Handlebodies, Artin-Tits and HOMFLYPT

Or: All I know about Artin-Tits groups; and a filler for the remaining 59 minutes

Joint with David Rose
March 2019

My failure. What I would like to understand, but I do not.

Artin-Tits groups come in four main flavors.
Question: Why are these special? What happens in general type?

A different idea for today:
What can Artin-Tits groups tell you about flavor two?

(1) Links and braids - the classical case

- Braid diagrams
- Links in the 3 -ball
(2) Links and braids in handlebodies
- Braid diagrams
- Links in handlebodies
(3) Some "low-genus-coincidences"
- The ball and the torus
- The torus and the double torus
(4) Arbitrary genus
- Braid invariants - some ideas
- Link invariants - some ideas

Let $\operatorname{Br}(n)$ be the group defined as follows.

Generators. Braid generators

Relations. Reidemeister braid relations, e.g.

$$
\begin{aligned}
& b_{i} b_{i}^{-1}=1=a_{i}^{-1} b_{i} \quad b_{i+1} b_{i} b_{i+1}=b_{i} b_{i+1} b_{i}
\end{aligned}
$$

Let $\operatorname{Br}(n)$ be the group defined as follows.

Generators. Braid generate Example.

$$
\uparrow \uparrow \uparrow+\uparrow+\uparrow
$$

The Alexander closure on $\mathscr{B r}(\infty)$ is given by:

This is the classical Alexander closure.

This is the classical Alexander closure.

The Markov moves on $\mathscr{B} \mathrm{r}(\infty)$ are conjugation and stabilization.

Conjugation.

Stabilization.

These are the classical Markov moves.

The Markov moves on $\mathscr{B r}(\infty)$ are conjugation and stabilization.

Conjugation.

Theorem (Markov ~1936).

Two links in \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Proof?

Stabilization.

These are the classical Markov moves.

The Markov moves on $\mathscr{B r}(\infty)$ are conjugation and stabilization.

Conjugation.

Theorem (Markov ~1936).

Two links in \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Stabilization.

These are the classical Markov moves.

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Generators. Braid and twist generators

Relations.
Redemaster bride reations, type C relations and special relations, e.g.
Involves three players and inverses!

$$
b_{1} t_{2} b_{1} t_{2}=t_{2} b_{1} t_{2} b_{1}
$$

$$
\left(a_{1} t_{2} b_{1}^{-1}\right) t_{3}=t_{3}\left(a_{1} t_{2} b_{1}^{-1}\right)
$$

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

$b_{1} t_{2} b_{1} t_{2}=t_{2} b_{1} t_{2} b_{1}$

$\left(b_{1} t_{2} b_{1}^{-1}\right) t_{3}=t_{3}\left(b_{1} t_{2} b_{1}^{-1}\right)$

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Let $\operatorname{Br}(g, n)$ be the group defined as follows.

Generators. Braid and twist generators

The group $\mathscr{B} \mathrm{r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

Two types of braidings, the usual ones and "winding around cores", e.g.

The group $\mathscr{B r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

The group $\mathscr{B r}(g, n)$ of braid in a g-times punctures disk $\mathscr{D}_{g}^{2} \times[0,1]$:

Two tunes of braidines the usual ones and "winding around cores" eo Note.

For the proof it is crucial that \mathscr{D}_{g}^{2} and the boundary points of the braids \bullet are only defined up to isotopy, e.g.

\Rightarrow one can always "conjugate cores to the left".
This is useful to define $\mathscr{B} \mathrm{r}(g, \infty)$.

The Alexander closure on $\mathscr{B r}(g, \infty)$ is given by merging core strands at infinity.

This is different from the classical Alexander closure.

The Alexander closure on $\mathscr{B r}(g, \infty)$ is given by merging core strands at infinity.

This is different from the classical Alexander closure.

The Alexander closure on $\mathscr{B r}(g, \infty)$ is given by merging core strands at infinity. Theorem (Lambropoulou ~1993).

For any link ℓ in the genus g handlebody \mathscr{H}_{g} there is a braid in $\mathscr{B r}(g, \infty)$ whose (correct!) closure is isotopic to ℓ

Proof? L-move.

Fact.

\mathscr{H}_{g} is given by a complement in the 3 -sphere δ^{3} by an open tubular neighborhood of the embedded graph obtained by gluing $g+1$ unknotted "core" edges to two vertices.

This is

the 3 -ball $\mathscr{H}_{0}=\mathscr{D}^{3}$
a torus \mathscr{H}_{1}

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

$$
a \sim s a s^{-1}
$$

for $\mathfrak{b} \in \mathscr{B r}(g, n), s \in\left\langle\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n-1}\right\rangle$

Stabilization.

They are weaker than the classical Markov moves.

Theorem (Häring-Oldenburg-Lambropoulou ~2002).
Two links in \mathscr{H}_{g} are equivalent if and only if they are equal in $\mathscr{B} r(g, \infty)$ up to conjugation and stabilization.
Conjuga

Proof? L-move.

$$
a \sim s \cos ^{-1}
$$

$$
\text { for } a \in \mathscr{B} r(g, n), s \in\left\langle a_{1}, \ldots, b_{n-1}\right\rangle
$$

Stabilization.

$(c \uparrow) b_{n}(a \uparrow)$
$\sim c b \sim(c \uparrow) b_{n}^{-1}(a \uparrow) \Longleftrightarrow$ for $a, c \in \mathscr{B r}(g, n)$,

They are weaker than the classical Markov moves.

The Mar Theorem (Häring-Oldenburg-Lambropoulou ~2002).
Two links in \mathscr{H}_{g} are equivalent if and only if they are equal in $\mathscr{B r}(g, \infty)$ up to conjugation and stabilization.
Conjuga

Proof? L-move.

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

They are weaker than the classical Markov moves.

The Markov moves on $\mathscr{B} \mathrm{r}(g, \infty)$ are conjugation and stabilization.

Conjugation.

They are weaker than the classical Markov moves.

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits $\mathbf{\sim 1 9 6 1 +}$. The Artin-Tits group and its Coxeter group quotient are given by generators-relations:

Artin-Tits groups generalize classical braid groups, Coxeter groups polyhedron groups.
$\cos (\pi / 3)$ on a line:

$$
\text { type } A_{n-1}: 1-2-\ldots-n-2-n-1
$$

The classical case. Consider the map

braid rel.:

Artin ~ 1925. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{A}_{n-1}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(0, n)$.

```
\(\cos (\pi / 3)\) on a line:
```


Jones ~1987.

Markov trace on the Hecke algebra of type A
\rightsquigarrow two variable \mathbf{q}, a polynomial invariant (HOMFLYPT polynomial).
The cla

$$
\mathbf{q}=\text { Hecke parameter ; } \mathbf{a}=\text { trace parameter }
$$

Artin ~ 1925. This gives an isomorphism of groups $\mathrm{AT}\left(\mathrm{A}_{n-1}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(0, n)$.
I will come back to this with more details for general genus g.
For the time being: This works quite well!
$\cos (\pi / 3)$ on a line:

\[\)| Markov trace on the Hecke algebra of type A |
| ---: |
| $\rightsquigarrow \text { two variable } \mathbf{q}, \text { a polynomial invariant (HOMFLYPT polynomial). }$ |
| The clas |
| $\mathbf{q}=\text { Hecke parameter ; } \mathbf{a}=\text { trace parameter } .$ |

\]

Khovanov ~2005; categorification.

Hochschild homology on complexes of the Hecke category of type A
\rightsquigarrow "three variable $\mathbf{q}, \mathbf{t}, \mathbf{a}$ homological invariant" (HOMFLYPT homology).

$$
\mathbf{q}=\text { Hecke parameter ; } \mathbf{t}=\text { homological parameter ; } \mathbf{a}=\text { Hochschild parameter }
$$

I will come back to this with more details for general genus g.
For the time being: This works quite well!
$\cos (\pi / 3)$ on a circle.

Affine adds genus. Consider the map

tom Dieck ~1998. (Earlier reference?) This gives an isomorphism of groups $\mathbb{Z} \ltimes \operatorname{AT}\left(\tilde{\mathrm{A}}_{n-1}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.

```
cos(\pi/3) on a circle.
```


tom Dieck \sim 1998. (Earlier reference?) This gives an isomorphism of groups

For the time being: This works quite well!

```
cos(\pi/3) on a circle.
```


Orellana-Ram ~2004. (Earlier reference?)

Markov trace on the Hecke algebra of type \tilde{A}

```
Affine a }\rightsquigarrow\mathrm{ two variable q,a polynomial invariant (HOMFLYPT polynomial).
    q=Hecke parameter ; a=trace parameter
```


???; categorification.

Hochschild homology on complexes of the Hecke category of type \tilde{A}
\rightsquigarrow "three variable \mathbf{q}, \mathbf{t}, a homological invariant" (HOMFLYPT homology).

$\mathbb{Z} \ltimes \operatorname{AT}\left(\tilde{\mathrm{A}}_{n} \xlongequal{\text { I will come back to this with more details for general genus } g \text {. }}\right.$ For the time being: This works quite well!

$\cos (\pi / 3)$ on a circle.

$\cos (\pi / 4)$ on a line:

$$
\text { type } C_{n}: 0 \xlongequal{4} 1-2-\ldots-\mathrm{n}-1-\mathrm{n}
$$

The semi-classical case. Consider the map

braid rel.:

Brieskorn ~ 1973. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{C}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.
$\cos (\pi / 4)$ on a line:
Geck-Lambropoulou ~1997.
Markov trace on the Hecke algebra of type C
\rightsquigarrow two variable q, a polynomial invariant (HOMFLYPT polynomial).
The sen

Brieskorn ~ 1973. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{C}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.
I will come back to this with more details for general genus g.
For the time being: This works quite well!

Markov trace on the Hecke algebra of type C

\rightsquigarrow two variable q, a polynomial invariant (HOMFLYPT polynomial). The sen

I will come back to this with more details for general genus g.
For the time being: This works quite well!

Fact. (Not true in type A.)

There is a whole infinite family of Markov traces, one for each choice of a value for essential unlinks.

The

Brieskorn ~ 1973. This gives an isomorphism of groups $\operatorname{AT}\left(\mathrm{C}_{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.

Fact. (Not true in type A.)

There is a whole infinite family of Markov traces, one for each choice of a value for essential unlinks.

The

$\leftrightarrow \rightarrow$ extra parameter
etc.

Fact. (Not true in type A.)

There is also a second Hecke parameter, which we do not know how to categorify yet. $\left.{ }^{n}\right) \xrightarrow{\cong} \mathscr{B} \mathrm{r}(1, n)$.
$\cos (\pi / 4)$ twice on a line:

$$
\text { type } \tilde{\mathrm{C}}_{n}: 0^{1} \xlongequal[=]{=} 1-2-\ldots-\mathrm{n}-1-\mathrm{n} \xlongequal{4} 0^{2}
$$

Affine adds genus. Consider the map

Allcock \sim 1999. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \xrightarrow{\cong} \mathscr{B r}(2, n)$.

Allcock \sim 1999. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(2, n)$.

This case is strange - it only arises under conjugation:
$\cos (\pi / 4)$ twice

Affine adds g

By a miracle, one can avoid the special relation

Currently, not much seems to be known, but I think the same story works. Allcock ~ 1999. This gives an isomorphism of groups $\operatorname{AT}\left(\tilde{\mathrm{C}}_{n}\right) \stackrel{\cong}{\leftrightarrows} \mathscr{B r}(2, n)$.

This case is strange - it only arises under conjugation:
$\cos (\pi / 4)$ twice

Affine adds g

By a miracle, one can avoid the special relation

This relation
involves three players and inverses.

Bad!

Currently, not much seems to be known, but I think the same story works.
Allcock However, this is where it seems to end, e.g. genus $g=3$ wants to be n).

But the special relation makes it a mere quotient.
So: In the remaining time I tell you what works.
$\cos (\pi / 4)$ twice on a line:

Currently known (to the best of my knowledge).

$\cos (\pi / 4)$ twice on a line:
Affine adds genus

Philosophy 1: Reshetikhin-Turaev with "huge" colors.

Philosophy 1: Resh

Note that the type A embedding guarantees that any usual invariant of braids produces an invariant of braids in \mathscr{H}_{g}.

Philosophy 1: Resh

Note that the type A embedding guarantees that any usual invariant of braids produces an invariant of braids in \mathscr{H}_{g}.

$$
\text { Genus } g=0,1 \text {. }
$$

Works quite well (e.g. use Naisse-Vaz's ideas on the categorified level).

Philosophy 1: Resh

> | Note that the type A embedding |
| :---: |
| guarantees that any usual invariant of braids |
| produces an invariant of braids in \mathscr{H}_{g}. |

$$
\text { Genus } g=0,1 \text {. }
$$

Works quite well (e.g. use Naisse-Vaz's ideas on the categorified level).
We mimic this for M being "huge, but finite".

Singular Soergel bimodules $\mathscr{S}_{\mathrm{S}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

Tuples $\mathrm{I}=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}_{\geq 1}^{N}$ with $k_{1}+\cdots+k_{N}=N \leadsto$ parabolic subgroups $\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{A}_{k_{N}-1}\right) \subset \mathrm{W}$.
W acts on $\mathrm{R}=\mathrm{R}_{N}=\mathbb{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right]$ via permutation \rightsquigarrow rings of invariants R^{I}.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Tuples $\mathrm{I}=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}_{\geq 1}^{N}$ with $k_{1}+\cdots+k_{N}=N \leadsto$ parabolic subgroups $\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{A}_{k_{N}-1}\right) \subset \mathrm{W}$.
W acts on $\mathrm{R}=\mathrm{R}_{N} \xlongequal{\text { Everything is } \mathbb{Z} \text {-graded, called } \mathbf{q} \text {-grading. }}$. ${ }^{\text {s. }}$ of invariants R^{T}. I just omit this for simplicity.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.
This gives a way to define bimodules associated to any web built out of merge and split.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Bimodules. Identi There are several bimodule isomorphisms, e.g. plit"), e.g.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

Soergel ~ 1992, Williamson ~ 2010.

Tuples $I=\mathscr{S}_{\mathbf{s}}^{\mathbf{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid). subgroups

$$
\mathrm{W}_{\mathrm{I}}=\mathrm{W}\left(\mathrm{~A}_{k_{1}-1}\right) \times \cdots \times \mathrm{W}\left(\mathrm{~A}_{k_{N}-1}\right) \subset \mathrm{W}
$$

W acts on $\mathrm{R}=\mathrm{R}_{N}=\mathbb{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right]$ via permutation \rightsquigarrow rings of invariants R^{I}.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Singular Soergel bimodules $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ for $\mathrm{W}=\mathrm{W}\left(\mathrm{A}_{N-1}\right)$.

Soergel ~1992, Williamson ~2010.

Tuples $I=\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid). subgroups
Rouquier ~ 2004, Mackaay-Stošić-Vaz ~ 2008, Webster-Williamson ~ 2009, etc.
There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$
\llbracket \beta_{i} \rrbracket_{M}=\sum_{k}^{l}=\left.\left.\underbrace{k}_{0} \underbrace{k-l}_{l} \stackrel{d_{0}^{+}}{\longrightarrow} \mathbf{q} \mathbf{|}\right|_{k} ^{\mid+1} \underbrace{d_{1}^{+}}_{l} \ldots{ }^{d_{l-1}^{+}} \mathbf{q}^{l} \mathbf{t}^{l}\right|_{l} ^{\left.\right|_{l} ^{k}}
$$

providing a categorical action of the Artin-Tits group of type A.

Define $\mathscr{S}_{\mathrm{s}}^{\mathrm{q}}(\mathrm{W})$ as the full 2-subcategory of the rings\&bimodules 2-category.

Soergel ~1992, Williamson ~2010.

Tuples $I=\mathscr{S}^{\mathbf{q}}(\Gamma)$ categorifies the Hecke algebra (or rather, the algebroid).
subgroups
Rouquier ~2004, Mackaay-Stošić-Vaz ~2008, Webster-Williamson ~2009, etc.
There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$
\llbracket \beta_{i} \rrbracket_{M}=\underbrace{l}_{k}=\left.\underbrace{k-1}_{v} \xrightarrow{k} \xrightarrow{d_{0}^{+}} \mathbf{q} \mathbf{t}\right|_{k} ^{\frac{k+l}{+1}} \xrightarrow{d_{1}^{+}} \ldots \xrightarrow{d_{l-1}^{+}} \mathbf{q}^{l} \mathbf{t}^{l} \underbrace{\mid}_{k} \underbrace{k}_{l}
$$

providing a categorical action of the Artin-Tits group of type A.

Partial Hochschild homology (à la Hogancamp \sim 2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of (bicomplers of) q-graded, free R_{N}-bimodules. Adjoint pair (\mathcal{I}, \mathcal{T}):
$\mathcal{I}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\text {atq }} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$

$$
\mathrm{B} \mapsto \mathrm{~B} \otimes_{\mathrm{R}_{N-1}^{e}}\left(\mathrm{R}_{N}^{\mathrm{e}} /\left(\mathrm{x}_{N} \otimes 1-1 \otimes \mathrm{x}_{N}\right)\right)
$$

extending scalars

$$
\mathcal{T}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\mathbf{a t q}} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\mathbf{a t q}}
$$

$$
\mathrm{B} \mapsto\left(\mathrm{~B} \xrightarrow{\mathrm{x}_{N} \cdot \mathrm{~b}-\mathrm{b}, \mathrm{x}_{N}} \mathrm{aq}^{2} \mathrm{~B}\right)
$$

Skein relations. One gets e.g.

\&

\&

Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of (of) q-graded, free R_{N}-bimodules. Adjoint pair (\mathcal{I}, \mathcal{T}):

Theorem (after normalization).

We get a triply-graded invariant $\mathrm{HHH}_{M}^{\star}(\mathfrak{b}) \in \mathbb{k}$ - $\operatorname{Vect}^{\text {atq }}$ for $\mathfrak{b} \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov stabilization, i.e.

Skein relations. One gets e.g.

\&

Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of (of) q-graded, free R_{N}-bimodules. Adjoint pair (\mathcal{I}, \mathcal{T}):

Theorem (after normalization).

We get a triply-graded invariant $\mathrm{HHH}_{M}^{\star}(\mathfrak{b}) \in \mathbb{k}$ - $\operatorname{Vect}^{\text {atq }}$ for $\mathfrak{b} \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov stabilization, i.e.

Skein relations One antcor
However, we are not quite there: one gets a too strong Markov conjugation, i.e.

Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atc }}$ category of (of) q-graded, free R_{N}-bimodules. Adjoint pair (\mathcal{I}, \mathcal{T}):

$$
\begin{gathered}
\mathcal{I}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\text {atp }} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\text {atc }} \\
\mathrm{B} \rightarrow \mathrm{~B}
\end{gathered} \quad \mathcal{I}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathrm{C} & 1
\end{array}\right)=
$$

Idea: Flank them!

should be thought as

and things get stuck, egg.
topologically stuck:

Partial Hochschild homology (à la Hogancamp ~2015). R- $f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}$ category of (of) q-graded, free R_{N}-bimodules. Adjoint pair $(\mathcal{I}, \mathcal{T})$:

$$
\mathcal{I}: \mathrm{R}-f \mathscr{B} \mathrm{im}_{N-1}^{\mathrm{atq}} \rightarrow \mathrm{R}-f \mathscr{B} \mathrm{im}_{N}^{\text {atq }}
$$

Theorem (after normalization and flanking).

We get a triply-graded invariant $\operatorname{HHH}_{M}^{*}(\mathfrak{a}) \in \mathbb{k}$ - \mathcal{V} ect ${ }^{\text {atq }}$ for $a \in \mathscr{B} \mathrm{r}(g, n)$, which respects Markov conjugation and stabilization, i.e.

me by one the arcs of the diagram that have the wrong sense.

Here is an eample which woris for genera lamanifolds, the L-move 'Mark the boal maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.'. eg.

The Aleander clasure on $S x[(9, \infty)$ is given by merging core strands at infritity

correct clasure
This is different from the classical Alexander closure.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in sor (∞) up to L-manes

Here is an example which works in the for geneal 1 -manifolds, the L-move again:

The Marioor mowes on $S \operatorname{Sr}(\underline{g}, \infty)$ are conjugation and stabilization.

Conjugation.

Stabilization.

They are weaker than the classial Mariow mowes.

There is still much to do...

 3.ball \mathscr{P}^{1} are equivalent if and only if they are equal in ©irx (x) up to conjugationand stabiliztion.

There are vanous proofs of this result, are all bassed on the same idea: "Eliminate

one by one the arcs of the diagram that have the wrong sense.

Here is an eample which worts for general I-manifolds, the L-move 'Mark the Woal maima and minima of the link diagram with respect to some height function and cut open wrong subarcs.'. eg.

The Aleander closure on $\mathcal{A r}(9 . \infty)$ is given by merging core strands at infinity

correct clasure
This is different from the classical Alexander closure.
Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\operatorname{sor}(\infty)$ up to L-mowes

Here is an example which works in the for geneal 1 -manifolds, the L-move again:

The Marbow moves on $\mathscr{S r}(\underline{q}, \infty)$ are conjuggtion and stabilization.

Conjugation.

Stabilization.

They are weaker than the classial Mariow mowes.

Thanks for your attention!

Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, ≤ 1830).
 (We come back to this later.)

> Artin's approach: "Arithmetrization of braids".
> However, he still needs topological arguments.

And this is one main problem why general Artin-Tits groups are so complicated: Basically, they are "infinite groups without extra structure".

Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven, ≤ 1830).
 (We come back to this later.)

Brunn ~ 1897, Alexander ~ 1923. For any link ℓ in the 3 -ball \mathscr{D}^{3} there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to ℓ.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.

Brunn ~ 1897, Alexander ~ 1923. For any link ℓ in the 3 -ball \mathscr{D}^{3} there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to ℓ.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.

Brunn ~ 1897, Alexander ~ 1923. For any link ℓ in the 3 -ball \mathscr{D}^{3} there is a braid in $\mathscr{B r}(\infty)$ whose closure is isotopic to ℓ.

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.
 3 -ball \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} \mathrm{r}(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:

Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:

Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:

Markov ~1936, Weinberg $\boldsymbol{\sim}$ 1939, Lambropoulou~1990. Two links in the 3 -ball \mathscr{D}^{3} are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in $\mathscr{B} r(\infty)$ up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:

The Reidemeister braid relations:

$$
\mathcal{H}=\uparrow \uparrow=\uparrow
$$

These hold for usual strands only since core strands do not cross each other, e.g.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $\mathrm{A}_{3} \longleftrightarrow \leadsto$ tetrahedron $\leadsto \leadsto$ symmetric group S_{4}.
Type $\mathrm{B}_{3} \leadsto$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:

$$
\text { Idea (Coxeter } \sim 1934++ \text {). }
$$

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $\mathrm{A}_{3} \nVdash \leadsto$ tetrghadun. The symmetries are given by exchanging flags.

Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.

$$
\text { Idea (Coxeter } \sim 1934++ \text {). }
$$

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $\mathrm{A}_{3} \longleftrightarrow \leadsto$ tetrahedron $\leadsto \leadsto$ symmetric group S_{4}.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.
Idea (Coxeter ~1934++).
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $\mathrm{A}_{3} \leadsto$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:
Fix a flag F.
Idea (Coxeter ~1934++).

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1 -cells of F, etc.

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type $\mathrm{A}_{3} \leadsto$ tetrahedron $\leadsto \rightsquigarrow$ symmetric group S_{4}.
Type $\mathrm{B}_{3} \longleftrightarrow \nrightarrow$ cube/octahedron $\rightsquigarrow \rightsquigarrow$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \leadsto>$ dodecahedron/icosahedron $\leadsto \rightsquigarrow$ exceptional Coxeter group.
For I_{8} we have a 4-gon:

$$
\text { Fix a flag } F \text {. }
$$

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.
Write a vertex i for each H_{i}.
Idea (Coxeter ~1934++).

Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

 This gives a generator-relation presentation.Type $A_{3} \leadsto \leadsto$ tetrahedron $\underset{\sim}{ } \rightarrow$ symmetric group S_{4}.
Type $B_{3} \leadsto \leadsto$ And the braid relation measures the angle between hyperplanes.
Type $\mathrm{H}_{3} \longleftrightarrow \leadsto$ dodecahedron/icosahedron $\longleftrightarrow \rightsquigarrow$ exceptional Coxeter group. For I_{8} we have a 4-gon:

Fix a flag F.

Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.
Write a vertex i for each H_{i}.
Idea (Coxeter ~1934++).

Connect i, j by an n-edge for H_{i}, H_{j} having angle $\cos (\pi / n)$.

Three gradings:

```
q m}->\mathrm{ internal & t & m homological & a & M Hochschild
```

Example. To compute Hochschild cohomology take the Koszul resolution

$$
\otimes_{i=1}^{N}\left(\mathrm{R}^{\mathrm{e}}=\mathrm{R} \otimes \mathrm{R}^{\mathrm{op}} \xrightarrow{\cdot\left(\mathrm{x}_{i} \otimes 1-1 \otimes \mathrm{x}_{i}\right)} \mathbf{a q}^{2} \mathrm{R}^{\mathrm{e}}\right)
$$

Tensor it with B , gives a complex with differentials $\mathrm{x}_{i} \otimes 1-1 \otimes \mathrm{x}_{i}$, of which we think as identifying the variables. This gives a chain complex having non-trivial chain groups in a-degree $0, \ldots, n$. Here the $i^{\text {th }}$ chain group consists of $\binom{n}{i}$ copies of B , with differentials given by the various ways of identifying i variables. The $a^{\text {th }}$ cohomology $=a^{\text {th }}$ Hochschild cohomology.

Example. If B is already a t-graded complex, then one can take homology of it and gets "triple H".

The type A Hecke algebra H_{n} is the quotient of $\mathbb{Z}\left[\mathbf{q}, \mathbf{q}^{-1}\right] \mathscr{B} \mathrm{r}(n)$ by:

$$
\uparrow-\Im=\left(\mathbf{q}-\mathbf{q}^{-1}\right) \uparrow \uparrow
$$

H_{n} is of dimension n !. (Proof: Over- and undercrossing are linear dependent. Hence, there is a basis given by diagrams in the symmetric group.)

Theorem (Jones \sim 1987; Skein theory). There is a unique pair $\mathcal{I}: \mathrm{H}_{n-1} \rightarrow \mathrm{H}_{n}$ and $\mathcal{T}: \mathrm{H}_{n} \rightarrow \mathrm{H}_{n-1}$ of "adjoint functors"
which satisfy the Markov moves and are determined by

$$
\bigcirc=\bigcirc=\mathbf{a} .
$$

