Di- and trihedral (2-)representation theory II

Marco Mackaay \& Daniel Tubbenhauer

Joint work with Volodymyr Mazorchuk and Vanessa Miemietz
July 2018

Outline

- Daniel's talk: a close relation between Chebyshev polynomials, quantum $\mathfrak{s l}_{2}$ and certain quotients of $\mathrm{H}\left(\widehat{A}_{1}\right)=H\left(I_{2}(\infty)\right)$ (dihedral Hecke algebras)

Outline

- Daniel's talk: a close relation between Chebyshev polynomials, quantum $\mathfrak{s l}_{2}$ and certain quotients of $\mathrm{H}\left(\widehat{A}_{1}\right)=H\left(I_{2}(\infty)\right)$ (dihedral Hecke algebras)
- This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum $\mathfrak{s l}_{3}$ and a certain subquotients of $\mathrm{H}\left(\widehat{A}_{2}\right)$ (trihedral Hecke algebras).

Outline

- Daniel's talk: a close relation between Chebyshev polynomials, quantum $\mathfrak{s l}_{2}$ and certain quotients of $\mathrm{H}\left(\widehat{A}_{1}\right)=H\left(I_{2}(\infty)\right)$ (dihedral Hecke algebras)
- This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum $\mathfrak{s l}_{3}$ and a certain subquotients of $\mathrm{H}\left(\widehat{A}_{2}\right)$ (trihedral Hecke algebras).
- Daniel's talk: the 2-representation theory of certain quotients of Soergel bimodules of type \widehat{A}_{1} (involving zigzag algebras of ADE Dynkin type).

Outline

- Daniel's talk: a close relation between Chebyshev polynomials, quantum $\mathfrak{s l}_{2}$ and certain quotients of $\mathrm{H}\left(\widehat{A}_{1}\right)=H\left(I_{2}(\infty)\right)$ (dihedral Hecke algebras)
- This talk: a similar relation between two-variable Chebyshev-like polynomials, quantum $\mathfrak{s l}_{3}$ and a certain subquotients of $\mathrm{H}\left(\widehat{A}_{2}\right)$ (trihedral Hecke algebras).
- Daniel's talk: the 2-representation theory of certain quotients of Soergel bimodules of type \widehat{A}_{1} (involving zigzag algebras of ADE Dynkin type).
- This talk: the 2 -representation theory of certain subquotients of Soergel bimodules of type \widehat{A}_{2} (involving trihedral zigzag algebras of generalized ADE Dynkin type).

Chebyshev-like polynomials

Definition (???, Koornwinder 1974)

The polynomials $\mathrm{U}_{m, n}(x, y), m, n \in \mathbb{N}^{0}$, are recursively defined by

$$
\begin{gathered}
\mathrm{U}_{0,0}(x, y)=1, \mathrm{U}_{1,0}(x, y)=x, \mathrm{U}_{m, n}(x, y)=\mathrm{U}_{n, m}(y, x), \\
x \mathrm{U}_{m, n}(x, y)=\mathrm{U}_{m+1, n}(x, y)+\mathrm{U}_{m-1, n+1}(x, y)+\mathrm{U}_{m, n-1}(x, y), \\
y \mathrm{U}_{m, n}(x, y)=\mathrm{U}_{m, n+1}(x, y)+\mathrm{U}_{m+1, n-1}(x, y)+\mathrm{U}_{m-1, n}(x, y) .
\end{gathered}
$$

E.g.
$\mathrm{U}_{1,1}(x, y)=x y-1, \mathrm{U}_{2,1}(x, y)=x^{2} y-y^{2}-x, \mathrm{U}_{0,2}(x, y)=y^{2}-x, U_{1,0}(x, y)=x$,

$$
x \mathrm{U}_{1,1}(x, y)=\mathrm{U}_{2,1}(x, y)+\mathrm{U}_{0,2}(x, y)+\mathrm{U}_{1,0}(x, y)
$$

The zeros of the $\mathrm{U}_{m, n}$

The zeros of the $\mathrm{U}_{m, n}$ are all of the form (z, \bar{z}) with $z \in \mathrm{~d}_{3}^{\circ}(\ldots$, Koornwinder 1974, Evans-Pugh 2010, ...).

The disciod $\mathrm{d}_{3}=\mathrm{d}_{3}\left(\mathrm{sl}_{3}\right)$ bounded by Steiner's hypocycloid d
Note the $\mathbb{Z} / 3 \mathbb{Z}$-symmetry of $d_{3}:(z, \bar{z}) \mapsto\left(e^{ \pm 2 \pi i / 3} z, e^{\mp 2 \pi i / 3} \bar{z}\right)$.

Relation with quantum $\mathfrak{s l}_{3}$: generic case

Let $\mathrm{q} \in \mathbb{C}$ be generic.

Theorem

There exists an isomorphism of algebras:

$$
\begin{aligned}
{\left[\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}\right)-\bmod \right]_{\mathbb{C}} } & \cong \mathbb{C}[x, y] \\
{\left[V_{m, n}\right]=\sum_{k, l=0}^{m, n} d_{m, n}^{k, l}\left[V_{1,0}^{\otimes k} \otimes V_{0,1}^{\otimes /]}\right.} & \mapsto \mathrm{U}_{m, n}(x, y)=\sum_{k, l=0}^{m, n} d_{m, n}^{k, l} x^{k} y^{\prime}
\end{aligned}
$$

for $m, n \in \mathbb{N}^{0}$.
The integers $d_{m, n}^{k, l}$ can be computed recursively. Note that they can be positive or negative.

Relation quantum $\mathfrak{s l}_{3}$: root of unity case

Theorem

Suppose $\eta^{2(e+3)}=1$. Then there exists an isomorphism of algebras

$$
\begin{aligned}
{\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathbb{C}} } & \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right) \\
{\left[V_{m, n}\right] } & \mapsto \mathrm{U}_{m, n}(x, y) \quad(0 \leq m+n \leq e) .
\end{aligned}
$$

The trihedral Hecke algebra of level ∞

- We are now going to define the trihedral analogue of $\mathrm{H}\left(I_{2}(\infty)\right)=\mathrm{H}\left(\widehat{A}_{1}\right)$, which is an infinite-dimensional algebra $\mathrm{T}_{\infty} \subset \mathrm{H}\left(\widehat{A}_{2}\right)$.

The trihedral Hecke algebra of level ∞

- We are now going to define the trihedral analogue of $\mathrm{H}\left(I_{2}(\infty)\right)=\mathrm{H}\left(\widehat{A}_{1}\right)$, which is an infinite-dimensional algebra $\mathrm{T}_{\infty} \subset \mathrm{H}\left(\widehat{A}_{2}\right)$.
- There is no underlying group (that we know of), so we define T_{∞} directly in terms of the trihedral Kazhdan-Lusztig generators.

The trihedral Hecke algebra of level ∞

- We are now going to define the trihedral analogue of $\mathrm{H}\left(I_{2}(\infty)\right)=\mathrm{H}\left(\widehat{A}_{1}\right)$, which is an infinite-dimensional algebra $\mathrm{T}_{\infty} \subset \mathrm{H}\left(\widehat{A}_{2}\right)$.
- There is no underlying group (that we know of), so we define T_{∞} directly in terms of the trihedral Kazhdan-Lusztig generators.

Definition (MMMT 2018)

Let v be a formal parameter. Then T_{∞} is the associative, unital $(\mathbb{C}(\mathrm{v})$-) algebra generated by three elements $\theta_{g}, \theta_{o}, \theta_{p}$, subject to the following relations:

$$
\begin{aligned}
& \theta_{g}^{2}=[3]_{\mathrm{v}}!\theta_{g}, \quad \theta_{o}^{2}=[3]_{\mathrm{v}}!\theta_{o}, \quad \theta_{\rho}^{2}=[3]_{\mathrm{v}}!\theta_{\rho}, \\
& \theta_{g} \theta_{o} \theta_{g}=\theta_{g} \theta_{p} \theta_{g}, \quad \theta_{o} \theta_{g} \theta_{o}=\theta_{o} \theta_{p} \theta_{o}, \\
& \theta_{p} \theta_{g} \theta_{p}=\theta_{p} \theta_{o} \theta_{p} .
\end{aligned}
$$

Embedding into $\mathrm{H}\left(\widehat{A}_{2}\right)$

- Let $W\left(\widehat{A}_{2}\right)$ be the affine Weyl group with simple reflections b, r, y. Then

$$
\boldsymbol{b} y b=y \boldsymbol{b} y, \quad r y r=y r y, \quad b r b=r b r
$$

are the longest elements in the (finite) type A_{2} parabolic subgroups of $W\left(\widehat{A}_{2}\right)$.

- Let

$$
\theta_{b y b}, \theta_{r y r}, \theta_{b r b}
$$

be the corresponding Kazhdan-Lusztig basis elements in $\mathrm{H}\left(\widehat{A}_{2}\right)$.

Embedding into $\mathrm{H}\left(\widehat{A}_{2}\right)$

- Let $W\left(\widehat{A}_{2}\right)$ be the affine Weyl group with simple reflections b, r, y. Then

$$
\boldsymbol{b} y \boldsymbol{b}=y \boldsymbol{b} y, \quad r y r=y r y, \quad b r b=r b r
$$

are the longest elements in the (finite) type A_{2} parabolic subgroups of $W\left(\widehat{A}_{2}\right)$.

- Let

$$
\theta_{b y b}, \theta_{r y r}, \theta_{b r b}
$$

be the corresponding Kazhdan-Lusztig basis elements in $\mathrm{H}\left(\widehat{A}_{2}\right)$.

Lemma

There is an embedding of algebras $\mathrm{T}_{\infty} \hookrightarrow \mathrm{H}\left(\widehat{A}_{2}\right)$ such that

$$
\theta_{g} \mapsto \theta_{b j b}, \quad \theta_{\circ} \mapsto \theta_{r y r}, \quad \theta_{p} \mapsto \theta_{b r b} .
$$

The trihedral Bott-Samelson basis

Fixing a cyclic ordering on $G O P:=\{g, o, p\}$, e.g.

we can define the trihedral Bott-Samelson basis of T_{∞}

$$
\{1\} \cup\left\{\mathrm{H}_{\mathbf{u}}^{k, l} \mid \mathbf{u} \in G O P, m, n \in \mathbb{N}^{0}\right\} .
$$

Main idea: T_{∞} is "almost" a tricolored version of $\left[\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}\right)-\bmod \right]_{\mathbb{C}} \cong \mathbb{C}[x, y]$.

Example

where we think of x and y as counter-clockwise and clockwise color rotation, resp.

The trihedral Kazhdan-Lusztig basis

For any $\mathbf{u} \in G O P$ and $m, n \in \mathbb{N}^{0}$, define

$$
\mathrm{C}_{\mathbf{u}}^{m, n}:=\sum_{k, l=0}^{m, n}[2]_{\mathbf{v}}^{-k-l} d_{m, n}^{k, l} \mathrm{H}_{\mathbf{u}}^{k, l} .
$$

Poposition

The set

$$
\{1\} \cup\left\{\mathrm{C}_{\mathbf{u}}^{m, n} \mid \mathbf{u} \in G O P, m, n \in \mathbb{N}^{0}\right\}
$$

forms a positive integral basis of T_{∞}.
Main ingredient of the proof: the embedding $\mathrm{T}_{\infty} \hookrightarrow \mathrm{H}\left(\widehat{A}_{2}\right)$ sends trihedral KL basis elements to affine KL basis elements.

The trihedral Hecke algebra of level e

Definition

For fixed level e, let I_{e} be the two-sided ideal in T_{∞} generated by

$$
\left\{\mathrm{C}_{\mathbf{u}}^{m, n} \mid m+n=e+1, \mathbf{u} \in G O P\right\}
$$

We define the trihedral Hecke algebra of level e as

$$
\mathrm{T}_{e}=\mathrm{T}_{\infty} / \mathrm{I}_{e}
$$

- T_{e} is "almost" a tricolored version of

$$
\left.\left[\mathrm{U}_{\eta}(\mathfrak{s l})_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathbb{C}} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)
$$

The trihedral Hecke algebra of level e

Definition

For fixed level e, let I_{e} be the two-sided ideal in T_{∞} generated by

$$
\left\{\mathrm{C}_{\mathbf{u}}^{m, n} \mid m+n=e+1, \mathbf{u} \in G O P\right\}
$$

We define the trihedral Hecke algebra of level e as

$$
\mathrm{T}_{e}=\mathrm{T}_{\infty} / \mathrm{I}_{e}
$$

- T_{e} is "almost" a tricolored version of

$$
\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}{ }_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathbb{C}} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)
$$

- T_{e} is actually the analogue of the small quotient of the dihedral Hecke algebra, obtained by killing $\theta_{w_{0}}$.

Semisimplicity

Theorem (MMMT 2018)

The algebra T_{e} is semisimple and

$$
\operatorname{dim} \mathrm{T}_{e}=3 \frac{(e+1)(e+2)}{2}+1
$$

Example

There is a 3: 1 correspondence between the non-trivial left cells of T_{e} and the generalized type A Dynkin diagram \mathbf{A}_{e}, which is a cut-off of the fundamental Weyl chamber of $\mathfrak{s l}_{3}$ (integral dominant weights), e.g.

L^{g} for $e=1$

L^{g} for $e=2$

L^{g} for $e=3$

Complex simples of T_{e}

1-dimensional simples: for $\lambda_{\mathbf{u}} \in\left\{0,[3]_{\mathrm{v}}\right.$! $\}$ s.t. relations hold.

Complex simples of T_{e}

1-dimensional simples: for $\lambda_{\mathbf{u}} \in\left\{0,[3]_{\mathrm{v}}\right.$! $\}$ s.t. relations hold.
3-dimensional simples: for $0 \neq z \in \mathrm{~d}_{3}^{\circ}$ s.t. $\mathrm{U}_{m, n}(z, \bar{z})=0$ for all $m+n=e+1$, the simple V_{z} is given by

$$
\left.\begin{array}{rl}
\theta_{g} & \mapsto
\end{array}\right][2]_{\mathrm{v}}\left(\begin{array}{ccc}
{[3]_{\mathrm{v}}} & \bar{z} & z \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), .
$$

We have

$$
V_{z_{1}} \cong V_{z_{2}} \Leftrightarrow z_{1}=e^{ \pm 2 \pi i / 3} z_{2} .
$$

\mathbb{N}^{0}-representations

For \mathbb{N}^{0}-representations of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(U_{m, n}(x, y) \mid m+n=e+1\right)$:

Question 1

Are there any $X \in \operatorname{Mat}\left(r, \mathbb{N}^{0}\right)$, with $r \in \mathbb{N}$, such that

- $X X^{\top}=X^{\top} X$;
- $U_{m, n}\left(X, X^{\top}\right)=0$ if $m+n=e+1$;
- $U_{m, n}\left(X, X^{T}\right) \in \operatorname{Mat}\left(r, \mathbb{N}^{0}\right)$ if $0 \leq m+n \leq e$.

\mathbb{N}^{0}-representations

For \mathbb{N}^{0}-representations of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(U_{m, n}(x, y) \mid m+n=e+1\right)$:

Question 1

Are there any $X \in \operatorname{Mat}\left(r, \mathbb{N}^{0}\right)$, with $r \in \mathbb{N}$, such that

- $X X^{\top}=X^{\top} X$;
- $U_{m, n}\left(X, X^{\top}\right)=0$ if $m+n=e+1$;
- $U_{m, n}\left(X, X^{T}\right) \in \operatorname{Mat}\left(r, \mathbb{N}^{0}\right)$ if $0 \leq m+n \leq e$.

For \mathbb{N}^{0}-representations of T_{e} :

Question 2

How to build these from the matrices which answer Question 1?

Tricolored graphs

Let $\boldsymbol{\Gamma}$ be a tricolored (multi)graph without loops, and group its vertices according to color. Then the adjacency matrix $A(\boldsymbol{\Gamma})$ becomes of the form:

$$
A(\boldsymbol{\Gamma})=\begin{gathered}
\\
G \\
O \\
P
\end{gathered}\left(\begin{array}{c:c:c}
G & O & P \\
0 & A^{\mathrm{T}} & C \\
\hdashline A & 0 & B^{\mathrm{T}} \\
\hdashline C^{\mathrm{T}} & B & 0
\end{array}\right)
$$

Consider also the oriented adjacency matrices $A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right)$ and $A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)$:

Generalized Dynkin diagrams

Example（Type A，Di Francesco－Zuber 1990，Ocneanu 2002）

$$
\begin{aligned}
& \mathbf{A}_{3}=\stackrel{4}{2} \\
& \text { N= 䔲 } \\
& \text { x-苞苑 } \\
& A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& B=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \\
& C=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Generalized Dynkin diagrams

Example (Type D, Di Francesco-Zuber 1990, Ocneanu 2002)

Generalized Dynkin diagrams

Example (Conjugate type A, Di Francesco-Zuber 1990, Ocneanu 2002)

The graph of type $\mathbf{c} \mathbf{A}_{e}$ comes from an iterative procedure on the graph of type \mathbf{A}_{e}.

Generalized Dynkin diagrams

Example (Type E, Di Francesco-Zuber 1990, Ocneanu 2002)

+ three more

\mathbb{N}^{0}-representations of $\mathcal{Q}_{e}=\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathrm{C}}$

Let $\boldsymbol{\Gamma}$ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter number $h=e+3$.

Theorem (MMMT 2018)

The assignment

$$
x \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), \quad y \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)
$$

defines an integral representation of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)$. In type A and D it is positive integral.

\mathbb{N}^{0}-representations of $\mathcal{Q}_{e}=\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathrm{C}}$

Let $\boldsymbol{\Gamma}$ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter number $h=e+3$.

Theorem (MMMT 2018)

The assignment

$$
x \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), \quad y \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)
$$

defines an integral representation of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)$. In type A and D it is positive integral.

- In particular, we have $A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)=A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right)$.

\mathbb{N}^{0}-representations of $\mathcal{Q}_{e}=\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathrm{C}}$

Let $\boldsymbol{\Gamma}$ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter number $h=e+3$.

Theorem (MMMT 2018)

The assignment

$$
x \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), \quad y \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)
$$

defines an integral representation of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)$. In type A and D it is positive integral.

- In particular, we have $A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)=A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right)$.
- The first claim follows from the fact that all eigenvalues of $\boldsymbol{\Gamma}^{\mathrm{X}}$ (Evans-Pugh 2010) are roots of the $U_{m, n}$ with $m+n=e+1$.

\mathbb{N}^{0}-representations of $\mathcal{Q}_{e}=\left[\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}\right]_{\mathbb{C}}$

Let $\boldsymbol{\Gamma}$ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter number $h=e+3$.

Theorem (MMMT 2018)

The assignment

$$
x \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), \quad y \mapsto A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)
$$

defines an integral representation of $\mathcal{Q}_{e} \cong \mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)$. In type A and D it is positive integral.

- In particular, we have $A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)=A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right) A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right)$.
- The first claim follows from the fact that all eigenvalues of $\boldsymbol{\Gamma}^{\mathrm{X}}$ (Evans-Pugh 2010) are roots of the $U_{m, n}$ with $m+n=e+1$.
- Positivity in type A and D follows from categorification. We conjecture positivity to hold in type $c \mathrm{~A}$ and E as well.

\mathbb{N}^{0}-representations of T_{e}

Let $\boldsymbol{\Gamma}$ be a tricolored generalized ADE Dynkin diagram with generalized Coxeter number $h=e+3$.

Theorem (MMMT 2018)

There exists a unique integral T_{e}-representation M_{Γ} s.t.

$$
\begin{gathered}
\theta_{g} \mapsto[2]_{\mathrm{v}}\left(\begin{array}{ccc}
{[3]_{\mathrm{v}} \mathrm{Id}} & A^{\mathrm{T}} & C \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \theta_{\circ} \mapsto[2]_{\mathrm{v}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
A & {[3]_{\mathrm{v}} \mathrm{Id}} & B^{\mathrm{T}} \\
0 & 0 & 0
\end{array}\right) \\
\theta_{p} \mapsto[2]_{\mathrm{v}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
C^{\mathrm{T}} & B & {[3]_{\mathrm{v}} \mathrm{Id}}
\end{array}\right) .
\end{gathered}
$$

It is positive integral in type A and D.
We conjecture positivity to hold in conjugate type A and type E as well.

2-Representations of $\mathcal{Q}_{e}=\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}$ using quivers

- Let $\boldsymbol{\Gamma}$ be the generalized type ADE Dynkin diagram with $h=e+3$.
- Take $T \nabla_{e} \cong \mathbb{C}^{V(\Gamma)}$ to be the trivial quiver algebra associated to $\boldsymbol{\Gamma}$.
- Let $P_{i, j}$ (resp. ${ }_{i, j} P$) be the left (resp. right) projective $T \nabla_{e}$-module associated to the vertex $v_{i, j}$ in $\boldsymbol{\Gamma}$.

Conjecture

There exists a finitary 2-representation of \mathcal{Q}_{e} on $\mathrm{T} \nabla_{e}-$ fpmod such that

$$
\begin{array}{llll}
V_{1,0} & \mapsto & \bigoplus_{(i, j) \rightarrow(k, l) \in \mathbf{\Gamma}^{\mathrm{x}}} P_{k, l} \otimes_{i, j} P, \\
V_{0,1} & \mapsto & \bigoplus_{(i, j) \leftarrow(k, l) \in \mathbf{\Gamma}^{\mathrm{Y}}} P_{k, I} \otimes_{i, j} P,
\end{array}
$$

which decategorifies to the positive integral representation of $\mathbb{C}[x, y] /\left(\mathrm{U}_{m, n}(x, y) \mid m+n=e+1\right)$ associated to $\boldsymbol{\Gamma}$.

Functorial representations of T_{e} in generalized type A

Consider the following quiver:

The trihedral zigzag algebra of generalized type A

Definition (MMMT 2018)

Let ∇_{e} be the complex path algebra of Γ modulo the relations:

- Any path with more than one triangle to its left (right) is equal to zero.
- $\alpha_{x}+\alpha_{y}+\alpha_{z}=0, \alpha_{x} \alpha_{y}+\alpha_{x} \alpha_{z}+\alpha_{y} \alpha_{z}=0, \alpha_{x} \alpha_{y} \alpha_{z}=0$.
- Loops commute with edges.
- $\alpha_{z} y \mid x=0$ etc.
- Zig-zag relation: $x|y| x=\alpha_{x} \alpha_{y}$ etc.
- Zig-zig equals zag times loop: $x|y| z=\alpha_{x} x \mid z$ etc.

The grading on ∇_{e} is given by twice the path length.

The trihedral zigzag algebra of generalized type A

Definition (MMMT 2018)

Let ∇_{e} be the complex path algebra of Γ modulo the relations:

- Any path with more than one triangle to its left (right) is equal to zero.
- $\alpha_{x}+\alpha_{y}+\alpha_{z}=0, \alpha_{x} \alpha_{y}+\alpha_{x} \alpha_{z}+\alpha_{y} \alpha_{z}=0, \alpha_{x} \alpha_{y} \alpha_{z}=0$.
- Loops commute with edges.
- $\alpha_{z} y \mid x=0$ etc.
- Zig-zag relation: $x|y| x=\alpha_{x} \alpha_{y}$ etc.
- Zig-zig equals zag times loop: $x|y| z=\alpha_{x} x \mid z$ etc.

The grading on ∇_{e} is given by twice the path length.

- Let $e_{i, j}$ be the idempotent at vertex $v_{i, j}$. Paths of length >3 are zero and

$$
e_{i, j} \nabla_{e} e_{k, l} \cong \begin{cases}H^{*}\left(\left.\mathcal{F}\right|_{3}, \mathbb{C}\right), & \text { if } v_{i, j}=v_{k, l}, \\ \mathbb{C}\{2\} \oplus \mathbb{C}\{4\}, & \text { if } v_{i, j}-v_{k, l}, \\ \{0\}, & \text { else. }\end{cases}
$$

Functorial representations of T_{e} in generalized type A

Let $P_{i, j}$ (resp. $i_{i, j} P$) be the left (resp. right) graded projective ∇_{e}-module corresponding to vertex $v_{i, j}$ in $\boldsymbol{\Gamma}$.

Theorem

The assignment

$$
\begin{aligned}
& \theta_{g} \mapsto \\
& \theta_{0} \mapsto \bigoplus_{i-j \equiv 0 \bmod 3} P_{i, j} \otimes_{i, j} P \\
& \bigoplus_{i-j=1 \bmod 3} P_{i, j} \otimes_{i, j} P
\end{aligned}
$$

$$
\theta_{p} \mapsto \bigoplus_{i-j \equiv 2 \bmod 3} P_{i, j} \otimes_{i, j} P
$$

defines a functorial representation of T_{e} on $\nabla_{e}-\mathrm{fpmod}_{g r}$.

Remarks

- By using the $\mathbb{Z} / 3 \mathbb{Z}$-symmetry on ∇_{e}, for $e \equiv 0 \bmod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.

Remarks

- By using the $\mathbb{Z} / 3 \mathbb{Z}$-symmetry on ∇_{e}, for $e \equiv 0 \bmod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.
- Unfortunately, we do not know how to lift these functorial representations of T_{e} to full-blown 2-representations of trihedral Soergel bimodules in a straightforward way.

Remarks

- By using the $\mathbb{Z} / 3 \mathbb{Z}$-symmetry on ∇_{e}, for $e \equiv 0 \bmod 3$, one can easily define the corresponding type D trihedral zigzag algebra. For other generalized types it is not clear what the right definition is.
- Unfortunately, we do not know how to lift these functorial representations of T_{e} to full-blown 2-representations of trihedral Soergel bimodules in a straightforward way.
- Therefore, we use an alternative construction of simple transitive 2 -representations, involving algebra objects. The two approaches are related by the quantum SU(3) McKay correspondence.

But we first recall the Quantum Satake Correspondence and define trihedral Soergel bimodules.

A three-colored version of $\mathcal{Q}_{\mathrm{q}}=\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}\right)-\bmod$

Definition

For $\mathbf{u} \in\{g, o, p\}$, let $\mathcal{Q}_{\mathrm{q}}^{\mathbf{u}}$ denote the full subcategory of \mathcal{Q}_{q} generated by the $V_{m, n}$ such that

$$
m-n \equiv \begin{cases}0 \bmod 3, & \text { if } \mathbf{u}=g, \\ 1 \bmod 3, & \text { if } \mathbf{u}=0, \\ 2 \bmod 3, & \text { if } \mathbf{u}=p\end{cases}
$$

Tensoring with $V_{1,0}$, resp. $V_{0,1}$, defines a functor X , resp. Y , between the $\mathcal{Q}_{\mathrm{q}}^{\mathrm{u}}$, e.g.

Definition (Elias 2014 motivated by Kuperberg 1996)

We define $\mathscr{Q}_{\mathrm{q}}^{G O P}$ to be the additive, \mathbb{C}_{q}-linear closure of the 2-category whose objects are the categories $\mathcal{Q}_{\mathrm{q}}^{\mathbf{u}}$, whose 1 -morphisms are composites of X and Y , and whose 2-morphisms are natural transformations.

A natural transformation between composites of X and Y is the same as a $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}\right)$-equivariant map, so we can use Kuperberg's diagrammatic web calculus to describe $\mathscr{Q}_{\mathrm{q}}^{G O P}$. The generating 2-morphisms (up to color variations) are

These are subject to the relations

together with the vertical mirrors and the relations obtained by varying the orientation and the colors.

Three-colored $\mathfrak{s l}_{3}$-clasps

Given $m, n \in \mathbb{N}^{0}$, for each choice of source $\mathbf{u} \in\{g, o, p\}$, the simple $V_{m, n}$ corresponds to a direct summand of the functor $\mathrm{X}^{m} \mathrm{Y}^{n}$ in $\mathscr{Q}_{\mathrm{q}}^{G O P}$, given by a diagrammatic idempotent $c_{\mathrm{u}}^{m, n}$ (Kuperberg 1996, Kim 2007).

Example (Three-colored $\mathfrak{S l}_{3}$-clasps)

$$
\begin{aligned}
& c_{g}^{0,2}=\Psi++\frac{1}{[2]_{q}} \underset{\chi}{\neq}
\end{aligned}
$$

The root of unity case

Let $\eta^{2(e+3)}=1$.

Definition

Define $\mathscr{Q}_{e}^{G O P}$ as the quotient of the diagrammatic 2-category above, for $\mathrm{q}=\eta$, by the 2-ideal generated by all $c_{\mathbf{u}}^{m, n}$, such that $m+n=e+1$ and $\mathbf{u} \in G O P$.

- $\mathscr{Q}_{e}^{G O P}$ is nothing but a three-colored version of Kuperberg's diagrammatic calculus for $\mathcal{Q}_{e}=\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}$.

Diagrammatic Soergel calculus in type \widehat{A}_{2}

Using a q-deformation of the usual \widehat{A}_{2} Cartan matrix, Elias (2014) constructed a linear representation of $\mathrm{W}=\mathrm{W}\left(\widehat{A}_{2}\right)$ on the root space $\operatorname{Span}_{\mathbb{C}(\mathrm{q})}\left\{\alpha_{b}, \alpha_{r}, \alpha_{y}\right\}$.

Diagrammatic Soergel calculus in type \widehat{A}_{2}

Using a q-deformation of the usual \widehat{A}_{2} Cartan matrix, Elias (2014) constructed a linear representation of $\mathrm{W}=\mathrm{W}\left(\widehat{A}_{2}\right)$ on the root space $\operatorname{Span}_{\mathbb{C}(\mathrm{q})}\left\{\alpha_{b}, \alpha_{r}, \alpha_{y}\right\}$.

We can specialize q to a complex number to get a complex representation:

- for generic q, it is reflection faithful.
- for q a root of unity, the representation is not faithful and descends to a finite complex reflection group.

Let $\mathrm{R}_{\mathrm{q}}=\mathbb{C}(q)\left[\alpha_{b}, \alpha_{r}, \alpha_{y}\right]$, where $\alpha_{b}, \alpha_{r}, \alpha_{y}$ are given degree 2 . The above representation extends to a degree-preserving action of W on R_{q} by automorphisms.

Soergel calculus in type \widehat{A}_{2}

Definition (The 2-cat $s \mathscr{B} \mathscr{S}_{\mathrm{q}}^{*}$, Elias 2014, Elias-Williamson 2013)

- Objects: proper subsets of $\{b, y, r\}$:

$$
\emptyset, b, y, r, g:=\{b, y\}, o:=\{r, y\}, p:=\{b, r\} .
$$

- 1-morphisms: finite strings of compatible colors, e.g.:

- 2-morphisms: generated by

and decorations of the regions by partially invariant polynomials in R_{q}, and subject to a whole list of relations (which depend on q).

Remarks

Let $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ be the 2-category obtained from $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}^{*}$ by allowing formal grading shifts on 1-morphisms and considering only degree-zero 2 -morphisms, i.e. for any $t \in \mathbb{Z}$ we define

$$
2 \boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}(x\{t\}, y):=2 \boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}^{*}(x, y)_{t} .
$$

Theorem (Elias 2014, Elias-Williamson 2013)

Let $\mathrm{q} \in \mathbb{C}$ be generic.

- $\mathscr{K} \operatorname{ar}\left(\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}\right)$ is equivalent to the 2-category of all Soergel bimodules of type \widehat{A}_{2} and decategorifies to the Hecke algebroid of that type, such that the indecomposable 1-morphisms correspond to the KL-basis elements.
- Let $\mathscr{B} \mathscr{S}_{\mathrm{q}}:=\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}(\emptyset, \emptyset)$. Then $\mathscr{K} \operatorname{ar}\left(\mathscr{B} \mathscr{S}_{\mathrm{q}}\right)$ is equivalent to the monoidal category of regular Soergel bimodules of type \widehat{A}_{2} and decategorifies to $\mathrm{H}_{\mathrm{v}}\left(\widehat{A}_{2}\right)$.

The Quantum Satake Correspondence (QSC)

- The 2-category of maximally singular Soergel bimodules $\mathscr{K} \operatorname{ar}\left(\boldsymbol{m} \mathscr{B} \mathscr{S}_{\mathrm{q}}\right)$ is defined as the Karoubi envelope of the 2-full 2-subcategory of $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ generated by diagrams whose left- and rightmost colors are secondary.

Definition (Elias 2014)

The Satake 2-functor $\mathrm{S}_{\mathrm{q}}: \mathscr{Q}_{\mathrm{q}}^{G O P} \rightarrow \boldsymbol{m} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ is defined as indicated below:

Theorem (Elias 2014)

The Satake 2-functor is a well-defined degree-zero 2-equivalence.

Trihedral Soergel bimodules of level ∞

Assume that $\mathrm{q} \in \mathbb{C}$ is generic.

Definition (MMMT 2018)

Let \mathscr{T}_{∞} be the additive closure of the 2-full 2-subcategory of $\mathscr{B} \mathscr{S}_{\mathrm{q}}$, whose 1 -morphisms are generated by all grading shifts of

$$
\emptyset, \quad \emptyset b g b \emptyset, \quad \emptyset \text { yoy } \emptyset, \quad \emptyset b p b \emptyset,
$$

and the 1-morphisms obtained from these by changing the intermediate primary colors.

Example

By the relations on 2-morphisms in $\mathscr{B} \mathscr{S}_{\mathrm{q}}$, we have

$$
\emptyset b g b \emptyset \cong \emptyset b g \emptyset \emptyset \emptyset \ln g \emptyset \cong \emptyset \quad g \quad \emptyset .
$$

Similar isomorphisms hold for the strings with \circ and p.

The categorification theorem at level ∞

Theorem

The decategorification of \mathscr{T}_{∞} is isomorphic to T_{∞}, such that the indecomposable objects correspond to the tricolored KL basis elements.

- We can always remove intermediate \emptyset, e.g.

$$
\emptyset b g b \emptyset b p b \emptyset \cong \emptyset b g b p b \emptyset \oplus \emptyset b g b p b \emptyset\{2\}
$$

This shows that all 1-morphisms in \mathscr{T}_{∞} can be obtained from $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ by biinduction.

The categorification theorem at level ∞

Theorem

The decategorification of \mathscr{T}_{∞} is isomorphic to T_{∞}, such that the indecomposable objects correspond to the tricolored KL basis elements.

- We can always remove intermediate \emptyset, e.g.

$$
\emptyset b g b \emptyset b p b \emptyset \cong \emptyset b g b p b \emptyset \oplus \emptyset b g b p b \emptyset\{2\}
$$

This shows that all 1-morphisms in \mathscr{T}_{∞} can be obtained from $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ by biinduction.

- For every pair of 1-morphisms x and y in $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$, biinduction gives a functor

$$
\mathrm{BI}(x, y): \boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}(x, y) \rightarrow \mathscr{T}_{\infty}(\mathrm{BI}(x), \mathrm{BI}(y)) .
$$

However, it is not a 2-functor, because it does not behave well under horizontal composition.

Biinduction

For any $\mathbf{u} \in G O P$:

- the Satake 2-functor S_{q} maps the tricolored clasps $\mathrm{c}_{\mathrm{u}}^{m, n}$ in $\mathscr{Q}_{\mathrm{q}}{ }^{G O P}$ to the primitive idempotent 2-endomorphisms $\mathrm{S}_{\mathrm{q}}\left(\mathrm{c}_{\mathrm{u}}^{m, n}\right)$ in $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$;
- biinduction maps the $\mathrm{S}_{\mathrm{q}}\left(c_{\mathrm{u}}^{m, n}\right)$ in $\boldsymbol{s} \mathscr{B} \mathscr{S}_{\mathrm{q}}$ to the primitive idempotent (2-)endomorphisms $\mathrm{C}_{\mathrm{u}}^{m, n}$ in \mathscr{T}_{∞}.

Example

$$
\begin{aligned}
& c_{g}^{1,1}=f t-\frac{1}{[3]_{q}} \underset{\sim}{\circlearrowright} \stackrel{s_{q}}{\longmapsto}
\end{aligned}
$$

Maximally singular Soergel bimodules at level e

Let $\eta^{2(e+3)}=1$.

Definition (MMMT 2018)

Define $\boldsymbol{m} \mathscr{B} \mathscr{S}_{e}$ as the quotient of $\boldsymbol{m} \mathscr{B} \mathscr{S}_{\mathrm{q}}$, at $\mathrm{q}=\eta$, by the two-sided 2-ideal generated by
$\left\{\mathrm{S}_{\mathrm{q}}\left(\mathrm{c}_{\mathbf{u}}^{m, n}\right) \mid m+n=e+1, \mathbf{u} \in G O P\right\}=\left\{\mathrm{S}_{\mathrm{q}}\left({ }^{m, n} \mathrm{u}_{\mathrm{u}}\right) \mid m+n=e+1, \mathbf{u} \in G O P\right\}$.
The Karoubi envelope $\mathscr{K} \operatorname{ar}\left(\boldsymbol{m} \mathscr{B} \mathscr{S}_{e}\right)$ is by definition the 2-category of maximally singular type \widehat{A}_{2} Soergel bimodules at level e.

Corollary

The Satake 2-functor S_{q}, at $\mathrm{q}=\eta$, descends to a degree-zero 2-equivalence

$$
\mathrm{S}_{e}: \mathscr{Q}_{e}^{G O P} \rightarrow \mathscr{K} \operatorname{ar}\left(\boldsymbol{m} \mathscr{B} \mathscr{S}_{e}\right) .
$$

Trihedral Soergel bimodules at level e

Let $\eta^{2(e+3)}=1$.

Definition (MMMT 2018)

Define \mathscr{T}_{e} as the quotient of \mathscr{T}_{∞}, at $\mathrm{q}=\eta$, by the two-sided 2-ideal generated by

$$
\left\{\mathrm{C}_{\mathbf{u}}^{m, n} \mid m+n=e+1, \mathbf{u} \in G O P\right\}=\left\{{ }^{m, n} \mathbf{u} \mathbf{C} \mid m+n=e+1, \mathbf{u} \in G O P\right\} .
$$

Theorem

The decategorification of \mathscr{T}_{e} is isomorphic to T_{e}, such that the indecomposable objects correspond to the tricolored KL basis elements.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.
- A (right) X-module object $\left(M, \mu_{M}\right)$ in \mathscr{C} is an object M together with a morphism $\mu_{M}: M \otimes X \rightarrow M$ satisfying the usual axioms. Similarly, one can define intertwiners between (right) X-modules in \mathscr{C}.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.
- A (right) X-module object $\left(M, \mu_{M}\right)$ in \mathscr{C} is an object M together with a morphism $\mu_{M}: M \otimes X \rightarrow M$ satisfying the usual axioms. Similarly, one can define intertwiners between (right) X-modules in \mathscr{C}.
- In this way, we get the finitary category of right X-module objects in \mathscr{C}, denoted $\bmod _{\mathscr{C}}-X$.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.
- A (right) X-module object $\left(M, \mu_{M}\right)$ in \mathscr{C} is an object M together with a morphism $\mu_{M}: M \otimes X \rightarrow M$ satisfying the usual axioms. Similarly, one can define intertwiners between (right) X-modules in \mathscr{C}.
- In this way, we get the finitary category of right X-module objects in \mathscr{C}, denoted $\bmod _{\mathscr{C}}-X$.
- Let (X, μ, ι) be an algebra object in \mathscr{C}. For any object Y in \mathscr{C}, the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C}, with $\mu_{Y \otimes X}=\operatorname{id}_{Y} \otimes \mu$.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.
- A (right) X-module object $\left(M, \mu_{M}\right)$ in \mathscr{C} is an object M together with a morphism $\mu_{M}: M \otimes X \rightarrow M$ satisfying the usual axioms. Similarly, one can define intertwiners between (right) X-modules in \mathscr{C}.
- In this way, we get the finitary category of right X-module objects in \mathscr{C}, denoted $\bmod _{\mathscr{C}}-X$.
- Let (X, μ, ι) be an algebra object in \mathscr{C}. For any object Y in \mathscr{C}, the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C}, with $\mu_{Y \otimes X}=\operatorname{id}_{Y} \otimes \mu$.
- In this way, the category $\bmod _{\mathscr{C}}-X$ becomes naturally a (left) finitary 2-representation of \mathscr{C}.

Algebra and module objects

Let \mathscr{C} be a finitary monoidal category.

- An algebra object (X, μ, ι) in \mathscr{C} is an object X together with a multiplication morphism $\mu: X \otimes X \rightarrow X$ and a unit morphism $\iota: I \rightarrow X$ satisfying the usual axioms.
- A (right) X-module object $\left(M, \mu_{M}\right)$ in \mathscr{C} is an object M together with a morphism $\mu_{M}: M \otimes X \rightarrow M$ satisfying the usual axioms. Similarly, one can define intertwiners between (right) X-modules in \mathscr{C}.
- In this way, we get the finitary category of right X-module objects in \mathscr{C}, denoted $\bmod _{\mathscr{C}}-X$.
- Let (X, μ, ι) be an algebra object in \mathscr{C}. For any object Y in \mathscr{C}, the monoidal product $Y \otimes X$ is naturally a right X-module object in \mathscr{C}, with $\mu_{Y \otimes X}=\operatorname{id}_{Y} \otimes \mu$.
- In this way, the category $\bmod _{\mathscr{C}}-X$ becomes naturally a (left) finitary 2-representation of \mathscr{C}.
- Under certain conditions, there is a bijection between the equivalence classes of simple transitive 2-representations of \mathscr{C} and the Morita equivalence classes of simple algebra objects in $\overline{\mathscr{C}}$, its projective abelianization. [MMMT 2016]

Algebra objects in $\mathcal{Q}_{e}=\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}$

Example (Generalized type A)

- The identity object $\mathrm{I}=V_{0,0}$ is an algebra object, because $\mathrm{I} \otimes \mathrm{I} \cong \mathrm{I}$.
- Since $Y \otimes \mathrm{I} \cong Y$ for all objects Y in \mathcal{Q}_{e}, we see that

$$
\bmod _{\mathcal{Q}_{e}}-\mathrm{I} \simeq \mathcal{Q}_{e},
$$

which is the regular 2-representation of \mathcal{Q}_{e}.

- It is also the unique cell 2-representation of \mathcal{Q}_{e}. In particular, it is simple transitive.
- Conjecture: it is equivalent to the generalized type A quiver 2-representation of \mathcal{Q}_{e} from a couple of slides ago.

Algebras in $\mathcal{Q}_{e}=\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}$

Let $e \equiv 0 \bmod 3$.

Example (Generalized type D, Schopieray 2017, MMMT 2018)

As an object in \mathcal{Q}_{e} the algebra object X decomposes as

$$
X \cong V_{0,0} \oplus V_{e, 0} \oplus V_{0, e}
$$

The unit morphism $\iota: \mathrm{I}=V_{0,0} \rightarrow X$ is given by $\left(\mathrm{id} V_{0,0}, 0,0\right)$. Furthermore, there are morphisms

$$
\begin{aligned}
& V_{e, 0} \otimes V_{e, 0} \rightarrow V_{0, e}, \\
& V_{0, e} \otimes V_{0, e} \rightarrow V_{e, 0}, \\
& V_{e, 0} \otimes V_{0, e} \rightarrow V_{0,0}, \\
& V_{0, e} \otimes V_{e, 0} \rightarrow V_{0,0},
\end{aligned}
$$

which, together with the canonical isomorphisms $V_{0,0} \otimes V_{i, j} \cong V_{i, j} \cong V_{i, j} \otimes V_{0,0}$, assemble into a unital and associative multiplication morphism $\mu: X \otimes X \rightarrow X$.

Conjectures

Conjecture

The 2-representation of \mathcal{Q}_{e} on $\bmod _{\mathcal{Q}_{e}}-X$ is equivalent to the generalized type D quiver 2-representation of \mathcal{Q}_{e}.

- If simple transitive quiver 2-representations of \mathcal{Q}_{e} exist for all simply laced generalized Dynkin diagrams (as we conjectured a couple of slides back), then so do simple algebra objects, but we do not know of any explicit construction of X in conjugate type A and type E .

Algebra objects in \mathscr{T}_{e}

- Every simple algebra object X in $\mathcal{Q}_{e}=\mathrm{U}_{\eta}\left(\mathfrak{s l}_{3}\right)-\bmod _{\mathrm{ss}}$ gives rise to three algebra 1-morphism $X_{\mathbf{u}} \in \mathscr{Q}_{e}^{G O P}(\mathbf{u}, \mathbf{u})$, for $\mathbf{u} \in G O P$.

Proposition

For every simple algebra object (X, μ, ι) in \mathcal{Q}_{e} and every $\mathbf{u} \in G O P$, there exist degree zero multiplication and unit morphisms such that

$$
\mathrm{BI} \circ \mathrm{~S}_{e}\left(X_{u}\right)\{-3\}
$$

becomes a graded algebra object in \mathscr{T}_{e}.

Multiplication and unit morphisms of in \mathscr{T}_{e}

- Because biinduction is not a 2-functor, one has to be slightly careful with the definition of the multiplication morphism of $\mathrm{BI} \circ \mathrm{S}_{e}\left(X_{\mathrm{u}}\right)\{-3\}$.

Example (Generalized type A)

For $(X, \mu, \iota)=\left(\mathrm{I}, \mathrm{id}_{\mathrm{I}}, \mathrm{id}_{\mathrm{I}}\right)$ in \mathcal{Q}_{e} and $\mathbf{u}=g$, the algebra object in \mathscr{T}_{e} is

Conjecture: the quiver algebra underlying the simple transitive 2-representation of \mathscr{T}_{e} is the trihedral zigzag algebra of generalized type A.

Final remarks

- Open problem (for $e>3$): classify all admissible graphs $\boldsymbol{\Gamma}$ such that

$$
\mathrm{U}_{m, n}\left(A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)\right)=0, \quad \text { for all } m+n=e+1
$$

Final remarks

- Open problem (for $e>3$): classify all admissible graphs $\boldsymbol{\Gamma}$ such that

$$
\mathrm{U}_{m, n}\left(A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)\right)=0, \quad \text { for all } m+n=e+1
$$

- Open problem: classify all simple algebra objects in $\mathrm{U}_{\eta}-\bmod _{\mathrm{ss}}$.

Final remarks

- Open problem (for $e>3$): classify all admissible graphs $\boldsymbol{\Gamma}$ such that

$$
\mathrm{U}_{m, n}\left(A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)\right)=0, \quad \text { for all } m+n=e+1
$$

- Open problem: classify all simple algebra objects in $\mathrm{U}_{\eta}-\bmod _{\mathrm{ss}}$.
- Question: The ordinary zigzag algebras have nice properties and interesting relations to other mathematics. Do some of those generalize to the trihedral zigzag algebras?

Final remarks

- Open problem (for $e>3$): classify all admissible graphs $\boldsymbol{\Gamma}$ such that

$$
\mathrm{U}_{m, n}\left(A\left(\boldsymbol{\Gamma}^{\mathrm{X}}\right), A\left(\boldsymbol{\Gamma}^{\mathrm{Y}}\right)\right)=0, \quad \text { for all } m+n=e+1
$$

- Open problem: classify all simple algebra objects in $\mathrm{U}_{\eta}-\bmod _{\mathrm{ss}}$.
- Question: The ordinary zigzag algebras have nice properties and interesting relations to other mathematics. Do some of those generalize to the trihedral zigzag algebras?
- Possible generalizations: Does our story generalize to type A_{n} for $n \geq 3$?

THANKS!!!

