfortunately, we do not know how to lift these functorial representations of
Te to full-blown 2-representations of trihedral Soergel bimodules in a
straightforward way.

• Therefore, we use an alternative construction of simple transitive
2-representations, involving algebra objects. The two approaches are related by
the quantum SU(3) McKay correspondence.

But we first recall the Quantum Satake Correspondence and define trihedral
Soergel bimodules.
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A three-colored version of Qq = Uq(sl3)−mod

Definition

For u ∈ {g , o, p}, let Qu
q denote the full subcategory of Qq generated by the Vm,n

such that

m − n ≡


0 mod 3, if u = g ,

1 mod 3, if u = o,

2 mod 3, if u = p.

Tensoring with V1,0, resp. V0,1, defines a functor X, resp. Y, between the Qu
q, e.g.

oXg =

X

X

: Qg
q → Qo

q , gYo =

Y

Y

: Qo
q → Qg

q , gYo ◦ oXg =

X

X

Y

Y
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Definition (Elias 2014 motivated by Kuperberg 1996)

We define QGOP
q to be the additive, Cq-linear closure of the 2-category whose

objects are the categories Qu
q, whose 1-morphisms are composites of X and Y, and

whose 2-morphisms are natural transformations.

A natural transformation between composites of X and Y is the same as a
Uq(sl3)-equivariant map, so we can use Kuperberg’s diagrammatic web calculus to
describe QGOP

q . The generating 2-morphisms (up to color variations) are

:

YX

↪→

Cq

,

:

XX

↪→

Y

,

:

Cq

�
YX

,

:

Y

�

XX

,

:

XY

↪→

Cq

,

:

YY

↪→

X

,

:

Cq

�

XY

,

:

X

�

YY

.
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These are subject to the relations

= = = =

=[3]q =−[2]q = +

together with the vertical mirrors and the relations obtained by varying the
orientation and the colors.
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Three-colored sl3-clasps

Given m, n ∈ N0, for each choice of source u ∈ {g , o, p}, the simple Vm,n

corresponds to a direct summand of the functor XmYn in QGOP
q , given by a

diagrammatic idempotent cm,nu (Kuperberg 1996, Kim 2007).

Example (Three-colored sl3-clasps)

c2,0g = + 1
[2]q

, c1,1g = − 1
[3]q

,

c0,2g = + 1
[2]q
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The root of unity case

Let η2(e+3) = 1.

Definition

Define QGOP
e as the quotient of the diagrammatic 2-category above, for q = η, by

the 2-ideal generated by all cm,nu , such that m + n = e + 1 and u ∈ GOP.

• QGOP
e is nothing but a three-colored version of Kuperberg’s diagrammatic

calculus for Qe = Uη(sl3)−modss.
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Diagrammatic Soergel calculus in type Â2

Using a q-deformation of the usual Â2 Cartan matrix, Elias (2014) constructed a

linear representation of W = W(Â2) on the root space SpanC(q){αb, αr , αy}.

We can specialize q to a complex number to get a complex representation:

• for generic q, it is reflection faithful.

• for q a root of unity, the representation is not faithful and descends to a
finite complex reflection group.

Let Rq = C(q)[αb, αr , αy ], where αb, αr , αy are given degree 2. The above
representation extends to a degree-preserving action of W on Rq by automorphisms.
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Soergel calculus in type Â2

Definition (The 2-cat sBS ∗
q, Elias 2014, Elias-Williamson 2013)

• Objects: proper subsets of {b, y , r}:

∅, b, y , r , g := {b, y}, o := {r , y}, p := {b, r}.

• 1-morphisms: finite strings of compatible colors, e.g.:

• 2-morphisms: generated by

degree 1

,

degree −1

,

degree 2

,

degree −2

,

degree 0

and decorations of the regions by partially invariant polynomials in Rq, and
subject to a whole list of relations (which depend on q).
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Remarks

Let sBS q be the 2-category obtained from sBS ∗q by allowing formal grading
shifts on 1-morphisms and considering only degree-zero 2-morphisms, i.e. for any
t ∈ Z we define

2sBS q(x{t}, y) := 2sBS ∗q(x , y)t .

Theorem (Elias 2014, Elias-Williamson 2013)

Let q ∈ C be generic.

• Kar(sBS q) is equivalent to the 2-category of all Soergel bimodules of

type Â2 and decategorifies to the Hecke algebroid of that type, such that the
indecomposable 1-morphisms correspond to the KL-basis elements.

• Let BS q := sBS q(∅, ∅). Then Kar(BS q) is equivalent to the monoidal

category of regular Soergel bimodules of type Â2 and decategorifies to Hv(Â2).
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The Quantum Satake Correspondence (QSC)

• The 2-category of maximally singular Soergel bimodules Kar(mBS q) is
defined as the Karoubi envelope of the 2-full 2-subcategory of sBS q

generated by diagrams whose left- and rightmost colors are secondary.

Definition (Elias 2014)

The Satake 2-functor Sq : QGOP
q → mBS q is defined as indicated below:

Sq7−→ ,

Sq7−→ ,

Sq7−→ ,

Sq7−→ .

Theorem (Elias 2014)

The Satake 2-functor is a well-defined degree-zero 2-equivalence.
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Trihedral Soergel bimodules of level ∞

Assume that q ∈ C is generic.

Definition (MMMT 2018)

Let T∞ be the additive closure of the 2-full 2-subcategory of BS q, whose
1-morphisms are generated by all grading shifts of

∅, ∅bgb∅, ∅yoy∅, ∅bpb∅,

and the 1-morphisms obtained from these by changing the intermediate primary
colors.

Example

By the relations on 2-morphisms in BS q, we have

∅bgb∅ ∼= ∅bgy∅ ∼= ∅ygb∅ ∼= ∅ygy∅.

Similar isomorphisms hold for the strings with o and p.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory II July 2018 36 / 48



The categorification theorem at level ∞

Theorem
The decategorification of T∞ is isomorphic to T∞, such that the indecomposable
objects correspond to the tricolored KL basis elements.

• We can always remove intermediate ∅, e.g.

∅bgb∅bpb∅ ∼= ∅bgbpb∅ ⊕ ∅bgbpb∅{2}

This shows that all 1-morphisms in T∞ can be obtained from sBS q by
biinduction.

• For every pair of 1-morphisms x and y in sBS q, biinduction gives a functor

BI(x , y) : sBS q(x , y)→ T∞(BI(x),BI(y)).

However, it is not a 2-functor, because it does not behave well under
horizontal composition.
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Biinduction

For any u ∈ GOP:

• the Satake 2-functor Sq maps the tricolored clasps cm,nu in QGOP
q to the

primitive idempotent 2-endomorphisms Sq(cm,nu ) in sBS q;

• biinduction maps the Sq(cm,nu ) in sBS q to the primitive idempotent
(2-)endomorphisms Cm,n

u in T∞.

Example

c1,1g = − 1
[3]q

Sq7−→

Sq(c1,1g ) = − 1
[3]q

BI7−→

C1,1
g = = − 1

[3]q
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Maximally singular Soergel bimodules at level e

Let η2(e+3) = 1.

Definition (MMMT 2018)

Define mBS e as the quotient of mBS q, at q = η, by the two-sided 2-ideal
generated by{

Sq(cm,nu ) | m + n = e + 1, u ∈ GOP
}

=
{

Sq(m,nuc) | m + n = e + 1, u ∈ GOP
}
.

The Karoubi envelope Kar(mBS e) is by definition the 2-category of maximally

singular type Â2 Soergel bimodules at level e.

Corollary

The Satake 2-functor Sq, at q = η, descends to a degree-zero 2-equivalence

Se : QGOP
e →Kar(mBS e).
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Trihedral Soergel bimodules at level e

Let η2(e+3) = 1.

Definition (MMMT 2018)

Define Te as the quotient of T∞, at q = η, by the two-sided 2-ideal generated by

{Cm,n
u | m + n = e + 1, u ∈ GOP} = {m,nuC | m + n = e + 1, u ∈ GOP} .

Theorem
The decategorification of Te is isomorphic to Te , such that the indecomposable
objects correspond to the tricolored KL basis elements.
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Algebra and module objects

Let C be a finitary monoidal category.

• An algebra object (X , µ, ι) in C is an object X together with a
multiplication morphism µ : X ⊗ X → X and a unit morphism ι : I → X
satisfying the usual axioms.

• A (right) X -module object (M, µM) in C is an object M together with a
morphism µM : M ⊗ X → M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X -modules in C .

• In this way, we get the finitary category of right X -module objects in C ,
denoted modC − X .

• Let (X , µ, ι) be an algebra object in C . For any object Y in C , the
monoidal product Y ⊗ X is naturally a right X -module object in C , with
µY⊗X = idY ⊗ µ.

• In this way, the category modC − X becomes naturally a (left) finitary
2-representation of C .

• Under certain conditions, there is a bijection between the equivalence classes
of simple transitive 2-representations of C and the Morita equivalence classes
of simple algebra objects in C , its projective abelianization. [MMMT 2016]
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Algebra objects in Qe = Uη(sl3)−modss

Example (Generalized type A)

• The identity object I = V0,0 is an algebra object, because I⊗ I ∼= I.

• Since Y ⊗ I ∼= Y for all objects Y in Qe , we see that

modQe − I ' Qe ,

which is the regular 2-representation of Qe .

• It is also the unique cell 2-representation of Qe . In particular, it is simple
transitive.

• Conjecture: it is equivalent to the generalized type A quiver 2-representation
of Qe from a couple of slides ago.
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Algebras in Qe = Uη(sl3)−modss

Let e ≡ 0 mod 3.

Example (Generalized type D, Schopieray 2017, MMMT 2018)

As an object in Qe the algebra object X decomposes as

X ∼= V0,0 ⊕ Ve,0 ⊕ V0,e .

The unit morphism ι : I = V0,0 → X is given by
(
idV0,0 , 0, 0

)
.

Furthermore, there are morphisms

Ve,0 ⊗ Ve,0 → V0,e ,

V0,e ⊗ V0,e → Ve,0,

Ve,0 ⊗ V0,e → V0,0,

V0,e ⊗ Ve,0 → V0,0,

which, together with the canonical isomorphisms V0,0 ⊗ Vi,j
∼= Vi,j

∼= Vi,j ⊗ V0,0,
assemble into a unital and associative multiplication morphism µ : X ⊗ X → X .
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Conjectures

Conjecture

The 2-representation of Qe on modQe − X is equivalent to the generalized type D
quiver 2-representation of Qe .

A6
?

•

•

•

•
•

•

•
•

•
�

�
�

�
�

�

�
�

�

�

�

�

�

�

�
�

�
�

 

D6
?

•
•
• •
•

�
�

�

�

�
�

• If simple transitive quiver 2-representations of Qe exist for all simply laced
generalized Dynkin diagrams (as we conjectured a couple of slides back), then
so do simple algebra objects, but we do not know of any explicit construction
of X in conjugate type A and type E.
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Algebra objects in Te

• Every simple algebra object X in Qe = Uη(sl3)−modss gives rise to three
algebra 1-morphism Xu ∈ QGOP

e (u,u), for u ∈ GOP.

Proposition

For every simple algebra object (X , µ, ι) in Qe and every u ∈ GOP, there exist
degree zero multiplication and unit morphisms such that

BI ◦ Se(Xu){−3}

becomes a graded algebra object in Te .
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Multiplication and unit morphisms of in Te

• Because biinduction is not a 2-functor, one has to be slightly careful with the
definition of the multiplication morphism of BI ◦ Se(Xu){−3}.

Example (Generalized type A)

For (X , µ, ι) = (I, idI, idI) in Qe and u = g , the algebra object in Te is∅bgb∅{−3} ,

multiplication

degree −3

,

unit

degree 3


Conjecture: the quiver algebra underlying the simple transitive 2-representation of
Te is the trihedral zigzag algebra of generalized type A.
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Final remarks

• Open problem (for e > 3): classify all admissible graphs Γ such that

Um,n(A(ΓX),A(ΓY)) = 0, for all m + n = e + 1.

• Open problem: classify all simple algebra objects in Uη −modss.

• Question: The ordinary zigzag algebras have nice properties and interesting
relations to other mathematics. Do some of those generalize to the trihedral
zigzag algebras?

• Possible generalizations: Does our story generalize to type An for n ≥ 3?
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THANKS!!!
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