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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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1 Dihedral representation theory
A brief primer on N0-representation theory
Dihedral N0-representation theory

2 Dihedral 2-representation theory
A brief primer on 2-representation theory
Dihedral 2-representation theory

3 Towards modular representation theory
SL(2)
...and beyond
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The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the
Coxeter complex is:

• H

H

H

H

FF

FF

1

I should do the Hecke case,
but I will keep it easy.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Highest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-algebras and their representations

An algebra P with a basis BP with 1 ∈ BP is called a N0-algebra if

xy ∈ N0B
P (x, y ∈ BP).

A P-module M with a basis BM is called an N0-module if

xm ∈ N0B
M (x ∈ BP,m ∈ BM).

These are N0-equivalent if there is a N0-valued change of basis matrix.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence upstairs.

Example.

Group algebras of finite groups with basis given by group elements are N0-algebras.

The regular representation is an N0-module.

Example.

The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an N0-equivalence.

Example.

Hecke algebras of (finite) Coxeter groups with their KL basis are N0-algebras.

For the symmetric group a miracle happens: all simples are N0-modules.
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Cells of N0-algebras and N0-modules

Kazhdan–Lusztig ∼1979. x ≤L y if x appears in zy with non-zero coefficient for
some z ∈ BP. x ∼L y if x ≤L y and y ≤L x.
∼L partitions P into cells L. Similarly for right R, two-sided cells J or N0-modules.

An N0-module M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N0-module has a unique apex.

Example. Transitive N0-modules arise as decategorifications of simple 2-modules.

Philosophy.

Imagine a graph whose vertices are the x’s or the m’s.
v1 → v2 if v1 appears in zv2.

cells = connected components
transitive = one connected component

“The basic building blocks of N0-representation theory”.

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N0-modules are C[G/H] for H being a subgroup. The apex is G .

Example (Kazhdan–Lusztig ∼1979).

Hecke algebras for the symmetric group with KL basis
have cells coming from the Robinson–Schensted correspondence.

The transitive N0-modules are the simples
with apex given by elements for the same shape of Young tableaux.

Example (Lusztig ≤2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

1

s ts sts tsts ststs

t st tst stst tstst

w0

We will see the transitive N0-modules in a second.

Left cellsRight cells
Two-sided cells
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N0-modules via graphs

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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“Lifting” N0-representation theory

An additive, K-linear, idempotent complete, Krull–Schmidt 2-category C is called
finitary if some finiteness conditions hold.

A simple transitive 2-representation (2-simple) of C is an additive, K-linear
2-functor

M : C →A f(= 2-cat of finitary cats),

such that there are no non-zero proper C -stable ideals.

There is also the notion of 2-equivalence.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence upstairs.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. 2-Jordan–Hölder theorem),

but their decategorifications are transitive N0-modules and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and N0-modules.

2-simple ⇒ transitive, and transitive 2-modules have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-Mod (+fc=some finiteness condition) is a prototypical object of A f .

A 2-module for us is very often on the category of quiver representations.

Example (Mazorchuk–Miemietz–Zhang & ...).

The 2-category of projective endofunctors of B-Mod (+fc) is 2-finitary.

The non-trivial 2-simples are given by tensoring with Bε⊗ εB.

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors on O0.’)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example (Mackaay–Mazorchuk–Miemietz & Kirillov–Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories (+fc) are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors between singular blocks of O.’)

For a quotient of maximal singular type Ã1 non-trivial 2-simples are ADE classified.

Excuse me?

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples.
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A few words about the ‘How to’ (for dihedral
groups)

I Decategorification. What is the corresponding question about N0-matrices?

. Chebyshev–Smith–Lusztig  ADE-type-answer .

I Construction. Does every candidate solution downstairs actually lifts?

. “Brute force” (Khovanov–Seidel–Andersen–)Mackaay  zig-zag algebras.

. “Smart” Mackaay–Mazorchuk–Miemietz  “Cartan approach” . Details

I Redundancy. Are the constructed 2-representations equivalent?

. MΓ
∼=MΓ′ ⇔ Γ ∼= Γ′.

I Completeness. Are we missing 2-representations?

. This is where a grading assumption comes in.
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2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...). There
are dihedral (singular) Soergel bimodules (s)We+2 categorify the dihedral
algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules
(Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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From dihedral groups to SL(2)

Observation. For e →∞ the dihedral group We+2 becomes the affine Weyl group
W∞ of type A1, and the left cells are now

t 1 s•· · · · · ·

Fact. (Andersen–Mackaay ∼2014). The 2-module for the trivial cell L1, and
the 2-module for the type A Dynkin diagrams ‘survive’ the limit e →∞ and are
also 2-modules for affine type A1 Soergel bimodules.

Theorem. (Riche–Williamson ∼2015 & Elias–Losev ∼2017 &
Achar–Makisumi–Riche–Williamson ∼2017).
Combining these 2-modules gives the category of tilting modules for SL(2) in prime
p > 2 characteristic, with θs and θt acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

Quiver. Zig-zag algebras living on the SL(2) weight lattice
or on the trivial and s left cells of W∞:

• · · ·• H F H  
αx αx αx

αy αy αy

• H F H · · ·

Leaving a 1-simplex is zero.
Any oriented path of length two between non-adjacent vertices is zero.

The relations of the cohomology ring of the variety of full flags in C2.
αxαy = αyαx, αx + αy = 0, αxαy = 0.

Zig-zag.
i|j|i = αx − αy.

Boundary condition.
The end-space of the vertex for the trivial cell is trivial.

This is the quiver for tilting modules of the quantum group
at a root of unity q2k = 1 for k > 2.

The (yet to be calculated) quiver in characteristic p can be obtained similarly.
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Higher ranks

Playing the same game for, say, SL(3) almost works perfectly fine. One gets:

I Trihedral Hecke algebras and trihedral Soergel bimodules.

I These are controlled by higher rank Chebyshev polynomials.

I These relate to semisimple quantum sl3-modules.

I These describe tilting modules for SL(3) at roots of unity or in prime
characteristic (for p > 3). One gets a trihedral zig-zag quiver (in the root of
unity case; the modular case being trickier).

I Similarly for SL(N) (for p > N).

I won’t say what ‘almost’ means precisely. Roughly, the ‘percentage’ one can
describe using orthogonal polynomials is 1

N−1 . But this 1
N−1 -part works out nicely.
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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {2 cos(π4 ), 0, 2 cos( 3π
4 )}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {2 cos(π6 ), 02, 2 cos( 5π
6 )}

U3(X) = (X− 2 cos(π4 ))X(X− 2 cos( 3π
4 ))

U5(X) = (X− 2 cos(π6 ))(X− 2 cos( 2π
6 ))X(X− 2 cos( 4π

6 ))(X− 2 cos( 5π
6 ))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back

The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the
Coxeter complex is:

• H

H

H

H

FF

FF

1
t

s

ts

st

tst

sts
w0

I should do the Hecke case,
but I will keep it easy.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Highest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-modules via graphs

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...). There
are dihedral (singular) Soergel bimodules (s)We+2 categorify the dihedral
algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules
(Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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From dihedral groups to SL(2)

Observation. For e →∞ the dihedral group We+2 becomes the affine Weyl group
W∞ of type A1, and the left cells are now

t 1 s•· · · · · ·

Fact. (Andersen–Mackaay ∼2014). The 2-module for the trivial cell L1, and
the 2-module for the type A Dynkin diagrams ‘survive’ the limit e →∞ and are
also 2-modules for affine type A1 Soergel bimodules.

Theorem. (Riche–Williamson ∼2015 & Elias–Losev ∼2017 &
Achar–Makisumi–Riche–Williamson ∼2017).
Combining these 2-modules gives the category of tilting modules for SL(2) in prime
p > 2 characteristic, with θs and θt acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

Quiver. Zig-zag algebras living on the SL(2) weight lattice
or on the trivial and s left cells of W∞:

• · · ·• H F H  
αx αx αx

αy αy αy

• H F H · · ·

Leaving a 1-simplex is zero.
Any oriented path of length two between non-adjacent vertices is zero.

The relations of the cohomology ring of the variety of full flags in C2.
αxαy = αyαx, αx + αy = 0, αxαy = 0.

Zig-zag.
i|j|i = αx − αy.

Boundary condition.
The end-space of the vertex for the trivial cell is trivial.

This is the quiver for tilting modules of the quantum group
at a root of unity q2k = 1 for k > 2.

The (yet to be calculated) quiver in characteristic p can be obtained similarly.
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y0,2 x1,1 z2,0

z0,1 y1,0

x0,0

αx

αy

αz
y|z

z|y

αx
αy

αz

z|x
x|z

x|z
z|x

x|y
y|x

αx

αy

αz
y|z

z|y

z|x
x|z

αx

αy

αz z|x
x|z

αx

αy

αzx|y
y|x

y|z
z|y

αx

αy

αz

... ... ...

(a) Leaving a 2-simplex is zero. Any oriented path of length two between
non-adjacent vertices is zero.

(b) The relations of the cohomology ring of the variety of full flags in C3.
αiαj = αjαi, αx + αy + αz = 0, αxαy + αxαz + αyαz = 0 and αxαyαz = 0.

(c) Sliding loops. j|iαi = −αjj|i, j|iαj = −αij|i and j|iαk = αkj|i = 0.

(d) Zig-zag. i|j|i = αiαj.

(e) Zig-zig equals zag times loop. k|j|i = k|iαi = −αkk|i.

(f) Boundary. Some extra conditions along the boundary.

Back

There is still much to do...

Thanks for your attention!
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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {2 cos(π4 ), 0, 2 cos( 3π
4 )}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {2 cos(π6 ), 02, 2 cos( 5π
6 )}

U3(X) = (X− 2 cos(π4 ))X(X− 2 cos( 3π
4 ))

U5(X) = (X− 2 cos(π6 ))(X− 2 cos( 2π
6 ))X(X− 2 cos( 4π

6 ))(X− 2 cos( 5π
6 ))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back

The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the
Coxeter complex is:

• H

H

H

H

FF

FF

1
t

s

ts

st

tst

sts
w0

I should do the Hecke case,
but I will keep it easy.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Highest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-modules via graphs

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...). There
are dihedral (singular) Soergel bimodules (s)We+2 categorify the dihedral
algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules
(Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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From dihedral groups to SL(2)

Observation. For e →∞ the dihedral group We+2 becomes the affine Weyl group
W∞ of type A1, and the left cells are now

t 1 s•· · · · · ·

Fact. (Andersen–Mackaay ∼2014). The 2-module for the trivial cell L1, and
the 2-module for the type A Dynkin diagrams ‘survive’ the limit e →∞ and are
also 2-modules for affine type A1 Soergel bimodules.

Theorem. (Riche–Williamson ∼2015 & Elias–Losev ∼2017 &
Achar–Makisumi–Riche–Williamson ∼2017).
Combining these 2-modules gives the category of tilting modules for SL(2) in prime
p > 2 characteristic, with θs and θt acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

Quiver. Zig-zag algebras living on the SL(2) weight lattice
or on the trivial and s left cells of W∞:

• · · ·• H F H  
αx αx αx

αy αy αy

• H F H · · ·

Leaving a 1-simplex is zero.
Any oriented path of length two between non-adjacent vertices is zero.

The relations of the cohomology ring of the variety of full flags in C2.
αxαy = αyαx, αx + αy = 0, αxαy = 0.

Zig-zag.
i|j|i = αx − αy.

Boundary condition.
The end-space of the vertex for the trivial cell is trivial.

This is the quiver for tilting modules of the quantum group
at a root of unity q2k = 1 for k > 2.

The (yet to be calculated) quiver in characteristic p can be obtained similarly.
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y0,2 x1,1 z2,0

z0,1 y1,0

x0,0

αx

αy

αz
y|z

z|y

αx
αy

αz

z|x
x|z

x|z
z|x

x|y
y|x

αx

αy

αz
y|z

z|y

z|x
x|z

αx

αy

αz z|x
x|z

αx

αy

αzx|y
y|x

y|z
z|y

αx

αy

αz

... ... ...

(a) Leaving a 2-simplex is zero. Any oriented path of length two between
non-adjacent vertices is zero.

(b) The relations of the cohomology ring of the variety of full flags in C3.
αiαj = αjαi, αx + αy + αz = 0, αxαy + αxαz + αyαz = 0 and αxαyαz = 0.

(c) Sliding loops. j|iαi = −αjj|i, j|iαj = −αij|i and j|iαk = αkj|i = 0.

(d) Zig-zag. i|j|i = αiαj.

(e) Zig-zig equals zag times loop. k|j|i = k|iαi = −αkk|i.

(f) Boundary. Some extra conditions along the boundary.

Back

There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back



The KL basis elements for S3 ∼= W3 with sts = w0 = tst are:

θ1 = 1, θs = s + 1, θt = t + 1, θts = ts + s + t + 1,

θst = st + s + t + 1, θw0 = w0 + ts + st + s + t + 1.

1 s t ts st w0

1 1 1 1 1 1

2 0 0 −1 −1 0

1 −1 −1 1 1 −1

Figure: The character table of S3
∼= W3.

Remark.

This non-negativity of the KL basis
is true for all symmetric groups,

but not for most other groups (as we will see).

The case e = 1 is the last case
where the Chebyshev polynomial has only integer roots.

The first ever published character table (∼1896) by Frobenius.
Note the root of unity ρ.
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(Robinson ∼1938 & )Schensted ∼1961 & Kazhdan–Lusztig ∼1979.

Elements of Sn
1:1←→ (P,Q) standard Young tableaux of the same shape. Left, right

and two-sided cells of Sn:

I s ∼L t if and only if Q(s) = Q(t).

I s ∼R t if and only if P(s) = P(t).

I s ∼J t if and only if P(s) and P(t) have the same shape.

Example (n = 3).

1! 1 2 3 , 1 2 3

s! 1 3
2 , 1 3

2 ts! 1 2
3 , 1 3

2

t! 1 2
3 , 1 2

3 st! 1 3
2 , 1 2

3

w0!
1
2
3
,

1
2
3

Left cellsRight cells
Two-sided cells

Apexes:

θ1 θs θt θts θst θw0

1 2 2 4 4 6

2 2 2 1 1 0

1 0 0 0 0 0

The N0-representations are the simples.
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In case you are wondering why this is supposed to be true, here is the main
observation of Smith ∼1969:

Ue+1(X, Y) = ±det(XId− A(Ae+1))

Chebyshev poly. = char. poly. of the type Ae+1 graph

and

XTn−1(X) = ±det(XId− A(Dn))± (−1)n mod 4

first kind Chebyshev poly. ‘=’ char. poly. of the type Dn graph (n = e+4
2 ).
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Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.
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Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For i ∈ C , consider the endomorphism 2-category A of i in C (in
particular, A (i, i) = C (i, i)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of A and the equivalence classes of
simple 2-representations of C having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For any simple 2-representationM of C , there exists a simple algebra
1-morphism A in C (the projective abelianization of C ) such thatM is equivalent
(as a 2-representation of C ) to the subcategory of projective objects ofModC (A).

“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category mWe+2 (the maximally singular ones)

which we can then ‘induce up’ to We+2.

So it remains to study 2-modules of mWe+2.
But how to do that?

Idea: Chebyshev knows everything!

So where have we seen the magic formula
XUe+1(X) = Ue+2(X) + Ue(X)

before?

Here:
[2]q · [e + 1]q = [e + 2]q + [e]q

L1 ⊗ Le+1
∼= Le+2 ⊕ Le

Le = eth symmetric power of the vector representation of (quantum) sl2.

Quantum Satake (Elias ∼2013).

Let Qe be the semisimplyfied quotient of the category of
(quantum) sl2-modules for η being a 2(e + 2)th primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Ss
e : Qe → mWe+2

and
St
e : Qe → mWe+2.

The point: it suffices to find algebra objects in Qe .

Theorem (Kirillov–Ostrik ∼2003).

The algebra objects in Qe are ADE classified.

So who colored my Dynkin diagram?

Satake did.

And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{L⊗k
1 }! {Le}

and
{BS basis}! {KL basis}.

Aside:
One can check that the objects of Kirillov–Ostrik are in fact algebra objects

by using the symmetric web calculus á la Rose ∼2015.

One can show that these have to be all by looking at
the decategorified statement: N0-representations of the Verlinde algebra.

This was done by Etingof–Khovanov ∼1995.
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One can show that these have to be all by looking at
the decategorified statement: N0-representations of the Verlinde algebra.

This was done by Etingof–Khovanov ∼1995.

Back



Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For i ∈ C , consider the endomorphism 2-category A of i in C (in
particular, A (i, i) = C (i, i)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of A and the equivalence classes of
simple 2-representations of C having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For any simple 2-representationM of C , there exists a simple algebra
1-morphism A in C (the projective abelianization of C ) such thatM is equivalent
(as a 2-representation of C ) to the subcategory of projective objects ofModC (A).

“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category mWe+2 (the maximally singular ones)

which we can then ‘induce up’ to We+2.

So it remains to study 2-modules of mWe+2.
But how to do that?

Idea: Chebyshev knows everything!

So where have we seen the magic formula
XUe+1(X) = Ue+2(X) + Ue(X)

before?

Here:
[2]q · [e + 1]q = [e + 2]q + [e]q

L1 ⊗ Le+1
∼= Le+2 ⊕ Le

Le = eth symmetric power of the vector representation of (quantum) sl2.

Quantum Satake (Elias ∼2013).

Let Qe be the semisimplyfied quotient of the category of
(quantum) sl2-modules for η being a 2(e + 2)th primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Ss
e : Qe → mWe+2

and
St
e : Qe → mWe+2.

The point: it suffices to find algebra objects in Qe .

Theorem (Kirillov–Ostrik ∼2003).

The algebra objects in Qe are ADE classified.

So who colored my Dynkin diagram?

Satake did.

And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{L⊗k
1 }! {Le}

and
{BS basis}! {KL basis}.

Aside:
One can check that the objects of Kirillov–Ostrik are in fact algebra objects

by using the symmetric web calculus á la Rose ∼2015.
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(a) Leaving a 2-simplex is zero. Any oriented path of length two between
non-adjacent vertices is zero.

(b) The relations of the cohomology ring of the variety of full flags in C3.
αiαj = αjαi, αx + αy + αz = 0, αxαy + αxαz + αyαz = 0 and αxαyαz = 0.

(c) Sliding loops. j|iαi = −αjj|i, j|iαj = −αij|i and j|iαk = αkj|i = 0.

(d) Zig-zag. i|j|i = αiαj.

(e) Zig-zig equals zag times loop. k|j|i = k|iαi = −αkk|i.

(f) Boundary. Some extra conditions along the boundary.
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