Di- and trihedral (2-)representation theory II

Joint work with Volodymyr Mazorchuk and Vanessa Miemietz

July 2018

• This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum \mathfrak{sl}_3 and a certain subquotients of $H(\widehat{A}_2)$ (trihedral Hecke algebras).

• This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum \mathfrak{sl}_3 and a certain subquotients of $H(\widehat{A}_2)$ (trihedral Hecke algebras).

• **Daniel's talk**: the 2-representation theory of certain quotients of Soergel bimodules of type \widehat{A}_1 (involving zigzag algebras of ADE Dynkin type).

• This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum \mathfrak{sl}_3 and a certain subquotients of $H(\widehat{A}_2)$ (trihedral Hecke algebras).

• Daniel's talk: the 2-representation theory of certain quotients of Soergel bimodules of type \widehat{A}_1 (involving zigzag algebras of ADE Dynkin type).

• This talk: the 2-representation theory of certain subquotients of Soergel bimodules of type \hat{A}_2 (involving trihedral zigzag algebras of generalized ADE Dynkin type).

Definition (???, Koornwinder 1974)

The polynomials $U_{m,n}(x, y)$, $m, n \in \mathbb{N}^0$, are recursively defined by

$$\begin{split} & \mathrm{U}_{0,0}(x,y) = 1, \ \mathrm{U}_{1,0}(x,y) = x, \ \mathrm{U}_{m,n}(x,y) = \mathrm{U}_{n,m}(y,x), \\ & x\mathrm{U}_{m,n}(x,y) = \mathrm{U}_{m+1,n}(x,y) + \mathrm{U}_{m-1,n+1}(x,y) + \mathrm{U}_{m,n-1}(x,y), \\ & y\mathrm{U}_{m,n}(x,y) = \mathrm{U}_{m,n+1}(x,y) + \mathrm{U}_{m+1,n-1}(x,y) + \mathrm{U}_{m-1,n}(x,y). \end{split}$$

E.g.

$$U_{1,1}(x,y) = xy - 1, U_{2,1}(x,y) = x^2y - y^2 - x, U_{0,2}(x,y) = y^2 - x, U_{1,0}(x,y) = x,$$

$x U_{1,1}(x, y) = U_{2,1}(x, y) + U_{0,2}(x, y) + U_{1,0}(x, y)$

The zeros of the $U_{m,n}$

The zeros of the $U_{m,n}$ are all of the form (z,\overline{z}) with $z \in d_3^{\circ}$ (..., Koornwinder 1974, Evans-Pugh 2010, ...).

The disciod $d_3 = d_3(\mathfrak{sl}_3)$ bounded by Steiner's hypocycloid d

Note the $\mathbb{Z}/3\mathbb{Z}$ -symmetry of d₃: $(z,\overline{z}) \mapsto (e^{\pm 2\pi i/3}z, e^{\mp 2\pi i/3}\overline{z})$.

Relation with quantum \mathfrak{sl}_3 : generic case

Let $q\in\mathbb{C}$ be generic.

Theorem

for m,

There exists an isomorphism of algebras:

$$\begin{split} \left[\mathbf{U}_{\mathbf{q}}(\mathfrak{sl}_{3}) - \mathrm{mod} \right]_{\mathbb{C}} &\cong \quad \mathbb{C}[x, y] \\ \left[V_{m,n} \right] &= \sum_{k,l=0}^{m,n} d_{m,n}^{k,l} \left[V_{1,0}^{\otimes k} \otimes V_{0,1}^{\otimes l} \right] \quad \mapsto \quad \mathbf{U}_{m,n}(x, y) = \sum_{k,l=0}^{m,n} d_{m,n}^{k,l} x^{k} y^{l} \\ n \in \mathbb{N}^{0}. \end{split}$$

The integers $d_{m,n}^{k,l}$ can be computed recursively. Note that they can be positive or negative.

Theorem

Suppose $\eta^{2(e+3)} = 1$. Then there exists an isomorphism of algebras

$$\begin{split} \left[\mathrm{U}_{\eta}(\mathfrak{sl}_3) - \mathrm{mod}_{\mathrm{ss}} \right]_{\mathbb{C}} &\cong \quad \mathbb{C}[x, y] / \left(\mathrm{U}_{m, n}(x, y) \mid m + n = e + 1 \right) \\ \left[V_{m, n} \right] &\mapsto \quad \mathrm{U}_{m, n}(x, y) \quad (0 \leq m + n \leq e). \end{split}$$

• We are now going to define the trihedral analogue of $H(I_2(\infty)) = H(\widehat{A}_1)$, which is an infinite-dimensional algebra $T_{\infty} \subset H(\widehat{A}_2)$.

• We are now going to define the trihedral analogue of $H(I_2(\infty)) = H(\widehat{A}_1)$, which is an infinite-dimensional algebra $T_{\infty} \subset H(\widehat{A}_2)$.

• There is no underlying group (that we know of), so we define T_∞ directly in terms of the trihedral Kazhdan-Lusztig generators.

• We are now going to define the trihedral analogue of $H(I_2(\infty)) = H(\widehat{A}_1)$, which is an infinite-dimensional algebra $T_{\infty} \subset H(\widehat{A}_2)$.

• There is no underlying group (that we know of), so we define T_∞ directly in terms of the trihedral Kazhdan-Lusztig generators.

Definition (MMMT 2018)

Let v be a formal parameter. Then T_∞ is the associative, unital ($\mathbb{C}(v)$ -)algebra generated by three elements θ_g , θ_o , θ_p , subject to the following relations:

$$\theta_g^2 = [3]_{\mathsf{v}}! \,\theta_g, \qquad \theta_o^2 = [3]_{\mathsf{v}}! \,\theta_o, \qquad \theta_\rho^2 = [3]_{\mathsf{v}}! \,\theta_\rho,$$

 $\theta_g \theta_{\mathsf{o}} \theta_g = \theta_g \theta_{\mathsf{p}} \theta_g, \qquad \theta_{\mathsf{o}} \theta_g \theta_{\mathsf{o}} = \theta_{\mathsf{o}} \theta_{\mathsf{p}} \theta_{\mathsf{o}}, \qquad \theta_{\mathsf{p}} \theta_g \theta_{\mathsf{p}} = \theta_{\mathsf{p}} \theta_{\mathsf{o}} \theta_{\mathsf{p}}.$

Embedding into $H(\widehat{A}_2)$

• Let $W(\widehat{A}_2)$ be the affine Weyl group with simple reflections b, r, y. Then

$$byb = yby$$
, $ryr = yry$, $brb = rbr$

are the longest elements in the (finite) type A_2 parabolic subgroups of $W(\widehat{A}_2)$. • Let

 $\theta_{byb}, \theta_{ryr}, \theta_{brb}$

be the corresponding Kazhdan-Lusztig basis elements in $H(\widehat{A}_2)$.

Embedding into $H(\widehat{A}_2)$

• Let $W(\widehat{A}_2)$ be the affine Weyl group with simple reflections b, r, y. Then

$$byb = yby$$
, $ryr = yry$, $brb = rbr$

are the longest elements in the (finite) type A_2 parabolic subgroups of $W(\widehat{A}_2)$. • Let

 $\theta_{byb}, \theta_{ryr}, \theta_{brb}$

be the corresponding Kazhdan-Lusztig basis elements in $H(\widehat{A}_2)$.

Lemma

There is an embedding of algebras $T_{\infty} \hookrightarrow H(\widehat{A}_2)$ such that

$$\theta_g \mapsto \theta_{byb}, \quad \theta_o \mapsto \theta_{ryr}, \quad \theta_p \mapsto \theta_{brb}.$$

The trihedral Bott-Samelson basis

Fixing a cyclic ordering on $GOP := \{g, o, p\}$, e.g.

we can define the trihedral Bott-Samelson basis of T_∞

$$\{1\} \cup \left\{ \mathbf{H}_{\mathbf{u}}^{k,l} \mid \mathbf{u} \in GOP, \ m, n \in \mathbb{N}^{0} \right\}.$$

Main idea: T_{∞} is "almost" a tricolored version of $[U_q(\mathfrak{sl}_3) - \mathrm{mod}]_{\mathbb{C}} \cong \mathbb{C}[x, y]$.

Example

$$\begin{split} \mathrm{H}^{2,0}_{g} &= \theta_{p} \theta_{o} \theta_{g} \\ & \underset{\chi^{2}}{\overset{ \qquad }{\longleftrightarrow} \ \chi^{2}}, \quad \begin{split} \mathrm{H}^{1,1}_{g} &= \theta_{g} \theta_{p} \theta_{g} = \theta_{g} \theta_{o} \theta_{g} \\ & \underset{\chi y = yx}{\overset{ \qquad }{\longleftrightarrow} \ \chi^{2}}, \quad \overset{ \qquad }{\longleftrightarrow} \begin{array}{l} \mathrm{H}^{0,2}_{g} = \theta_{o} \theta_{p} \theta_{g} \\ & \underset{\chi y = yx}{\overset{ \qquad }{\longleftrightarrow} \ \chi^{2}}, \end{split}$$

where we think of x and y as counter-clockwise and clockwise color rotation, resp.

The trihedral Kazhdan-Lusztig basis

For any $\mathbf{u} \in GOP$ and $m, n \in \mathbb{N}^0$, define

$$C_{\mathbf{u}}^{m,n} := \sum_{k,l=0}^{m,n} [2]_{\mathbf{v}}^{-k-l} d_{m,n}^{k,l} \mathbf{H}_{\mathbf{u}}^{k,l}.$$

Poposition

The set

$$\{1\} \cup \left\{ \mathbf{C}_{\mathsf{u}}^{m,n} \mid \mathsf{u} \in G \stackrel{\mathsf{OP}}{\operatorname{\mathsf{OP}}}, \ m, n \in \mathbb{N}^{\mathsf{0}} \right\}$$

forms a positive integral basis of $\mathrm{T}_\infty.$

Main ingredient of the proof: the embedding $T_{\infty} \hookrightarrow H(\widehat{A}_2)$ sends trihedral KL basis elements to affine KL basis elements.

Definition

For fixed level e, let I_e be the two-sided ideal in T_∞ generated by

$$\{\mathbf{C}^{m,n}_{\mathbf{u}} \mid m+n=e+1, \ \mathbf{u} \in GOP\}.$$

We define the trihedral Hecke algebra of level e as

$$\mathrm{T}_{e}=\mathrm{T}_{\infty}/\mathrm{I}_{e}.$$

• T_e is "almost" a tricolored version of $[U_\eta(\mathfrak{sl}_3) - \operatorname{mod}_{ss}]_{\mathbb{C}} \cong \mathbb{C}[x, y] / (U_{m,n}(x, y) \mid m + n = e + 1)$

Definition

For fixed level e, let I_e be the two-sided ideal in T_∞ generated by

$$\{\mathbf{C}^{m,n}_{\mathbf{u}} \mid m+n=e+1, \ \mathbf{u} \in GOP\}.$$

We define the trihedral Hecke algebra of level e as

$$\mathrm{T}_{e}=\mathrm{T}_{\infty}/\mathrm{I}_{e}.$$

T_e is "almost" a tricolored version of [U_η(sl₃) - mod_{ss}]_C ≅ C[x, y]/(U_{m,n}(x, y) | m + n = e + 1)
T_e is actually the analogue of the small quotient of the dihedral Hecke

algebra, obtained by killing θ_{w_0} .

Semisimplicity

Theorem (MMMT 2018)

The algebra T_{e} is semisimple and

dim
$$T_e = 3 \frac{(e+1)(e+2)}{2} + 1.$$

Example

There is a 3: 1 correspondence between the non-trivial left cells of T_e and the generalized type A Dynkin diagram \mathbf{A}_e , which is a cut-off of the fundamental Weyl chamber of \mathfrak{sl}_3 (integral dominant weights), e.g.

Complex simples of T_e

1-dimensional simples: for $\lambda_{u} \in \{0, [3]_{v}!\}$ s.t. relations hold.

Complex simples of T_e

1-dimensional simples: for $\lambda_{\mathbf{u}} \in \{0, [3]_{\mathbf{v}}!\}$ s.t. relations hold. **3-dimensional simples:** for $0 \neq z \in d_3^\circ$ s.t. $U_{m,n}(z, \overline{z}) = 0$ for all m + n = e + 1, the simple V_z is given by

$$\begin{array}{rcccc} \theta_g & \mapsto & [2]_{\mathtt{v}} \begin{pmatrix} [3]_{\mathtt{v}} & \overline{z} & z \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \\ \theta_o & \mapsto & [2]_{\mathtt{v}} \begin{pmatrix} 0 & 0 & 0 \\ z & [3]_{\mathtt{v}} & \overline{z} \\ 0 & 0 & 0 \end{pmatrix}, \\ \\ \theta_\rho & \mapsto & [2]_{\mathtt{v}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \overline{z} & z & [3]_{\mathtt{v}} \end{pmatrix}. \end{array}$$

We have

$$V_{z_1}\cong V_{z_2} \Leftrightarrow z_1=e^{\pm 2\pi i/3}z_2.$$

\mathbb{N}^{0} -representations

For \mathbb{N}^0 -representations of $\mathcal{Q}_e \cong \mathbb{C}[x,y]/(U_{m,n}(x,y) \mid m+n=e+1)$:

Question 1

Are there any $X \in Mat(r, \mathbb{N}^0)$, with $r \in \mathbb{N}$, such that

• $XX^T = X^T X;$

•
$$U_{m,n}(X, X^T) = 0$$
 if $m + n = e + 1$;

• $U_{m,n}(X, X^T) \in \operatorname{Mat}(r, \mathbb{N}^0)$ if $0 \le m + n \le e$.

\mathbb{N}^{0} -representations

For \mathbb{N}^0 -representations of $\mathcal{Q}_e \cong \mathbb{C}[x,y]/(U_{m,n}(x,y) \mid m+n=e+1)$:

Question 1

Are there any $X \in Mat(r, \mathbb{N}^0)$, with $r \in \mathbb{N}$, such that

•
$$XX^T = X^T X;$$

•
$$U_{m,n}(X, X^T) = 0$$
 if $m + n = e + 1$;

• $U_{m,n}(X, X^T) \in \operatorname{Mat}(r, \mathbb{N}^0)$ if $0 \le m + n \le e$.

For \mathbb{N}^0 -representations of T_e :

Question 2

How to build these from the matrices which answer Question 1?

Tricolored graphs

Let Γ be a tricolored (multi)graph without loops, and group its vertices according to color. Then the adjacency matrix $A(\Gamma)$ becomes of the form:

$$A(\mathbf{\Gamma}) = \begin{array}{ccc} G & O & P \\ G & \begin{pmatrix} 0 & A^{\mathrm{T}} & C \\ A & 0 & B^{\mathrm{T}} \\ P & C^{\mathrm{T}} & B & 0 \end{array}\right)$$

Consider also the oriented adjacency matrices $A(\mathbf{\Gamma}^{X})$ and $A(\mathbf{\Gamma}^{Y})$:

$$A(\mathbf{\Gamma}^{\mathrm{X}}) = A(\mathbf{\Gamma}^{\mathrm{Y}})^{\mathrm{T}} = \begin{array}{c} G \\ O \\ P \end{array} \begin{pmatrix} G & O & P \\ 0 & 0 & C \\ \hline A & 0 & 0 \\ 0 & B & 0 \end{pmatrix}$$

Example (Type A, Di Francesco-Zuber 1990, Ocneanu 2002)

Example (Type D, Di Francesco-Zuber 1990, Ocneanu 2002)

Example (Conjugate type A, Di Francesco-Zuber 1990, Ocneanu 2002)

The graph of type cA_e comes from an iterative procedure on the graph of type A_e .

Generalized Dynkin diagrams

Example (Type E, Di Francesco-Zuber 1990, Ocneanu 2002)

Theorem (MMMT 2018)

The assignment

$$\mathbf{x}\mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{X}}), \quad \mathbf{y}\mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{Y}})$$

defines an integral representation of $Q_e \cong \mathbb{C}[x, y] / (U_{m,n}(x, y) | m + n = e + 1)$. In type A and D it is **positive** integral.

Theorem (MMMT 2018)

The assignment

$$\kappa \mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{X}}), \quad y \mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{Y}})$$

defines an integral representation of $Q_e \cong \mathbb{C}[x, y] / (U_{m,n}(x, y) | m + n = e + 1)$. In type A and D it is **positive** integral.

• In particular, we have $A(\Gamma^{X})A(\Gamma^{Y}) = A(\Gamma^{Y})A(\Gamma^{X})$.

Theorem (MMMT 2018)

The assignment

$$\kappa \mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{X}}), \quad y \mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{Y}})$$

defines an integral representation of $Q_e \cong \mathbb{C}[x, y] / (U_{m,n}(x, y) | m + n = e + 1)$. In type A and D it is **positive** integral.

- In particular, we have $A(\Gamma^{X})A(\Gamma^{Y}) = A(\Gamma^{Y})A(\Gamma^{X}).$
- The first claim follows from the fact that all eigenvalues of Γ^{X} (Evans-Pugh 2010) are roots of the $U_{m,n}$ with m + n = e + 1.

Theorem (MMMT 2018)

The assignment

$$\mathbf{x}\mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{X}}), \quad \mathbf{y}\mapsto \mathcal{A}(\mathbf{\Gamma}^{\mathrm{Y}})$$

defines an integral representation of $Q_e \cong \mathbb{C}[x, y] / (U_{m,n}(x, y) | m + n = e + 1)$. In type A and D it is **positive** integral.

- In particular, we have $A(\Gamma^{\mathrm{X}})A(\Gamma^{\mathrm{Y}}) = A(\Gamma^{\mathrm{Y}})A(\Gamma^{\mathrm{X}}).$
- The first claim follows from the fact that all eigenvalues of Γ^{X} (Evans-Pugh 2010) are roots of the $U_{m,n}$ with m + n = e + 1.
- \bullet Positivity in type A and D follows from categorification. We conjecture positivity to hold in type cA and E as well.

Theorem (MMMT 2018)

There exists a unique integral $\mathrm{T}_{e}\text{-representation}\;\mathrm{M}_{\Gamma}$ s.t.

$$\begin{aligned} \theta_g &\mapsto [2]_{\mathsf{v}} \begin{pmatrix} [3]_{\mathsf{v}} \mathrm{Id} & A^{\mathrm{T}} & C \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \theta_{\mathsf{o}} &\mapsto [2]_{\mathsf{v}} \begin{pmatrix} 0 & 0 & 0 \\ A & [3]_{\mathsf{v}} \mathrm{Id} & B^{\mathrm{T}} \\ 0 & 0 & 0 \end{pmatrix} \\ \theta_{\rho} &\mapsto [2]_{\mathsf{v}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ C^{\mathrm{T}} & B & [3]_{\mathsf{v}} \mathrm{Id} \end{pmatrix}. \end{aligned}$$

It is **positive** integral in type A and D.

We conjecture positivity to hold in conjugate type A and type E as well.

2-Representations of $\mathcal{Q}_e = \mathrm{U}_\eta(\mathfrak{sl}_3) - \mathrm{mod}_{\mathrm{ss}}$ using quivers

- Let Γ be the generalized type ADE Dynkin diagram with h = e + 3.
- Take $T\nabla_e \cong \mathbb{C}^{V(\Gamma)}$ to be the **trivial** quiver algebra associated to Γ .
- Let $P_{i,j}$ (resp. $_{i,j}P$) be the left (resp. right) projective $T\nabla_e$ -module associated to the vertex $v_{i,j}$ in Γ .

Conjecture

There exists a finitary 2-representation of \mathcal{Q}_e on $\mathrm{T}
abla_e - \mathrm{fpmod}$ such that

$$V_{1,0} \mapsto \bigoplus_{(i,j)\to(k,l)\in\Gamma^{\mathrm{X}}} P_{k,l} \otimes_{i,j} P,$$
$$V_{0,1} \mapsto \bigoplus_{(i,j)\leftarrow(k,l)\in\Gamma^{\mathrm{Y}}} P_{k,l} \otimes_{i,j} P,$$

which decategorifies to the positive integral representation of $\mathbb{C}[x, y]/(U_{m,n}(x, y) \mid m + n = e + 1)$ associated to Γ .

Functorial representations of T_e in generalized type A

Consider the following quiver:

The trihedral zigzag algebra of generalized type A

Definition (MMMT 2018)

Let ∇_e be the complex path algebra of Γ modulo the relations:

• Any path with more than one triangle to its left (right) is equal to zero.

•
$$\alpha_x + \alpha_y + \alpha_z = 0$$
, $\alpha_x \alpha_y + \alpha_x \alpha_z + \alpha_y \alpha_z = 0$, $\alpha_x \alpha_y \alpha_z = 0$.

- Loops commute with edges.
- $\alpha_z \mathbf{y} | \mathbf{x} = \mathbf{0}$ etc.
- Zig-zag relation: $x|y|x = \alpha_x \alpha_y$ etc.
- Zig-zig equals zag times loop: $x|y|z = \alpha_x x|z$ etc.

The grading on ∇_e is given by twice the path length.
The trihedral zigzag algebra of generalized type A

Definition (MMMT 2018)

Let ∇_e be the complex path algebra of Γ modulo the relations:

• Any path with more than one triangle to its left (right) is equal to zero.

•
$$\alpha_x + \alpha_y + \alpha_z = 0$$
, $\alpha_x \alpha_y + \alpha_x \alpha_z + \alpha_y \alpha_z = 0$, $\alpha_x \alpha_y \alpha_z = 0$.

- Loops commute with edges.
- $\alpha_z \mathbf{y} | \mathbf{x} = \mathbf{0}$ etc.
- Zig-zag relation: $x|y|x = \alpha_x \alpha_y$ etc.
- Zig-zig equals zag times loop: $x|y|z = \alpha_x x|z$ etc.

The grading on ∇_e is given by twice the path length.

• Let $e_{i,j}$ be the idempotent at vertex $v_{i,j}$. Paths of length > 3 are zero and

$$e_{i,j}\nabla_e e_{k,l} \cong \begin{cases} H^*(\mathcal{F}l_3,\mathbb{C}), & \text{if } v_{i,j} = v_{k,l}, \\ \mathbb{C}\{2\} \oplus \mathbb{C}\{4\}, & \text{if } v_{i,j} - v_{k,l}, \\ \{0\}, & \text{else.} \end{cases}$$

Functorial representations of T_e in generalized type A

Let $P_{i,j}$ (resp. $_{i,j}P$) be the left (resp. right) graded projective ∇_e -module corresponding to vertex $v_{i,j}$ in Γ .

Theorem

The assignment

$$\begin{array}{rcl} \theta_g & \mapsto & \bigoplus_{i-j\equiv 0 \bmod 3} P_{i,j} \otimes_{i,j} P \\ \theta_o & \mapsto & \bigoplus_{i-j\equiv 1 \bmod 3} P_{i,j} \otimes_{i,j} P \\ \theta_\rho & \mapsto & \bigoplus_{i-j\equiv 2 \bmod 3} P_{i,j} \otimes_{i,j} P \end{array}$$

defines a functorial representation of T_e on $\nabla_e\mathrm{-fpmod}_{gr}.$

• By using the $\mathbb{Z}/3\mathbb{Z}$ -symmetry on ∇_e , for $e \equiv 0 \mod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.

• By using the $\mathbb{Z}/3\mathbb{Z}$ -symmetry on ∇_e , for $e \equiv 0 \mod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.

• Unfortunately, we do not know how to lift these functorial representations of T_e to full-blown 2-representations of trihedral Soergel bimodules in a straightforward way.

• By using the $\mathbb{Z}/3\mathbb{Z}$ -symmetry on ∇_e , for $e \equiv 0 \mod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.

• Unfortunately, we do not know how to lift these functorial representations of T_e to full-blown 2-representations of trihedral Soergel bimodules in a straightforward way.

• Therefore, we use an alternative construction of simple transitive 2-representations, involving algebra objects. The two approaches are related by the quantum SU(3) McKay correspondence.

But we first recall the **Quantum Satake Correspondence** and define **trihedral Soergel bimodules**.

Definition

For $\mathbf{u} \in \{g, o, p\}$, let $Q_q^{\mathbf{u}}$ denote the full subcategory of Q_q generated by the $V_{m,n}$ such that

$$m-n \equiv \begin{cases} 0 \mod 3, & \text{if } \mathbf{u} = g, \\ 1 \mod 3, & \text{if } \mathbf{u} = o, \\ 2 \mod 3, & \text{if } \mathbf{u} = p. \end{cases}$$

Tensoring with $V_{1,0}$, resp. $V_{0,1}$, defines a functor X, resp. Y, between the Q_q^u , e.g.

Definition (Elias 2014 motivated by Kuperberg 1996)

We define \mathscr{Q}_q^{GOP} to be the additive, \mathbb{C}_q -linear closure of the 2-category whose objects are the categories \mathscr{Q}_q^{u} , whose 1-morphisms are composites of X and Y, and whose 2-morphisms are natural transformations.

A natural transformation between composites of X and Y is the same as a $U_q(\mathfrak{sl}_3)$ -equivariant map, so we can use Kuperberg's diagrammatic web calculus to describe \mathscr{Q}_q^{GOP} . The generating 2-morphisms (up to color variations) are

These are subject to the relations

together with the vertical mirrors and the relations obtained by varying the orientation and the colors.

Given $m, n \in \mathbb{N}^0$, for each choice of source $\mathbf{u} \in \{g, o, p\}$, the simple $V_{m,n}$ corresponds to a direct summand of the functor $X^m Y^n$ in \mathcal{Q}_q^{GOP} , given by a diagrammatic idempotent $c_{\mathbf{u}}^{m,n}$ (Kuperberg 1996, Kim 2007).

Let $\eta^{2(e+3)} = 1$.

Definition

Define \mathscr{Q}_{e}^{GOP} as the quotient of the diagrammatic 2-category above, for $q = \eta$, by the 2-ideal generated by all $c_{\mathbf{u}}^{m,n}$, such that m + n = e + 1 and $\mathbf{u} \in GOP$.

• \mathscr{Q}_{e}^{GOP} is nothing but a three-colored version of Kuperberg's diagrammatic calculus for $\mathcal{Q}_{e} = U_{\eta}(\mathfrak{sl}_{3}) - \operatorname{mod}_{ss}$.

Using a q-deformation of the usual \widehat{A}_2 Cartan matrix, Elias (2014) constructed a linear representation of $W = W(\widehat{A}_2)$ on the root space $\operatorname{Span}_{\mathbb{C}(q)}\{\alpha_b, \alpha_r, \alpha_y\}$.

Using a q-deformation of the usual \widehat{A}_2 Cartan matrix, Elias (2014) constructed a linear representation of $W = W(\widehat{A}_2)$ on the root space $\operatorname{Span}_{\mathbb{C}(q)}\{\alpha_b, \alpha_r, \alpha_y\}$.

We can specialize q to a complex number to get a complex representation:

- for generic q, it is reflection faithful.
- \bullet for q a root of unity, the representation is not faithful and descends to a finite complex reflection group.

Let $R_q = \mathbb{C}(q)[\alpha_b, \alpha_r, \alpha_y]$, where $\alpha_b, \alpha_r, \alpha_y$ are given degree 2. The above representation extends to a degree-preserving action of W on R_q by automorphisms.

Soergel calculus in type \widehat{A}_2

Definition (The 2-cat $s\mathscr{BS}_{q}$, Elias 2014, Elias-Williamson 2013)

• **Objects:** proper subsets of {**b**, **y**, **r**}:

$$\emptyset$$
, b, y, r, g := {b, y}, o := {r, y}, p := {b, r}.

• 1-morphisms: finite strings of compatible colors, e.g.:

• 2-morphisms: generated by

and decorations of the regions by partially invariant polynomials in ${\rm R}_q,$ and subject to a whole list of relations (which depend on q).

Let $s\mathscr{BS}_q$ be the 2-category obtained from $s\mathscr{BS}_q^*$ by allowing formal grading shifts on 1-morphisms and considering only degree-zero 2-morphisms, i.e. for any $t \in \mathbb{Z}$ we define

$$2\mathbf{s}\mathscr{B}\mathscr{S}_{q}(x\{t\},y) := 2\mathbf{s}\mathscr{B}\mathscr{S}_{q}^{*}(x,y)_{t}.$$

Theorem (Elias 2014, Elias-Williamson 2013)

Let $q \in \mathbb{C}$ be generic.

• $\mathscr{K}ar(\mathfrak{sBS}_q)$ is equivalent to the 2-category of all Soergel bimodules of type \widehat{A}_2 and decategorifies to the Hecke algebroid of that type, such that the indecomposable 1-morphisms correspond to the KL-basis elements.

• Let $\mathscr{BS}_q := \mathbf{s}\mathscr{BS}_q(\emptyset, \emptyset)$. Then $\mathscr{K}ar(\mathscr{BS}_q)$ is equivalent to the monoidal category of **regular** Soergel bimodules of type \widehat{A}_2 and decategorifies to $H_v(\widehat{A}_2)$.

The Quantum Satake Correspondence (QSC)

• The 2-category of **maximally singular** Soergel bimodules $\mathscr{K}ar(m\mathscr{BS}_q)$ is defined as the Karoubi envelope of the 2-full 2-subcategory of $s\mathscr{BS}_q$ generated by diagrams whose left- and rightmost colors are secondary.

Definition (Elias 2014)

The Satake 2-functor $S_q: \mathscr{Q}_q^{GOP} \to \mathfrak{mBS}_q$ is defined as indicated below:

Theorem (Elias 2014)

The Satake 2-functor is a well-defined degree-zero 2-equivalence.

Trihedral Soergel bimodules of level ∞

Assume that $q \in \mathbb{C}$ is generic.

Definition (MMMT 2018)

Let \mathscr{T}_{∞} be the additive closure of the 2-full 2-subcategory of \mathscr{BS}_q , whose 1-morphisms are generated by all grading shifts of

 $\emptyset, \quad \emptyset bg b \emptyset, \quad \emptyset y oy \emptyset, \quad \emptyset bp b \emptyset,$

and the 1-morphisms obtained from these by changing the intermediate primary colors.

Example

By the relations on 2-morphisms in \mathscr{BS}_q , we have

 $\emptyset bg b\emptyset \cong \emptyset bg y\emptyset \cong \emptyset yg b\emptyset \cong \emptyset yg y\emptyset.$

Similar isomorphisms hold for the strings with o and p.

Theorem

The decategorification of \mathscr{T}_{∞} is isomorphic to T_{∞} , such that the indecomposable objects correspond to the tricolored KL basis elements.

• We can always remove intermediate \emptyset , e.g.

 $\emptyset bg b\emptyset bp b\emptyset \cong \emptyset bg bp b\emptyset \oplus \emptyset bg bp b\emptyset \{2\}$

This shows that all 1-morphisms in \mathscr{T}_∞ can be obtained from $s\mathscr{BS}_q$ by biinduction.

Theorem

The decategorification of \mathscr{T}_{∞} is isomorphic to T_{∞} , such that the indecomposable objects correspond to the tricolored KL basis elements.

 \bullet We can always remove intermediate $\emptyset,$ e.g.

 $\emptyset bg b\emptyset bp b\emptyset \cong \emptyset bg bp b\emptyset \oplus \emptyset bg bp b\emptyset \{2\}$

This shows that all 1-morphisms in \mathscr{T}_∞ can be obtained from $s\mathscr{BS}_q$ by biinduction.

• For every pair of 1-morphisms x and y in $s\mathscr{BS}_q$, biinduction gives a functor

$$\operatorname{BI}(x,y)$$
: $s\mathscr{BS}_q(x,y) \to \mathscr{T}_{\infty}(\operatorname{BI}(x),\operatorname{BI}(y)).$

However, it is **not** a 2-functor, because it does not behave well under horizontal composition.

Biinduction

For any $\mathbf{u} \in GOP$:

- the Satake 2-functor S_q maps the tricolored clasps $c_{u}^{m,n}$ in \mathscr{Q}_{q}^{GOP} to the primitive idempotent 2-endomorphisms S_q($c_{u}^{m,n}$) in $s\mathscr{BS}_{q}$;
- biinduction maps the S_q(c^{*m*,n}_u) in $s\mathscr{BS}_q$ to the primitive idempotent (2-)endomorphisms C^{*m*,n}_u in \mathscr{T}_{∞} .

Maximally singular Soergel bimodules at level e

Let $\eta^{2(e+3)} = 1$.

Definition (MMMT 2018)

Define $m\mathscr{BS}_e$ as the quotient of $m\mathscr{BS}_q$, at $q = \eta$, by the two-sided 2-ideal generated by

 $\left\{ \mathsf{S}_{\mathsf{q}}(\mathsf{c}_{\mathsf{u}}^{m,n}) \mid m+n=e+1, \ \mathsf{u} \in GOP \right\} = \left\{ \mathsf{S}_{\mathsf{q}}({}^{m,n}_{\mathsf{u}}\mathsf{c}) \mid m+n=e+1, \ \mathsf{u} \in GOP \right\}.$

The Karoubi envelope $\mathscr{K}ar(\mathfrak{mBS}_e)$ is by definition the 2-category of maximally singular type \widehat{A}_2 Soergel bimodules at level e.

Corollary

The Satake 2-functor S_q , at $q = \eta$, descends to a degree-zero 2-equivalence

$$\mathsf{S}_e: \mathscr{Q}_e^{GOP} \to \mathscr{K}\mathrm{ar}(\mathfrak{m}\mathscr{B}\mathscr{S}_e).$$

Let $\eta^{2(e+3)} = 1$.

Definition (MMMT 2018)

Define \mathscr{T}_e as the quotient of \mathscr{T}_∞ , at $\mathbf{q}=\eta$, by the two-sided 2-ideal generated by

$$\{\mathsf{C}_{\mathsf{u}}^{m,n} \mid m+n=e+1, \ \mathsf{u} \in \mathsf{GOP}\} = \{ {}^{m,n}_{\mathsf{u}}\mathsf{C} \mid m+n=e+1, \ \mathsf{u} \in \mathsf{GOP} \}$$

Theorem

The decategorification of \mathscr{T}_e is isomorphic to T_e , such that the indecomposable objects correspond to the tricolored KL basis elements.

Let \mathscr{C} be a finitary monoidal category.

• An **algebra object** (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

Let \mathscr{C} be a finitary monoidal category.

• An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

• A (right) X-module object (M, μ_M) in \mathscr{C} is an object M together with a morphism $\mu_M \colon M \otimes X \to M$ satisfying the usual axioms. Similarly, one can define **intertwiners** between (right) X-modules in \mathscr{C} .

Let \mathscr{C} be a finitary monoidal category.

• An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

• A (right) X-module object (M, μ_M) in \mathscr{C} is an object M together with a morphism $\mu_M \colon M \otimes X \to M$ satisfying the usual axioms. Similarly, one can define **intertwiners** between (right) X-modules in \mathscr{C} .

• In this way, we get the finitary category of right X-module objects in \mathscr{C} , denoted $\operatorname{mod}_{\mathscr{C}} - X$.

Let \mathscr{C} be a finitary monoidal category.

• An **algebra object** (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

• A (right) X-module object (M, μ_M) in \mathscr{C} is an object M together with a morphism $\mu_M \colon M \otimes X \to M$ satisfying the usual axioms. Similarly, one can define **intertwiners** between (right) X-modules in \mathscr{C} .

• In this way, we get the finitary category of right X-module objects in \mathscr{C} , denoted $\operatorname{mod}_{\mathscr{C}} - X$.

• Let (X, μ, ι) be an algebra object in \mathscr{C} . For any object Y in \mathscr{C} , the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C} , with $\mu_{Y \otimes X} = \operatorname{id}_Y \otimes \mu$.

Let \mathscr{C} be a finitary monoidal category.

• An **algebra object** (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

• A (right) X-module object (M, μ_M) in \mathscr{C} is an object M together with a morphism $\mu_M \colon M \otimes X \to M$ satisfying the usual axioms. Similarly, one can define **intertwiners** between (right) X-modules in \mathscr{C} .

• In this way, we get the finitary category of right X-module objects in \mathscr{C} , denoted $\operatorname{mod}_{\mathscr{C}} - X$.

• Let (X, μ, ι) be an algebra object in \mathscr{C} . For any object Y in \mathscr{C} , the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C} , with $\mu_{Y \otimes X} = \operatorname{id}_Y \otimes \mu$.

• In this way, the category $\operatorname{mod}_{\mathscr{C}} - X$ becomes naturally a (left) finitary 2-representation of \mathscr{C} .

Let $\mathscr C$ be a finitary monoidal category.

• An **algebra object** (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \to X$ and a unit morphism $\iota: I \to X$ satisfying the usual axioms.

• A (right) X-module object (M, μ_M) in \mathscr{C} is an object M together with a morphism $\mu_M \colon M \otimes X \to M$ satisfying the usual axioms. Similarly, one can define **intertwiners** between (right) X-modules in \mathscr{C} .

• In this way, we get the finitary category of right X-module objects in \mathscr{C} , denoted $\operatorname{mod}_{\mathscr{C}} - X$.

• Let (X, μ, ι) be an algebra object in \mathscr{C} . For any object Y in \mathscr{C} , the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C} , with $\mu_{Y \otimes X} = \operatorname{id}_Y \otimes \mu$.

• In this way, the category $\operatorname{mod}_{\mathscr{C}} - X$ becomes naturally a (left) finitary 2-representation of \mathscr{C} .

• Under certain conditions, there is a bijection between the equivalence classes of simple transitive 2-representations of \mathscr{C} and the Morita equivalence classes of simple algebra objects in $\overline{\mathscr{C}}$, its projective abelianization. [MMMT 2016]

Example (Generalized type A)

- The identity object $I = V_{0,0}$ is an algebra object, because $I \otimes I \cong I$.
- \bullet Since $Y\otimes I\cong Y$ for all objects Y in $\mathcal{Q}_e,$ we see that

$$\operatorname{mod}_{\mathcal{Q}_e} - I \simeq \mathcal{Q}_e,$$

which is the regular 2-representation of Q_e .

 \bullet It is also the unique cell 2-representation of $\mathcal{Q}_e.$ In particular, it is simple transitive.

• Conjecture: it is equivalent to the generalized type A quiver 2-representation of \mathcal{Q}_e from a couple of slides ago.

Algebras in $\mathcal{Q}_{e} = \mathrm{U}_{\eta}(\mathfrak{sl}_{3}) - \mathrm{mod}_{\mathrm{ss}}$

Let $e \equiv 0 \mod 3$.

Example (Generalized type D, Schopieray 2017, MMMT 2018)

As an object in Q_e the algebra object X decomposes as

$$X \cong V_{0,0} \oplus V_{e,0} \oplus V_{0,e}.$$

The unit morphism $\iota: I = V_{0,0} \to X$ is given by $(id_{V_{0,0}}, 0, 0)$. Furthermore, there are morphisms

$$\begin{array}{rcccc} V_{e,0} \otimes V_{e,0} & \rightarrow & V_{0,e}, \\ V_{0,e} \otimes V_{0,e} & \rightarrow & V_{e,0}, \\ V_{e,0} \otimes V_{0,e} & \rightarrow & V_{0,0}, \\ V_{0,e} \otimes V_{e,0} & \rightarrow & V_{0,0}, \end{array}$$

which, together with the canonical isomorphisms $V_{0,0} \otimes V_{i,j} \cong V_{i,j} \cong V_{i,j} \otimes V_{0,0}$, assemble into a unital and associative multiplication morphism $\mu: X \otimes X \to X$.

Conjecture

The 2-representation of Q_e on $mod_{Q_e} - X$ is equivalent to the generalized type D quiver 2-representation of Q_e .

• If simple transitive quiver 2-representations of Q_e exist for all simply laced generalized Dynkin diagrams (as we conjectured a couple of slides back), then so do simple algebra objects, but we do not know of any explicit construction of X in conjugate type A and type E.

• Every simple algebra object X in $\mathcal{Q}_e = U_\eta(\mathfrak{sl}_3) - \operatorname{mod}_{\mathrm{ss}}$ gives rise to three algebra 1-morphism $X_{\mathbf{u}} \in \mathscr{Q}_e^{GOP}(\mathbf{u}, \mathbf{u})$, for $\mathbf{u} \in GOP$.

Proposition

For every simple algebra object (X, μ, ι) in Q_e and every $\mathbf{u} \in GOP$, there exist degree zero multiplication and unit morphisms such that

 $\mathrm{BI} \circ \mathsf{S}_{e}(X_{u})\{-3\}$

becomes a graded algebra object in \mathscr{T}_e .

• Because biinduction is not a 2-functor, one has to be slightly careful with the definition of the multiplication morphism of $BI \circ S_e(X_u)\{-3\}$.

Conjecture: the quiver algebra underlying the simple transitive 2-representation of \mathscr{T}_e is the trihedral zigzag algebra of generalized type A.

 $U_{m,n}(A(\mathbf{\Gamma}^{\mathrm{X}}), A(\mathbf{\Gamma}^{\mathrm{Y}})) = 0$, for all m + n = e + 1.

$$U_{m,n}(A(\mathbf{\Gamma}^{\mathrm{X}}), A(\mathbf{\Gamma}^{\mathrm{Y}})) = 0$$
, for all $m + n = e + 1$.

• Open problem: classify all simple algebra objects in $U_\eta-mod_{ss}.$

$$U_{m,n}(A(\mathbf{\Gamma}^{\mathrm{X}}), A(\mathbf{\Gamma}^{\mathrm{Y}})) = 0$$
, for all $m + n = e + 1$.

- Open problem: classify all simple algebra objects in $U_\eta-mod_{ss}.$
- **Question**: The ordinary zigzag algebras have nice properties and interesting relations to other mathematics. Do some of those generalize to the trihedral zigzag algebras?

$$U_{m,n}(A(\mathbf{\Gamma}^{\mathrm{X}}), A(\mathbf{\Gamma}^{\mathrm{Y}})) = 0$$
, for all $m + n = e + 1$.

- Open problem: classify all simple algebra objects in $U_\eta-mod_{\rm ss}.$
- **Question**: The ordinary zigzag algebras have nice properties and interesting relations to other mathematics. Do some of those generalize to the trihedral zigzag algebras?
- **Possible generalizations**: Does our story generalize to type A_n for $n \ge 3$?
THANKS!!!