# Handlebodies, Artin-Tits and HOMFLYPT

Or: All I know about Artin-Tits groups; and a filler for the remaining 59 minutes



Joint with David Rose

March 2019

My failure. What I would like to understand, but I do not.

Artin–Tits groups come in four main flavors.

Question: Why are these special? What happens in general type?



A different idea for today:
What can Artin–Tits groups tell you about flavor two?





















































- 1 Links and braids the classical case
  - Braid diagrams
  - Links in the 3-ball
- Links and braids in handlebodies
  - Braid diagrams
  - Links in handlebodies
- Some "low-genus-coincidences"
  - The ball and the torus
  - The torus and the double torus
- Arbitrary genus
  - Braid invariants some ideas
  - Link invariants some ideas

Let Br(n) be the group defined as follows.

#### Generators. Braid generators

$$\mathscr{C}_i \longleftrightarrow \dots \qquad \bigcap_{1 \quad \text{$i$ $i+1$ $n$}}^{1 \quad \text{$i$ $i+1$ $n$}} \dots \bigcap_{1 \quad \text{$i$ $i+1$ $n$}}^{1 \quad \text{$i$ $i+1$ $n$}}$$

Relations. Reidemeister braid relations, e.g.

Generators. Braid generate



Relations. Reidemeister bra

Generators. Braid generate



Relations. Reidemeister br

$$\mathcal{E}_{i}\mathcal{E}_{i}^{-1} = 1$$

$$\mathcal{E}_{i}\mathcal{E}_{i}^{-1} = 1$$

$$\mathcal{E}_{i}\mathcal{E}_{i}^{-1} = 1$$

$$\mathcal{E}_{i}\mathcal{E}_{i+1}\mathcal{E}_{i}$$



## The Alexander closure on $\mathscr{B}r(\infty)$ is given by:



This is the classical Alexander closure.

### The Alexander closure on $\mathscr{B}r(\infty)$ is given by:



This is the classical Alexander closure.

The Markov moves on  $\mathscr{B}r(\infty)$  are conjugation and stabilization.

### Conjugation.



#### Stabilization.



These are the classical Markov moves.

# The Markov moves on $\mathscr{B}r(\infty)$ are conjugation and stabilization.

Conjugation. Theorem (Markov  $\sim$ 1936). Two links in  $\mathcal{D}^3$  are equivalent if and only if they are equal in  $\mathscr{B}r(\infty)$  up to conjugation and stabilization.

#### Stabilization.



These are the classical Markov moves.

# The Markov moves on $\mathscr{B}r(\infty)$ are conjugation and stabilization.



#### Stabilization.



These are the classical Markov moves.

### Let Br(g, n) be the group defined as follows.

### Generators. Braid and twist generators



**Relations.** • Reidemeister braid relations, type C relations and special relations, e.g.



# Involves three players and inverses!



# Let Br(g, n) be the group defined as follows.



Involves three players and inverses!



# Let Br(g, n) be the group defined as follows.



### Generators. Braid and twist generators



# The group $\mathscr{B}\mathrm{r}(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_q^2 \times [0,1]$ :

Two types of braidings, the usual ones and "winding around cores", e.g.







# The group $\mathscr{B}r(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_q^2 \times [0,1]$ :

Two types



# The group $\mathscr{B}r(g,n)$ of braid in a g-times punctures disk $\mathscr{D}_q^2 \times [0,1]$ :

# Two types of braidings, the usual ones and "winding around cores" e.g. Note.

For the proof it is crucial that  $\mathcal{D}_g^2$  and the boundary points of the braids ullet are only defined up to isotopy, e.g.



⇒ one can always "conjugate cores to the left".

This is useful to define  $\mathscr{B}r(g,\infty)$ .

# The Alexander closure on $\mathscr{B}r(g,\infty)$ is given by merging core strands at infinity.



This is different from the classical Alexander closure.



This is different from the classical Alexander closure.



The Markov moves on  $\mathscr{B}r(g,\infty)$  are conjugation and stabilization.

### Conjugation.

$$\mathscr{C} \sim \mathscr{S}\mathscr{C}\mathscr{S}^{-1}$$
 for  $\mathscr{C} \in \mathscr{B}\mathbf{r}(g,n), \mathscr{S} \in \langle \mathscr{C}_1, \dots, \mathscr{C}_{n-1} \rangle$   $\iff$  
$$\cdots$$

#### Stabilization.



They are weaker than the classical Markov moves.

The Mar

# Theorem (Häring-Oldenburg-Lambropoulou $\sim$ 2002).

Two links in  $\mathcal{H}_g$  are equivalent if and only if they are equal in  $\mathscr{B}\mathrm{r}(g,\infty)$  up to conjugation and stabilization.

Conjuga

Proof? L-move.

#### Stabilization.



They are weaker than the classical Markov moves.

# The Mark

# Theorem (Häring-Oldenburg-Lambropoulou $\sim$ 2002).

Two links in  $\mathcal{H}_g$  are equivalent if and only if they are equal in  $\mathscr{B}\mathrm{r}(g,\infty)$  up to conjugation and stabilization.

Conjuga

# Proof? L-move.



# Conjugation.



They are weaker than the classical Markov moves.

The Markov moves on  $\mathscr{B}r(g,\infty)$  are conjugation and stabilization.

# Conjugation.



They are weaker than the classical Markov moves.

#### Let $\Gamma$ be a Coxeter graph.

**Artin**  $\sim$ **1925, Tits**  $\sim$ **1961**++. The Artin–Tits group and its Coxeter group quotient are given by generators-relations:

$$\begin{split} \operatorname{AT}(\Gamma) &= \langle \mathscr{O}_i \mid \underbrace{\cdots \mathscr{O}_i \mathscr{O}_j \mathscr{O}_i}_{m_{ij} \text{ factors}} = \underbrace{\cdots \mathscr{O}_j \mathscr{O}_i \mathscr{O}_j}_{m_{ij} \text{ factors}} \\ & \\ \operatorname{W}(\Gamma) &= \langle \sigma_i \mid \sigma_i^2 = 1, \underbrace{\cdots \sigma_i \sigma_j \sigma_i}_{m_{ij} \text{ factors}} = \underbrace{\cdots \sigma_j \sigma_i \sigma_j}_{m_{ij} \text{ factors}} \rangle \end{split}$$

Artin-Tits groups generalize classical braid groups, Coxeter groups 

seneralize polyhedron groups.

 $\cos(\pi/3)$  on a line:

type 
$$A_{n-1}$$
: 1 — 2 — ... —  $n-2$  —  $n-1$ 

The classical case. Consider the map

**Artin**  $\sim$ **1925.** This gives an isomorphism of groups  $AT(A_{n-1}) \xrightarrow{\cong} \mathscr{B}r(0,n)$ .

 $\cos(\pi/3)$  on a line:

The cla

Jones  $\sim$ 1987.

Markov trace on the Hecke algebra of type A

ightarrow two variable  ${f q},{f a}$  polynomial invariant (HOMFLYPT polynomial).

**q**=Hecke parameter ; **a**=trace parameter .

$$\beta_i \mapsto \bigwedge_{1}^{1} \dots \bigwedge_{i=i+1}^{i-i+1} \dots \bigwedge_{n}^{n} \quad \text{braid rel.:} \quad \Longrightarrow_{i=i+1}^{1} = \bigwedge_{i=i+1}^{n} \dots \bigwedge_{n}^{n} = \bigcap_{i=i+1}^{n} \bigcap_{i=i+1}^{n} \dots \bigcap_{n}^{n} \dots \bigcap_{i=i+1}^{n} \dots \bigcap_{n}^{n} \dots \bigcap_{i=i+1}^{n} \dots \bigcap_{n}^{n} \dots$$

**Artin** ~1925. This gives an isomorphism of groups  $AT(A_{n-1}) \xrightarrow{\cong} \mathcal{B}r(0,n)$ .

I will come back to this with more details for general genus g.

For the time being: This works quite well!

```
Jones \sim1987.

Markov trace on the Hecke algebra of type A

\sim two variable q, a polynomial invariant (HOMFLYPT polynomial).

The class q=Hecke parameter; a=trace parameter.
```

I will come back to this with more details for general genus g. For the time being: This works quite well!



### Affine adds genus. Consider the map



tom Dieck  $\sim$ 1998. (Earlier reference?) This gives an isomorphism of groups  $\mathbb{Z} \ltimes \operatorname{AT}(\tilde{\mathbb{A}}_{n-1}) \xrightarrow{\cong} \mathscr{B}r(1,n)$ .



tom Dieck  $\sim$ 1998. (Earlier reference?) This gives an isomorphism of groups

 $\mathbb{Z} \ltimes \operatorname{AT}(\tilde{\mathbb{A}}_n) \xrightarrow{\cong} \mathscr{R}_r(1,n)$  I will come back to this with more details for general genus g. For the time being: This works quite well!

```
Orellana–Ram \sim2004. (Earlier reference?)
                      Markov trace on the Hecke algebra of type A
           \leadsto two variable \mathbf{q},\mathbf{a} polynomial invariant (HOMFLYPT polynomial).
                        q=Hecke parameter; a=trace parameter
                                    ???; categorification.
        Hochschild homology on complexes of the Hecke category of type A

→ "three variable q, t, a homological invariant" (HOMFLYPT homology).

     q=Hecke parameter; t=homological parameter; a=Hochschild parameter
ton וופכג ~ בפכל. (Larner reference: דוווא gives an isomorphism or groups
\mathbb{Z} \ltimes \operatorname{AT}(\tilde{\mathsf{A}}_n|_{\begin{subarray}{c}\mathsf{I} \text{ will come back to this with more details for general genus } g.
                         For the time being: This works quite well!
```



 $\cos(\pi/4)$  on a line:

type 
$$C_n$$
:  $0 \stackrel{4}{=} 1 - 2 - \dots - n-1 - n$ 

The semi-classical case. Consider the map

$$\beta_0 \mapsto \bigcap_{1=2}^{1} \bigcap_{n=1}^{2} \dots \bigcap_{n=1}^{n} \& \quad \beta_i \mapsto \bigcap_{1=i+1}^{1} \dots \bigcap_{i=i+1}^{n} \text{ braid rel.} :$$

**Brieskorn**  $\sim$ **1973.** This gives an isomorphism of groups  $AT(C_n) \xrightarrow{\cong} \mathscr{B}r(1,n)$ .



**Brieskorn** ~1973. This gives an isomorphism of groups  $AT(C_n) \xrightarrow{\cong} \mathscr{B}r(1,n)$ .

I will come back to this with more details for general genus g. For the time being: This works quite well!



I will come back to this with more details for general genus g. For the time being: This works quite well!



**Brieskorn** ~1973. This gives an isomorphism of groups  $AT(C_n) \xrightarrow{\cong} \mathcal{B}r(1,n)$ .



# Fact. (Not true in type A.)

Brieskorn ∼1973

There is also a second Hecke parameter, which we do not know how to categorify yet.

 $) \xrightarrow{\cong} \mathscr{B}\mathrm{r}(1,n)$ 

 $\cos(\pi/4)$  twice on a line:

type 
$$\tilde{C}_n$$
:  $0^1 \stackrel{4}{=} 1 - 2 - ... - n - 1 - n \stackrel{4}{=} 0^2$ 

### Affine adds genus. Consider the map



**Allcock** ~1999. This gives an isomorphism of groups  $AT(\tilde{C}_n) \xrightarrow{\cong} \mathscr{B}r(2,n)$ .



**Allcock**  $\sim$ **1999.** This gives an isomorphism of groups  $AT(\tilde{C}_n) \xrightarrow{\cong} \mathscr{B}r(2,n)$ .



Currently, not much seems to be known, but I think the same story works.

**Allcock**  $\sim$ **1999.** This gives an isomorphism of groups  $AT(\tilde{C}_n) \xrightarrow{\cong} \mathscr{B}r(2,n)$ .



Affine adds ge



This relation involves three players and inverses.

Bad!



Currently, not much seems to be known, but I think the same story works.

**Allcock** However, this is where it seems to end, e.g. genus g = 3 wants to be n).



But the special relation makes it a mere quotient. So: In the remaining time I tell you what works.

# $\cos(\pi/4)$ twice on a line:

|      | Currently known (to the best of my knowledge).                                           |                                                                                                                     |                                                                                                    |                                                           |
|------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|      | Genus                                                                                    | type A                                                                                                              |                                                                                                    | type C                                                    |
| ۱ffi | g = 0                                                                                    | $\mathscr{B}\mathrm{r}(n) \cong \mathrm{AT}(A_{n-1})$                                                               |                                                                                                    |                                                           |
|      | g = 1                                                                                    | $\mathscr{B}\mathrm{r}(1,n) \cong \mathbb{Z} \ltimes \mathrm{AT}(\tilde{A}_{n-1}) \cong \mathrm{AT}(\hat{A}_{n-1})$ |                                                                                                    | $\mathscr{B}\mathrm{r}(1,n)\cong\mathrm{AT}(C_n)$         |
|      | g=2                                                                                      |                                                                                                                     |                                                                                                    | $\mathscr{B}\mathrm{r}(2,n)\cong\mathrm{AT}(\tilde{C}_n)$ |
|      | $g \ge 3$                                                                                |                                                                                                                     |                                                                                                    |                                                           |
|      | And some $\mathbb{Z}/2\mathbb{Z}$ -orbifolds ( $\mathbb{Z}/\infty\mathbb{Z}$ =puncture): |                                                                                                                     |                                                                                                    |                                                           |
|      | Genus                                                                                    | type D                                                                                                              | type B                                                                                             |                                                           |
| ۱II  | g = 0                                                                                    |                                                                                                                     |                                                                                                    |                                                           |
|      | g = 1                                                                                    | $\mathscr{B}\mathrm{r}(1,n)_{\mathbb{Z}/2\mathbb{Z}} \cong \mathrm{AT}(D_n)$                                        | $\mathscr{B}\mathrm{r}(1,n)_{\mathbb{Z}/\infty\mathbb{Z}} \cong \mathrm{AT}(B_n)$                  |                                                           |
|      | g=2                                                                                      | $\mathscr{B}r(2,n)_{\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}}\cong AT(\tilde{D}_n)$                       | $\mathscr{B}r(2,n)_{\mathbb{Z}/\infty\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}}\cong AT(\tilde{B}_n)$ |                                                           |
|      | $g \ge 3$                                                                                |                                                                                                                     |                                                                                                    |                                                           |
|      | (For orbifolds "genus" is just an analogy.)                                              |                                                                                                                     |                                                                                                    |                                                           |





















# Philosophy 1: Resh

Note that the type A embedding guarantees that any usual invariant of braids produces an invariant of braids in  $\mathcal{H}_g$ .



# Philosophy 1: Resh

Note that the type A embedding guarantees that any usual invariant of braids produces an invariant of braids in  $\mathcal{H}_g$ .



**Genus** 
$$g = 0, 1$$
.

Works quite well (e.g. use Naisse-Vaz's ideas on the categorified level).

# Philosophy 1: Resh

Note that the type A embedding guarantees that any usual invariant of braids produces an invariant of braids in  $\mathcal{H}_g$ .



**Genus** 
$$g = 0, 1$$
.

Works quite well (e.g. use Naisse-Vaz's ideas on the categorified level).

We mimic this for M being "huge, but finite".

Singular Soergel bimodules  $\mathscr{S}_s^{\mathbf{q}}(W)$  for  $W=W(\mathsf{A}_{N-1})$ .

Tuples 
$$\mathbf{I}=(k_1,\dots,k_N)\in\mathbb{N}_{\geq 1}^N$$
 with  $k_1+\dots+k_N=N \iff$  parabolic subgroups  $\mathbf{W}_{\mathbf{I}}=\mathbf{W}(\mathsf{A}_{k_1-1})\times\dots\times\mathbf{W}(\mathsf{A}_{k_N-1})\subset\mathbf{W}.$ 

W acts on  $R=R_N=\Bbbk[\mathtt{x}_1,\ldots,\mathtt{x}_N]$  via permutation  $\leadsto$  rings of invariants  $R^\mathtt{I}.$ 

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define  $\mathscr{S}_{s}^{\mathbf{q}}(W)$  as the full 2-subcategory of the rings&bimodules 2-category.

Singular Soergel bimodules  $\mathscr{S}_s^{\mathbf{q}}(W)$  for  $W=W(\mathsf{A}_{N-1})$ .

Tuples 
$$\mathbf{I}=(k_1,\dots,k_N)\in\mathbb{N}_{\geq 1}^N$$
 with  $k_1+\dots+k_N=N \iff$  parabolic subgroups  $\mathbf{W}_{\mathbf{I}}=\mathbf{W}(\mathsf{A}_{k_1-1})\times\dots\times\mathbf{W}(\mathsf{A}_{k_N-1})\subset\mathbf{W}.$ 

 $\frac{\text{W acts on } R = R_N}{\text{Everything is $\mathbb{Z}$-graded, called $\mathbf{q}$-grading.}} \text{ s of invariants $R^{\text{I}}$.}$ 

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

Define  $\mathscr{S}_{s}^{\mathbf{q}}(W)$  as the full 2-subcategory of the rings&bimodules 2-category.

Singular Soergel bimodules  $\mathscr{S}_s^{\mathbf{q}}(W)$  for  $W=W(\mathsf{A}_{N-1})$ .

## A monoidal structure is given by

$$\bigvee_{1 = 1}^{1} = \bigwedge_{1 = 1}^{2} \leftarrow \mathsf{glue} \to \bigvee_{2}^{1} \leftrightsquigarrow R \otimes_{R^{\sigma_{1}}} R \cong R \otimes_{R^{\sigma_{1}}} R^{\sigma_{1}} \otimes_{R^{\sigma_{1}}} R.$$

This gives a way to define bimodules associated to any web built out of merge and split.

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

$$\begin{vmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{vmatrix}
 \iff R^{(1,1,1)} = R, \qquad
\begin{vmatrix}
2 & 1 \\
1 & 1
\end{vmatrix}
 \iff R^{(2,1)} = R^{\sigma_1} = \mathbb{k}[x_1 + x_2, x_1 x_2, x_3].$$

$$\bigwedge_{k=l}^{k+l} \iff \operatorname{shiftR}^{(k+l)} \otimes_{\mathbf{R}^{(k+l)}} \mathbf{R}^{(k,l)}, \qquad \bigvee_{k+l}^{k} \iff \mathbf{R}^{(k,l)} \otimes_{\mathbf{R}^{(k+l)}} \mathbf{R}^{(k+l)}.$$

Define  $\mathscr{S}_s^{\mathbf{q}}(W)$  as the full 2-subcategory of the rings&bimodules 2-category.

# Singular Soergel bimodules $\mathscr{S}_{s}^{\mathbf{q}}(W)$ for $W = W(A_{N-1})$ .

A monoidal structure is given by

$$\bigvee_{1 = 1}^{1} = \bigwedge_{1 = 1}^{2} \leftarrow \mathsf{glue} \to \bigvee_{2}^{1} \leftrightsquigarrow R \otimes_{R^{\sigma_{1}}} R \cong R \otimes_{R^{\sigma_{1}}} R^{\sigma_{1}} \otimes_{R^{\sigma_{1}}} R.$$

This gives a way to define bimodules associated to any web built out of merge and split.

Bimodules. Identi There are several bimodule isomorphisms, e.g. plit"), e.g.



Define  $\mathscr{S}_{s}^{q}(W)$  as which one could call thick merge and split. es 2-category.

$$_1+\mathtt{x}_2,\mathtt{x}_1\mathtt{x}_2,\mathtt{x}_3].$$

$$\otimes_{\mathbf{R}^{(k+l)}} \mathbf{R}^{(k+l)}$$
.

Singular Soergel bimodules  $\mathscr{S}_s^q(W)$  for  $W = W(A_{N-1})$ .

# Soergel $\sim$ 1992, Williamson $\sim$ 2010.

Tuples  $I = \frac{\mathscr{S}_s^{\mathbf{q}}(\Gamma)}{\mathscr{S}_s^{\mathbf{q}}(\Gamma)}$  categorifies the Hecke algebra (or rather, the algebroid).

$$W_{I} = W(A_{k_{1}-1}) \times \cdots \times W(A_{k_{N}-1}) \subset W.$$

W acts on  $R = R_N = \mathbb{k}[x_1, \dots, x_N]$  via permutation  $\leadsto$  rings of invariants  $R^{\mathrm{I}}$ .

Bimodules. Identities, restriction ("merge") and induction ("split"), e.g.

$$\bigwedge_{k=l}^{k+l} \iff \operatorname{shiftR}^{(k+l)} \otimes_{\operatorname{R}^{(k+l)}} \operatorname{R}^{(k,l)}, \qquad \bigvee_{k+l}^{k} \iff \operatorname{R}^{(k,l)} \otimes_{\operatorname{R}^{(k+l)}} \operatorname{R}^{(k+l)}.$$

Define  $\mathscr{S}_{s}^{\mathbf{q}}(W)$  as the full 2-subcategory of the rings&bimodules 2-category.

Singular Soergel bimodules  $\mathcal{S}_{s}^{q}(W)$  for  $W = W(A_{N-1})$ .

# Soergel $\sim$ 1992, Williamson $\sim$ 2010.

Tuples  $I = \mathcal{S}_{s}^{q}(\Gamma)$  categorifies the Hecke algebra (or rather, the algebroid).

Rouquier ~2004, Mackaay-Stošić-Vaz ~2008, Webster-Williamson ~2009, etc.

There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$[\![\beta_i]\!]_M = \sum_{k=1}^l \sum_{l=1}^k = \bigcup_{k=1}^{k-l} \frac{d_0^+}{d_0^+} \mathbf{q} \mathbf{t} \bigcup_{k=1}^{k-l} \frac{d_1^+}{d_1^+} \dots \xrightarrow{d_{l-1}^+} \mathbf{q}^l \mathbf{t}^l \bigcup_{k=l}^k$$

providing a categorical action of the Artin-Tits group of type A.

$$\stackrel{k+l}{\longleftarrow} \iff \operatorname{shiftR}^{(k+l)} \otimes_{\operatorname{R}^{(k+l)}} \operatorname{R}^{(k,l)}, \qquad \stackrel{k}{\longleftarrow} \stackrel{l}{\longleftarrow} \operatorname{R}^{(k,l)} \otimes_{\operatorname{R}^{(k+l)}} \operatorname{R}^{(k+l)}.$$

$$\bigvee_{k+l}^{l} \iff \mathbf{R}^{(k,l)} \otimes_{\mathbf{R}^{(k+l)}} \mathbf{R}^{(k+l)}$$

Define  $\mathscr{S}_{s}^{q}(W)$  as the full 2-subcategory of the rings&bimodules 2-category.

Singular Soergel bimodules  $\mathcal{S}_{s}^{q}(W)$  for  $W = W(A_{N-1})$ .

# Soergel $\sim$ 1992, Williamson $\sim$ 2010.

Tuples  $I = \mathcal{S}_{s}^{q}(\Gamma)$  categorifies the Hecke algebra (or rather, the algebroid).

# Rouquier ~2004, Mackaay-Stošić-Vaz ~2008, Webster-Williamson ~2009, etc.

There are certain complex ("t-graded") of singular Soergel bimodules, e.g.

$$[\![\beta_i]\!]_M = \sum_{k=l}^l \sum_{l=0}^k = \bigcup_{k=l}^{k-l} \xrightarrow{d_0^+} \mathbf{q} \mathbf{t} \bigcup_{k=l}^{k-l} \xrightarrow{d_1^+} \dots \xrightarrow{d_{l-1}^+} \mathbf{q}^l \mathbf{t}^l \bigcup_{k=l}^k$$

providing a categorical action of the Artin-Tits group of type A.



Partial Hochschild homology (à la Hogancamp  $\sim$ 2015). R- $f\mathscr{B}\mathrm{im}_N^{\mathbf{atq}}$  category of ( $\bullet$  bicomplexes of) q-graded, free  $\mathrm{R}_N$ -bimodules. Adjoint pair  $(\mathcal{I},\mathcal{T})$ :

$$\begin{array}{c} \mathcal{I} \colon \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N-1}^{\mathbf{atq}} \to \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N}^{\mathbf{atq}} \\ \mathbf{B} \mapsto \mathbf{B} \otimes_{\mathbf{R}_{N-1}^{e}} (\mathbf{R}_{N}^{e} / (\mathbf{x}_{N} \otimes \mathbf{1} - \mathbf{1} \otimes \mathbf{x}_{N})) & & & \\ & \mathbf{extending scalars} & & & \\ \mathcal{T} \colon \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N}^{\mathbf{atq}} \to \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N-1}^{\mathbf{atq}} & & & \\ \mathbf{B} \mapsto (\mathbf{B} \xrightarrow{\mathbf{x}_{N} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{x}_{N}} \mathbf{aq}^{2}\mathbf{B}) & & & \\ & \mathbf{identifying left-right action} & & & & \\ \end{array}$$

Skein relations. One gets e.g.



Partial Hochschild homology (à la Hogancamp  $\sim$ 2015). R- $f\mathscr{B}\mathrm{im}_N^{\mathbf{atq}}$  category of ( paraded, free  $R_N$ -bimodules. Adjoint pair  $(\mathcal{I},\mathcal{T})$ :



Skein relations. One gets e.g.



Partial Hochschild homology (à la Hogancamp  $\sim$ 2015). R- $f\mathscr{B}\mathrm{im}_N^{\mathbf{atq}}$  category of ( picomplexes of) q-graded, free  $R_N$ -bimodules. Adjoint pair  $(\mathcal{I},\mathcal{T})$ :





Partial Hochschild homology (à la Hogancamp  $\sim$ 2015). R- $f\mathscr{B}\mathrm{im}_N^{\mathbf{atq}}$  category of ( picomplexes of) q-graded, free  $R_N$ -bimodules. Adjoint pair  $(\mathcal{I},\mathcal{T})$ :



Partial Hochschild homology (à la Hogancamp  $\sim$ 2015). R- $f \mathscr{B}im_N^{\mathbf{atq}}$  category of ( picomplexes of) q-graded, free  $R_N$ -bimodules. Adjoint pair  $(\mathcal{I}, \mathcal{T})$ :

$$\begin{array}{ccc} \mathcal{I} \colon \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N-1}^{\mathbf{atq}} \to \mathbf{R}\text{-}f\mathscr{B}\mathrm{im}_{N}^{\mathbf{atq}} \\ \mathbf{B} \mapsto \mathbf{B} \otimes_{\mathbf{R}^{\mathbf{q}}_{+-1}} \left( \mathbf{R}^{\mathbf{q}}_{-}/(\mathbf{x}_{N} \otimes 1 - 1 \otimes \mathbf{x}_{N}) \right) & \longleftrightarrow \end{array}$$









8

Brunn ~1897, Alexander ~1923. For any link  $\ell'$  in the 3-ball  $\mathcal{Q}^3$  there is a braid in  $\mathcal{Q}_{\Gamma}(\infty)$  whose closure is isotopic to  $\ell'$ .

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.



The Alexander closure on  $\mathscr{A}v(g,\infty)$  is given by merging core strands at infinity.



Book SANARAM PROVINCES, AND TO NO PROVINCES NAME OF STREET

This is different from the classical Alexander closure



Markov  $\sim$ 1936, Weinberg  $\sim$ 1939, Lambropoulou $\sim$ 1990. Two links in the 3-ball  $\mathbb{S}^3$  are equivalent if and only if they are equal in  $\mathfrak{Str}(\infty)$  up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $Sir(\infty)$  up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:



The Markov moves on  $\mathfrak{Str}(g,\infty)$  are conjugation and stabilization.



for  $\delta$ ,  $c \in \mathscr{A}r(g,n)$ ,

They are weaker than the classical Markov moves.



# There is still much to do...







8

Brunn ~1897, Alexander ~1923. For any link  $\ell'$  in the 3-ball  $\mathscr{D}^3$  there is a braid in  $\mathscr{D}_{\mathbb{T}}(\infty)$  whose closure is isotopic to  $\ell'$ .

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong same.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.



The Alexander closure on  $\mathscr{A} \tau(g,\infty)$  is given by merging core strands at infinity.



This is different from the classical Alexander closure



Markov  $\sim$ 1936, Weinberg  $\sim$ 1939, Lambropoulou $\sim$ 1990. Two links in the 3-ball  $\mathbb{S}^3$  are equivalent if and only if they are equal in  $\mathfrak{Str}(\infty)$  up to conjugation and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $\Re r(\infty)$  up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:



The Markov moves on  $\mathcal{A}\mathrm{r}(g,\infty)$  are conjugation and stabilization.



 $(c^{*})[\delta_{n}(\mathcal{S})]$   $c\delta = (c^{*})[\delta_{n}^{*}(\mathcal{S})]$ for  $\delta$ ,  $c\in 2at(g,n)$ , They are weaker than the classical Markov moves.

hey are weaker than the classical Markov moves.



# Thanks for your attention!



Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven,  $\leq$ 1830).

**Tits**  $\sim$ **1961**++. Gauß' braid group is the type A case of more general groups. (We come back to this later.)



Artin's approach: "Arithmetrization of braids". However, he still needs topological arguments.

And this is one main problem why general Artin–Tits groups are so complicated: Basically, they are "infinite groups without extra structure".

Figure: The first ever "published" braid diagram. (Page 283 from Gauß' handwritten notes, volume seven,  $\leq$ 1830).

Tits  $\sim$ 1961++. Gauß' braid group is the type A case of more general groups. (We come back to this later.)

**Brunn**  $\sim$ **1897, Alexander**  $\sim$ **1923.** For any link  $\ell$  in the 3-ball  $\mathscr{D}^3$  there is a braid in  $\mathscr{B}r(\infty)$  whose closure is isotopic to  $\ell$ .

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.



**Brunn**  $\sim$ **1897, Alexander**  $\sim$ **1923.** For any link  $\ell$  in the 3-ball  $\mathscr{D}^3$  there is a braid in  $\mathscr{B}r(\infty)$  whose closure is isotopic to  $\ell$ .

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", e.g.



**Brunn**  $\sim$ **1897, Alexander**  $\sim$ **1923.** For any link  $\ell$  in the 3-ball  $\mathscr{D}^3$  there is a braid in  $\mathscr{B}r(\infty)$  whose closure is isotopic to  $\ell$ .

There are various proofs of this result, are all based on the same idea: "Eliminate one by one the arcs of the diagram that have the wrong sense.".

Here is an example which works for general 3-manifolds, the L-move: "Mark the local maxima and minima of the link diagram with respect to some height function and cut open wrong subarcs.", *e.g.* 



Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $\mathscr{B}r(\infty)$  up to L-moves.





Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $\mathscr{B}r(\infty)$  up to L-moves.





Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $\mathscr{B}r(\infty)$  up to L-moves.



Trick: Again, use the L-move and show that two links are equivalent if and only if they are equal in  $\mathscr{B}r(\infty)$  up to L-moves.



The Reidemeister braid relations:

These hold for usual strands only since core strands do not cross each other, e.g.





Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

#### Examples.

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$ 

Type  $H_3 \iff dodecahedron/icosahedron \iff exceptional Coxeter group.$ 





Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \longleftrightarrow \text{tetra}$  Fact. The symmetries are given by exchanging flags. Type  $B_3 \longleftrightarrow \text{cube}/\text{octaneuron} \longleftrightarrow \text{veeyr group} (2/22) \longleftrightarrow 23$ . Type  $H_3 \longleftrightarrow \text{dodecahedron/icosahedron} \longleftrightarrow \text{exceptional Coxeter group}$ . For  $I_8$  we have a 4-gon:

Fix a flag F.



Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$ 

Type  $H_3 \iff dodecahedron/icosahedron \iff exceptional Coxeter group.$ 





Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3.$ 

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 





Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type B<sub>3</sub>  $\iff$  cube/octahedron  $\iff$  Weyl group  $(\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ .

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 





Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

This gives a generator-relation presentation.

Type  $A_3 \leftrightarrow$  tetrahedron  $\leftrightarrow$  symmetric group  $S_4$ .

Type  $B_3 \leftrightarrow And$  the braid relation measures the angle between hyperplanes.

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 

For  $I_8$  we have a 4-gon:

## Fix a flag F.

Fix a hyperplane  $H_0$  permuting the adjacent 0-cells of F.

Fix a hyperplane  $H_1$  permuting the adjacent 1-cells of F, etc.

Write a vertex i for each  $H_i$ .

Connect i, j by an n-edge for  $H_i, H_j$  having angle  $\cos(\pi/n)$ .





Three gradings:

q ← internal & t ← homological & a ← Hochschild

**Example.** To compute Hochschild cohomology take the Koszul resolution

$$\bigotimes_{i=1}^{N} \left( \mathbf{R}^{\mathbf{e}} = \mathbf{R} \otimes \mathbf{R}^{\mathbf{op}} \xrightarrow{\cdot (\mathbf{x}_{i} \otimes 1 - 1 \otimes \mathbf{x}_{i})} \mathbf{aq}^{2} \mathbf{R}^{\mathbf{e}} \right),$$

Tensor it with B, gives a complex with differentials  $x_i \otimes 1 - 1 \otimes x_i$ , of which we think as identifying the variables. This gives a chain complex having non-trivial chain groups in a-degree  $0, \ldots, n$ . Here the  $i^{\text{th}}$  chain group consists of  $\binom{n}{i}$  copies of B, with differentials given by the various ways of identifying i variables. The  $a^{\rm th}$  cohomology =  $a^{\rm th}$  Hochschild cohomology.

**Example.** If B is already a t-graded complex, then one can take homology of it and gets "triple H".

The type A Hecke algebra  $H_n$  is the quotient of  $\mathbb{Z}[\mathbf{q},\mathbf{q}^{-1}]\mathscr{B}\mathrm{r}(n)$  by:

 $H_n$  is of dimension n!. (Proof: Over- and undercrossing are linear dependent. Hence, there is a basis given by diagrams in the symmetric group.)

**Theorem (Jones**  $\sim$ **1987; Skein theory).** There is a unique pair  $\mathcal{I}\colon \mathrm{H}_{n-1}\to\mathrm{H}_n$  and  $\mathcal{T}\colon \mathrm{H}_n\to\mathrm{H}_{n-1}$  of "adjoint functors"

$$\mathcal{I}\left( \begin{array}{c} \uparrow & \stackrel{n-1}{ } \\ \downarrow & \stackrel{n}{ } \\$$

which satisfy the Markov moves and are determined by

$$\bigcirc = \bigcirc = \mathbf{a}.$$