2-representation theory in a nutshell

Or: A tale of matrices and functors

Joint with Michael Ehrig, Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Paul Wedrich

$$
\text { June } 2018
$$

(1) Classical representation theory

- Main ideas
- Some classical results
- An example
(2) Categorical representation theory
- The main ideas
- Some categorical results
- An example

Pioneers of representation theory

Let G be a finite group.
Frobenius $\boldsymbol{\sim 1 8 9 5 +}$, Burnside $\sim 1900+$. Representation theory is the study of linear group actions:

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{~V}), \quad " \mathcal{M}(g)=\text { a matrix in } \mathcal{E} \operatorname{nd}(\mathrm{V}) "
$$

with V being some \mathbb{C}-vector space. We call V a module or a representation.

The "atoms" of such an action are called simple.
Maschke ~1899. All modules are built out of simples ("Jordan-Hölder").

Pioneers of representation theory

Let G be a finite group.
Frobenius $\sim 1895++$, Burnside $\sim 1900+$. Representation theory is the study of linear group actions:

$$
\mathcal{M}: \mathrm{G} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v})
$$

with V being some \mathbb{C}-vector space. We call V a module or a representation.

The "atoms" of such an action are called simple.
Maschke ~1899. All modules are built out of simples ("Jordan-Hölder").

We want to have a
categorical version of this!

Pioneers of representation theory

Let A be a finite-dimensional algebra.
Noether $\boldsymbol{\sim} \mathbf{1 9 2 8 + +}$. Representation theory is the useful? study of algebra actions:

$$
\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{~V}), \quad " \mathcal{M}(\mathrm{a})=\text { a matrix in } \mathcal{E} \mathrm{nd}(\mathrm{~V}) "
$$

with V being some \mathbb{C}-vector space. We call V a module or a representation.
The "atoms" of such an action are called simple.
Noether, Schreier $\boldsymbol{\sim} \mathbf{1 9 2 8}$. All modules are built out of simples ("Jordan-Hölder").

Pioneers of representation theory

Let A be a finite-dimensional algebra.
Noether $\boldsymbol{\sim} \mathbf{1 9 2 8 + +}$. Representation theory is the useful? study of algebra actions:

$$
\mathcal{M}: \mathrm{A} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v}),
$$

with V being some \mathbb{C}-vector space. We call V a module or a representation.

The "atoms" of such an action are called simple.
Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder").
We want to have a
categorical version of this.

I am going to explain what we can do at present.

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying G-modules has a satisfactory answer for many groups.

Problem involving
a group action $G \subset X$

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying G-modules has a satisfactory answer for many groups.

Problem involving	Problem involving
a group action	$\ldots>a ~ l i n e a r ~ g r o u p ~ a c t i o n ~$
$G \subset X$	$\mathbb{C}[G] \subset \mathbb{C X}$

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying G-modules has a satisfactory answer for many groups.

The strategy

"Groups, as men, will be known by their actions." - Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying G-modules has a satisfactory answer for many groups.

Philosophy. Turn problems into linear algebra.

Some theorems in classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module determines it.
\triangleright There is a one-to-one correspondence

$$
\begin{gathered}
\text { \{simple G-modules \}/iso } \\
\stackrel{1: 1}{\longleftrightarrow} \\
\text { \{conjugacy classes in G\}. }
\end{gathered}
$$

\triangleright All simples can be constructed intrinsically using the regular G-module.

Some theorems in classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module determines it. $\begin{gathered}\text { The character only remembers the } \\ \text { traces of the acting matrices. }\end{gathered}$
\triangleright There is a one-to-one correspondence

$$
\begin{aligned}
& \text { \{simple G-modules\}/iso } \\
& \qquad \stackrel{1: 1}{\longleftrightarrow} \\
& \text { \{conjugacy classes in G\}. }
\end{aligned}
$$

\triangleright All simples can be constructed intrinsically using the regular G-module.

Some theorems in classical representation theory

Find categorical versions of these facts.

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module determines it.
\triangleright There is a one-to-one correspondence

$$
\begin{aligned}
& \text { \{simple G-modules\}/iso } \\
& \stackrel{1: 1}{\longleftrightarrow} \\
& \text { \{conjugacy classes in G\}. }
\end{aligned}
$$

\triangleright All simples can be constructed intrinsically using the regular G-module.

The dihedral groups on one slide

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

Coxeter groups have
Kazhdan-Lusztig theory
which makes them much easier form the categorical point of view.

$$
\begin{aligned}
& \mathrm{W}_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}\rangle, \\
& \text { e.g.: } \left.\mathrm{W}_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \mathrm{tsts}=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups on one slide

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
& \mathrm{W}_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}\rangle, \\
& \text { e.g.: } \left.\mathrm{W}_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups on one slide

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
& \mathrm{W}_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}\rangle, \\
& \text { e.g.: } \left.\mathrm{W}_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \mathrm{tsts}=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups on one slide

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
& \mathrm{W}_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}\rangle, \\
& \text { e.g.: } \left.\mathrm{W}_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \mathrm{tsts}=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups on one slide

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
& \mathrm{W}_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}\rangle, \\
& \text { e.g.: } \left.\mathrm{W}_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups on one slide

The dih One-dimensional representations. $\mathcal{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}, \mathrm{s}} \mapsto \lambda_{\mathrm{s}} \in \mathbb{C}, \mathrm{t} \mapsto \lambda_{\mathrm{t}} \in \mathbb{C}$.

$$
\begin{array}{c:c}
e \equiv 0 \bmod 2 & e \not \equiv 0 \bmod 2 \\
& \mathcal{M}_{-1,-1}, \mathcal{M}_{1,-1}, \mathcal{M}_{-1,1}, \mathcal{M}_{1,1}
\end{array} \mathcal{M}_{-1,-1}, \mathcal{M}_{1,1}
$$

Exam Two-dimensional representations. $\mathcal{M}_{z}, z \in \mathbb{R}, \mathrm{~s} \mapsto\left(\begin{array}{cc}1 & z \\ 0 & -1\end{array}\right)$, $\mathrm{t} \mapsto\left(\begin{array}{cc}-1 & 0 \\ \bar{z} & 1\end{array}\right)$. $=2$ the C

$$
e \equiv 0 \bmod 2 \quad e \not \equiv 0 \bmod 2
$$

$$
\mathcal{M}_{z}, z \text { pos. root of } U_{e+1}
$$

U_{e+1} is the Chebyshev polynomial.

> Proposition (Lusztig?).

All of these are simple, and the list is complete and irredundant.

Pioneers of 2-representation theory

Let G be a finite group.

>	Plus some coherence conditions which I will not explain.

Chuang-Rouquier \& many others $\mathbf{\sim} \mathbf{2 0 0 4 + +}$. Higher representation theory is the useful? study of (certain) categorical actions, e.g.:

$$
\mathscr{M}: \mathrm{G} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V}), \quad " \mathscr{M}(g)=\text { a functor in } \mathscr{E} \operatorname{nd}(\mathcal{V}) "
$$

with \mathcal{V} being some \mathbb{C}-linear category. We call \mathcal{V} a 2-module or a 2-representation.

The "atoms" of such an action are called 2-simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples (" 2 -Jordan-Hölder").

Pioneers of 2-representation theory

Let \mathscr{C} be a finitary 2-category.
Chuang-Rouquier \& many others $\boldsymbol{\sim} \mathbf{2 0 0 4 + +}$. Higher representation theory is the usefill study of actions of 2-categories:

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{C} \text { at }
$$

with \mathscr{C} at being the 2 -category of \mathbb{C}-linear categories. We call \mathcal{V} a 2 -module or a 2-representation.

The "atoms" of such an action are called simple.
Mazorchuk-Miemietz ~2014. All (suitable) 2-modules are built out of 2-simples ("2-Jordan-Hölder").

> | The three goals of 2-representation theory. |
| :---: |
| Improve the theory itself. |
| Discuss examples. |
| Find applications. |

"Lifting" classical representation theory

\triangleright All G-modules are built out of simples.
\triangleright The character of a simple G-module determines it.
\triangleright There is a one-to-one correspondence

$$
\begin{gathered}
\text { \{simple G-modules\}/iso. } \\
\stackrel{\substack{1: 1}}{\longleftrightarrow} \text { \{conjugacy classes in G\}. }
\end{gathered}
$$

\triangleright All simples can be constructed intrinsically using the regular G-module.

"Lifting" classical representation theory

\triangleright Mazorchuk-Miemietz $\boldsymbol{\sim}$ 2014. All (suitable) 2-modules are built out of 2-simples.

Note that we have a very particular notion

- The character of a sınрic what a "suitable" 2-module is.
\triangleright There is a one-to-one correspondence

$$
\begin{gathered}
\text { \{simple G-modules\}/iso. } \\
\stackrel{1: 1}{\rightleftarrows} \\
\text { \{conjugacy classes in G\}. }
\end{gathered}
$$

\triangleright All simples can be constructed intrinsically using the regular G-module.

"Lifting" classical representation theory

\triangleright Mazorchuk-Miemietz $\boldsymbol{\sim}$ 2014. All (suitable) 2-modules are built out of 2-simples.
\triangleright Mazorchuk-Miemietz ~2014. In the good cases 2-simples are determined by the decategorified actions (a.k.a. matrices) of the $M(F)$'s.
\triangleright There is a one-to-one $\begin{gathered}\text { What characters were for Frobenius } \\ \text { are these matrices for us. }\end{gathered}$ \{simple G-modules\}/iso.

$$
\stackrel{1: 1}{\stackrel{ }{\longleftrightarrow}}
$$

\{conjugacy classes in G$\}$.
\triangleright All simples can be constructed intrinsically using the regular G-module.

"Lifting" classical representation theory

\triangleright Mazorchuk-Miemietz $\boldsymbol{\sim}$ 2014. All (suitable) 2-modules are built out of 2-simples.
\triangleright Mazorchuk-Miemietz ~2014. In the good cases 2-simples are determined by the decategorified actions (a.k.a. matrices) of the $M(F)$'s.
\triangleright Mackaay-Mazorchuk-Miemietz-T. ~2016. There is a one-to-one correspondence

$$
\{2 \text {-simples of } \mathscr{C}\} / \text { equi. }
$$

$\stackrel{1: 1}{\longleftrightarrow}$
There are some technicalities.
\{certain (co)algebra 1-morphisms\}/"2-Morita equi.".
\triangleright All simples can be constructed intrinsically using the regular G-module.

Goal 1. Improve the theory itself.

"Lifting" classical representation theory

\triangleright Mazorchuk-Miemietz $\boldsymbol{\sim}$ 2014. All (suitable) 2-modules are built out of 2-simples.
\triangleright Mazorchuk-Miemietz ~2014. In the good cases 2-simples are determined by the decategorified actions (a.k.a. matrices) of the $\mathrm{M}(\mathrm{F})$'s.
\triangleright Mackaay-Mazorchuk-Miemietz-T. ~2016. There is a one-to-one correspondence
$\{2$-simples of $\mathscr{C}\} /$ /equi.
$\stackrel{1: 1}{\longleftrightarrow}$ \{certain (co)algebra 1-morphisms\}/"2-Morita equi.".
\triangleright Mazorchuk-Miemietz ~2014. There exists principal 2-modules lifting the regular representation.
Several authors including myself \sim 2016. But even in well-behaved cases there are 2 -simples which do not arise in this way.

These turned out to be very interesting since their importance is only visible via categorification.

2-modules of dihedral groups

Consider: $\quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1$.
(Motivation. The Kazhdan-Lusztig basis has some neat integral properties.)
These elements generate $\mathbb{C}\left[\mathrm{W}_{e+2}\right]$ and their relations are fully understood:

$$
\theta_{\mathrm{s}} \theta_{\mathrm{s}}=2 \theta_{\mathrm{s}}, \quad \theta_{\mathrm{t}} \theta_{\mathrm{t}}=2 \theta_{\mathrm{t}}, \quad \text { a relation for } \underbrace{\ldots \text { sts }}_{e+2}=\underbrace{\ldots \text { tst }}_{e+2} .
$$

We want a categorical action. So we need:
\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors Θ_{s} and Θ_{t} acting on \mathcal{V}.
\triangleright The relations of θ_{s} and θ_{t} have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. (Skipped today.)

2-modules of dihedral groups

Consider: $\quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1$.

(Motivatior	Mackaay-T. ~ 2016.	rties.)
These elem	There is a one-to-one correspondence	ood:
θ_{s} ¢	$\left\{\right.$ (non-trivial) 2 -simple W_{e+2}-modules $\} / 2$-iso $\stackrel{1: 1}{\longrightarrow}$ $\{$ bicolored ADE Dynkin diagrams with Coxeter number $e+1\}$.	st.
We want a	Thus, its easy to write down a	

\triangleright A category \mathcal{V} to act on.
\triangleright Endofunctors Θ_{s} and Goal 2. Discuss examples.
\triangleright The relations of θ_{s} and θ_{t} have to be satisfied by the functors.
\triangleright A coherent choice of natural transformations. (Skipped today.)

Concluding remarks - let me dream a bit

\triangleright The theory is still not fully developed.
Goal 1 question. Are there finitely many 2-simples in general?
\triangleright The dihedral story is just the tip of the iceberg.
Goal 2 question. Finite Coxeter groups in general?
\triangleright The connection to low-dimensional topology needs to be worked out. Goal 3 question. Impact on non-semisimple invariants of 3-manifolds?

- Connections to the study of braid groups, web calculi and geometry of Grassmanians, following Khovanov-Seidel, Kuperberg, Cautis-Kamnitzer-Morrison,...
- Connections to conformal field theory following ideas of Zuber,...
- Connections to the theory of subfactors, fusion categories (q-groups at roots of unity) etc. à la Etingof-Gelaki-Nikshych-Ostrik, Ocneanu,...

ω

Construct a W_{x}-module V associated to a bipartite graph G
$\mathrm{v}-(1,2,-7,7,\rangle_{c}$

\cdots

The strategy

"Groups, as men, will be known by their actions." - Guilermo Moreno
The study of group actions is of fundamental importance in mathematics and relatod field. Sadly, it is ako very hard.
Reprosentation theory approach. The analogous linear problem of classifying
G-modules his a astiffactory answer for many groupg.

Pioneers of 2 -representation theory

Let δ be a finitary 2 -ategory
Chuang-Rouquier \& many others $\sim 2004++$. Higher representation thecry is the study of actions of 2-categoris:

$$
\boldsymbol{A}: \boldsymbol{\varepsilon} \rightarrow \boldsymbol{\kappa}
$$

with \%at being the 2 -category of C-linear categonies We call $V=2$-module or a 2-representation
The "atoms" of such an action are called simple.
Mazorchuk-Miemietz ~ 2014. All (rutatili $)$ 2-modules are built out of

Some theorems in classical representation theory

The character of a simple C-module detemines in
b. There is a one-to-one correspondence
(simple G-modurs)/iso

$$
\text { \{conjugacy classes in G\}. }
$$

D. All simples can be constructed intrinsically using the regular G-module.

"Lifting" classical representation theory

Mazorchuk-Miemietz ~ 2014. All (antroel 2 -modules are built out a
Mazorchuk-Miemietz ~2014. In the good cases 2 -simples are determined
by the decateggified actiong (a..... matricss) of the $M(F)$'s.
D. Mackayy-Mazorclluk-Miemietz-T. \sim 2016. There is a one-to-one
correspendence
\{2.simples of $\mathscr{C}\} /$ equi
\leftrightarrows
(cortain (co)algebra 1 -morphisms// ${ }^{2}$-Mcrita equi."
D. Mazorchuk-Miemietz ~ 2014. There exists prindipal 2 -modules Ifting the regular representation.
Several authors including myself \sim 2016. But
These turned out to be very interestirg
since their importance is only visble via categorification

Figure: "Classificuion" of conflemal fied thestiss for cuantum spl(3). (Mizure the
Same? classification of 2-modulss for a generalization of the dihedral stary. Question. Explanation?

There is still much to do...

ω

Construct a W_{∞}-module V associated to a bipartite graph G
$v=(1,2, \pi, 7,5)_{c}$

Thanks for your attention!

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

V
ERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that Nowadays representation theory is pervasive across fields of mathematics, and beyond.

> TERY considerable advances in the theory of groups of But this wasn't clear at all when Frobenius started it.

of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

Khovanov \& others $\boldsymbol{\sim} 1999++$. Knot homologies are instances of 2-representation theory. Low-dim. topology \& Math. Physics

Khovanov-Seidel \& others $\boldsymbol{\sim} \mathbf{2 0 0 0 + +}$. Faithful 2-representations of braid groups. Low-dim. topology \& Symplectic geometry

Chuang-Rouquier ~2004. Proof of the Broué conjecture using 2-representation theory. p-RT of finite groups \& Geometry \& Combinatorics

Elias-Williamson ~2012. Proof of the Kazhdan-Lusztig conjecture using ideas from 2-representation theory. Combinatorics \& RT \& Geometry

Riche-Williamson $\boldsymbol{\sim} \mathbf{2 0 1 5}$. Tilting characters using 2-representation theory. p-RT of reductive groups \& Geometry

Many more...

Khovanov \& others $\boldsymbol{\sim} 1999++$. Knot homologies are instances of 2-representation theory. Low-dim. topology \& Math. Physics

> A group G can be viewed as an one-object category \mathcal{G}, and a representation as a functor from \mathcal{G} into the one-object category $\operatorname{End}(\mathrm{V})$, i.e. $$
\mathcal{M}: \mathcal{G} \longrightarrow \operatorname{End}(\mathrm{V}) .
$$

categorical representation

$$
\alpha \mapsto \underset{\text { nat. trafo }}{\mathscr{M}(\alpha)}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{array}{cc}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{array}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{aligned}
& \mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
& \theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{l|l|ll}
2 & 0 & 1 & 0
\end{array} 0\right.
\end{aligned}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{aligned}
& \text { V }=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
& \theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lll|ll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{llll|l}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\text { V }=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}}
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|l|lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\begin{gathered}
\mathrm{V}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathbb{C}} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{v}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}}
$$

Lemma. For certain values of e these are \mathbb{N}^{0}-valued $\mathbb{C}\left[\mathrm{W}_{e+2}\right]$-modules.

Lemma. All \mathbb{N}^{0}-valued $\mathbb{C}\left[W_{e+2}\right]$-module arise in this way.

Lemma. All 2-modules decategorify to such \mathbb{N}^{0}-valued $\mathbb{C}\left[W_{e+2}\right]$-module.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Construct a W_{∞}-module V associated to a bipartite graph G :

$$
\mathrm{v}=\langle\underline{1}, \underline{2}, \overline{3}, \overline{4}, \overline{5}\rangle_{\mathrm{C}}
$$

$$
\begin{gathered}
\text { Categorification. } \\
\begin{array}{c}
\text { Category } \rightsquigarrow \mathcal{V}=\mathrm{Z} \text {-Mod, } \\
\text { Z quiver algebra with underlying graph } G . \\
\text { Endofunctors } \rightsquigarrow \text { tensoring with Z-bimodules. } \\
\text { Lemma. These satisfy the relations of } \mathbb{C}\left[\mathrm{W}_{e}\right] .
\end{array} \\
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

The type A family
$e=1$
$e=2$

$e=4$

...
\star

The type D family
$e=11$
\rightarrow
$e=9$

$e=5$

$e=7$

The type E exceptions

The type A family

The number of 2-modules is at most three, but they grow in dimension when e grows.

Figure: From spiders to Cat(0)-diskoid to affine buildings. (Picture from "Buildings, spiders, and geometric Satake" by Fontaine-Kamnitzer-Kuperberg ~2012.)

Spiders are special cases of our story, and also use them in some proofs. Spiders are known to be related to e.g. Cat(0)-geometry.
Question. Anything one can say about this geometry using 2-modules?

Figure: "Classification" of conformal field theories for quantum $\mathrm{SU}(3)$. (Picture from "The classification of subgroups of quantum $\operatorname{SU}(N)$ " by Ocneanu ~2000.)

Same? classification of 2-modules for a generalization of the dihedral story. Question. Explanation?

Figure: The quantum Satake; from Temperley-Lieb to Soergel bimodules. (Picture from "The two-color Soergel calculus" by Elias ~2013.)

Elias' quantum Satake correspondence shows that the Soergel bimodules of dihedral type "are a non-semisimple generalization of semisimplyfied $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$-Mod at roots of unity". (This works in more generality.)
Question. Is there impact for both sides?
samen Factor f abgesehen) einen relativen Charakter von 5, und umSekehrt lässt sich jeder relative Charakter von $5, x_{0}, \cdots x_{k-1}$, auf eine Oder mehrere Arten durch Hinzufügung passender Werthe $\chi_{k}, \cdots \chi_{k^{\prime}-1}$ ${ }^{4} 4$ einem Charakter von 5) ergänzen.

$$
\text { § } 8 .
$$

Ich will nun die Theorie der Gruppencharaktere an einigen Beispielen erläutern. Die geraden Permutationen von 4 Symbolen bilden eine Gruppe 5 der Ordnung $h=12$. Ihre Elemente zerfallen in 4 Classen, die Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der $O_{\text {rdnung }} 3$ zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei p eine primitive Cubische Wurzel der Einheit.

$$
\text { Tetraeder. } h=12 \text {. }
$$

	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	h_{α}
χ_{0}	1	3	1	1	1
χ_{1}	1	-1	1	1	3
χ_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

Figure: "Über Gruppencharaktere (i.e. characters of groups)" by Frobenius (1896). Bottom: first ever published character table.

