A tale of dihedral groups, SL(2), and beyond

 ${\sf Or:}\ \mathbb{N}_0{\text{-matrices, my love}}$

Daniel Tubbenhauer

Joint work with Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz

July 2018

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

Classification problem (CP). Classify all Γ such that $U_{e+1}(A(\Gamma)) = 0$.

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \checkmark Chebyshev polynomial.

Classification problem (CP). Classify all Γ such that $U_{e+1}(A(\Gamma)) = 0$.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{\begin{array}{c}1 & 3 & 2\\\bullet & \bullet & \bullet\end{array}}_{\bullet} \xrightarrow{Q} A(A_{3}) = \begin{pmatrix}0 & 0 & 1\\0 & 0 & 1\\1 & 1 & 0\end{pmatrix} \xrightarrow{Q} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

··· (-- - (-- - (²-))

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

Classification problem (CP). Classify all Γ such that $U_{e+1}(A(\Gamma)) = 0$.

$$\mathsf{U}_3(\mathtt{X}) = (\mathtt{X} - 2\cos(\tfrac{\pi}{4}))\mathtt{X}(\mathtt{X} - 2\cos(\tfrac{3\pi}{4}))$$

$$A_{3} = \underbrace{1}_{\bullet} \underbrace{3}_{\bullet} \underbrace{2}_{\bullet} \longrightarrow A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$
$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$
$$D_{4} = \underbrace{1}_{\bullet} \underbrace{4}_{3} \longrightarrow A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \checkmark Chebyshev polynomial.

 (π) (π) (π) (π) (π)

Classification problem (CP). Classify all Γ such that $U_{e+1}(A(\Gamma)) = 0$.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{\pi}{4}))$$

$$A_{3} = \frac{1}{2} \xrightarrow{3}{2} \xrightarrow{2}{2} \xrightarrow{2}{3} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{2}{3} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6})) \xrightarrow{2}{3} \text{ for } e = 2$$

$$D_{4} = \frac{1}{4} \xrightarrow{4}{3} \xrightarrow{2}{3} A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{2}{3} S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$\int \text{ for } e = 4$$

Dihedral representation theory

- A brief primer on \mathbb{N}_0 -representation theory
- Dihedral \mathbb{N}_0 -representation theory

Dihedral 2-representation theory

- A brief primer on 2-representation theory
- Dihedral 2-representation theory

3 Towards modular representation theory

- SL(2)
- ...and beyond

The dihedral groups are of Coxeter type
$$l_2(e+2)$$
:
 $W_{e+2} = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\dots \mathbf{sts}}_{e+2} = \underbrace{W_0 = \underbrace{\dots \mathbf{tst}}_{e+2}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle,$
e.g.: $W_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

The dihedral groups are of Coxeter type $I_2(e+2)$:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the Coxeter complex is:

what cells are

Dihedral representation The Bott-Samelson (BS) generators $\theta_s = s + 1, \theta_t = t + 1.$ There is also a Kazhdan-Lusztig (KL) bases. Explicit formulas do not matter today.

One-dimensional modules. $M_{\lambda_s,\lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$.

$$e \equiv 0 \bmod 2 \qquad e \not\equiv 0 \bmod 2 M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2} \qquad M_{0,0}, M_{2,2}$$

Two-dimensional modules. $M_z, z \in \mathbb{C}, \theta_s \mapsto \begin{pmatrix} 2 & z \\ 0 & 0 \end{pmatrix}, \theta_t \mapsto \begin{pmatrix} 0 & 0 \\ \overline{z} & 2 \end{pmatrix}$.

$e \equiv 0 \mod 2$	$e \not\equiv 0 \mod 2$
$\mathrm{M}_z, z \in \mathrm{V}_e^{\pm}{-}\{0\}$	$M_z, z \in V_e^{\pm}$

 $V_e = roots(U_{e+1}(X))$ and V_e^{\pm} the $\mathbb{Z}/2\mathbb{Z}$ -orbits under $z \mapsto -z$.

Dihedral representation theory on one slide

Dihedral representation theory on one slide

One-dimensional modules. $M_{\lambda_s,\lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$.

 $e \equiv 0 \bmod 2 \qquad e \not\equiv 0 \bmod 2 \qquad e \not\equiv 0 \bmod 2$ $M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2} \qquad M_{0,0}, M_{2,2}$

Example.

 $M_{0,0}$ is the sign representation and $M_{2,2}$ is the trivial representation.

In case *e* is odd, $U_{e+1}(X)$ has a constant term, so $M_{2,0}$, $M_{0,2}$ are not representations. $M_z, z \in V_e^- \{ 0 \}$ $M_z, z \in V_e^-$

 $V_e = \operatorname{roots}(U_{e+1}(X))$ and V_e^{\pm} the $\mathbb{Z}/2\mathbb{Z}$ -orbits under $z \mapsto -z$.

Dihedral representation theory on one slide

One-dimensional modules. $M_{\lambda_s,\lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$.

 $V_e = \operatorname{roots}(U_{e+1}(X))$ and V_e^{\pm} the $\mathbb{Z}/2\mathbb{Z}$ -orbits under $z \mapsto -z$.

\mathbb{N}_0 -algebras and their representations

An algebra P with a basis B^P with $1\in B^P$ is called a $\mathbb{N}_0\text{-algebra}$ if

 $xy\in \mathbb{N}_{0}B^{P} \quad (x,y\in B^{P}).$

A $\operatorname{P-module}\,\operatorname{M}$ with a basis $\operatorname{B}^{\operatorname{M}}$ is called an $\mathbb{N}_0\text{-module}$ if

$$xm \in \mathbb{N}_0 B^M$$
 ($x \in B^P, m \in B^M$).

These are \mathbb{N}_0 -equivalent if there is a \mathbb{N}_0 -valued change of basis matrix.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence upstairs.

A $\operatorname{P-module}\,M$ with a basis B^M is called an $\mathbb{N}_0\text{-module}$ if

$$xm \in \mathbb{N}_0 B^M$$
 ($x \in B^P, m \in B^M$).

These are \mathbb{N}_0 -equivalent if there is a \mathbb{N}_0 -valued change of basis matrix.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence upstairs.

These are \mathbb{N}_0 -equivalent if there is a \mathbb{N}_0 -valued change of basis matrix.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence upstairs.

Cells of \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules

Kazhdan–Lusztig ~1979. $x \leq_L y$ if x appears in zy with non-zero coefficient for some $z \in B^P$. $x \sim_L y$ if $x \leq_L y$ and $y \leq_L x$. ~1 partitions P into cells L. Similarly for right R, two-sided cells J or \mathbb{N}_0 -modules.

An $\mathbb{N}_0\text{-module}\ M$ is transitive if all basis elements belong to the same \sim_L equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_0 -module has a unique apex.

Example. Transitive \mathbb{N}_0 -modules arise as decategorifications of simple 2-modules.

Kazh Example. Some Group algebras with the group element basis have only one cell, G itself. Transitive \mathbb{N}_0 -modules are $\mathbb{C}[G/H]$ for H being a subgroup. The apex is G. Transitive \mathbb{P}_0 -modules are $\mathbb{C}[G/H]$ for right R, two-sided cells J or \mathbb{N}_0 -modules.

An $\mathbb{N}_0\text{-module }M$ is transitive if all basis elements belong to the same \sim_L equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_0 -module has a unique apex.

Example. Transitive \mathbb{N}_0 -modules arise as decategorifications of simple 2-modules.

Example. Transitive \mathbb{N}_0 -modules arise as decategorifications of simple 2-modules.

\mathbb{N}_0 -modules via graphs

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$

\mathbb{N}_0 -modules via graphs

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$

"Lifting" \mathbb{N}_0 -representation theory

An additive, \mathbb{K} -linear, idempotent complete, Krull–Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

A simple transitive 2-representation (2-simple) of ${\mathscr C}$ is an additive, ${\mathbb K}\text{-linear}$ 2-functor

$$\mathscr{M}:\mathscr{C} o\mathscr{A}^{\mathrm{f}}(=2 ext{-cat} ext{ of finitary cats}),$$

such that there are no non-zero proper \mathscr{C} -stable ideals.

There is also the notion of 2-equivalence.

Mazorchuk–Miemietz \sim 2014.

An a 2-Simples \longleftrightarrow simples (e.g. 2-Jordan–Hölder theorem), finit:

alled

but their decategorifications are transitive $\mathbb{N}_0\text{-modules}$ and usually not simple.

A simple transitive 2-representation (2-simple) of ${\mathscr C}$ is an additive, ${\mathbb K}\text{-linear}$ 2-functor

$$\mathscr{M}: \mathscr{C} o \mathscr{A}^{\mathrm{f}} (=$$
 2-cat of finitary cats),

such that there are no non-zero proper \mathscr{C} -stable ideals.

There is also the notion of 2-equivalence.

Mazorchuk–Miemietz \sim 2014.]
2-Simples ↔ → simples (e.g. 2-Jordan–Hölder theorem),	alled
ut their decategorifications are transitive \mathbb{N}_0 -modules and usually not simple.	
ple transitive 2-representation (2-simple) of ${\mathscr C}$ is an additive, ${\mathbb K}$ -linear	-
Mazorchuk–Miemietz \sim 2011.	
Define cell theory similarly as for $\mathbb{N}_0\text{-}algebras$ and $\mathbb{N}_0\text{-}modules.$	
2-simple \Rightarrow transitive, and transitive 2-modules have a 2-simple quotient.	
	Mazorchuk–Miemietz ~2014. 2-Simples ↔ simples (e.g. 2-Jordan–Hölder theorem), ut their decategorifications are transitive N₀-modules and usually not simple. ple transitive 2-representation (2-simple) of 𝔅 is an additive, K-linear Mazorchuk–Miemietz ~2011. Define cell theory similarly as for N₀-algebras and N₀-modules. 2-simple ⇒ transitive, and transitive 2-modules have a 2-simple quotient.

	Mazorchuk–Miemietz \sim 2014.	
	2-Simples (e.g. 2-Jordan–Holder theorem),	alled
but their	r decategorifications are transitive $\mathbb{N}_0 ext{-modules}$ and usually not	simple.
nple tra	nsitive 2-representation (2-simple) of ${\mathscr C}$ is an additive. ${\mathbb K}$	-linear
	Mazorchuk–Miemietz ~2011.	
+	Define cell theory similarly as for \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules.	
L		
e 2-sim	$ple \Rightarrow$ transitive, and transitive 2-modules have a 2-simple que	otient.
nple. 🕅	Chan–Mazorchuk ~2016.	orification of
	but their nple train nc t t 2-simp nple. N	Mazorchuk–Miemietz ~2014. 2-Simples ↔→ simples (e.g. 2-Jordan–Hölder theorem), but their decategorifications are transitive N₀-modules and usually not nple transitive 2-representation (2-simple) of 𝔅 is an additive, K Mazorchuk–Miemietz ~2011. te 2-simple ⇒ transitive, and transitive 2-modules have a 2-simple quot nple. N Chan–Mazorchuk ~2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

"Lifting" No-representation theory Example.

An add finitary B- \mathcal{M} od (+fc=some finiteness condition) is a prototypical object of \mathscr{A}^{f} .

A 2-module for us is very often on the category of quiver representations. A simple transitive 2-representation (2-simple) of 6 is an additive, R-intear 2-functor

$$\mathscr{M}:\mathscr{C} o\mathscr{A}^{\mathrm{f}}(=2 ext{-cat} ext{ of finitary cats}),$$

such that there are no non-zero proper \mathscr{C} -stable ideals.

There is also the notion of 2-equivalence.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence upstairs.

called

"Lifting" No-representation theory Example.

An add finitary B- \mathcal{M} od (+fc=some finiteness condition) is a prototypical object of \mathscr{A}^{f} .

A 2-module for us is very often on the category of quiver representations. A simple transitive 2-representation (2-simple) of 6 is an additive, R-intear 2-functor

Example (Mazorchuk–Miemietz–Zhang & ...).

such th The 2-category of projective endofunctors of B-Mod (+fc) is 2-finitary. There i The non-trivial 2-simples are given by tensoring with $B\varepsilon \otimes \varepsilon B$.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence upstairs.

called

"Lifting" No-representation theory Example.

An add finitary B- \mathcal{M} od (+fc=some finiteness condition) is a prototypical object of \mathscr{A}^{f} .

A 2-module for us is very often on the category of quiver representations. A simple transitive 2-representation (2-simple) of 6 is an additive, R-intear 2-functor Example (Magnetule Migmister Zhang 8:)

Example (Mazorchuk-Miemietz-Zhang & ...).

such th The 2-category of projective endofunctors of B-Mod (+fc) is 2-finitary.

There

The non-trivial 2-simples are given by tensoring with $B\varepsilon\otimes\varepsilon B$.

Example No-algebras and No-modules arise naturally as the decategorification of **Example** (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

called

"Lifting" No-representation theory

Example (Mazorchuk-Miemietz & Soergel & Khovanov-Mazorchuk-Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

(Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0} .')

Symmetric group: the 2-simples are categorifications of the simples.

2-runctor

 $\mathscr{M}\colon \mathscr{C}\to \mathscr{A}^{\mathrm{f}}(=\text{2-cat of finitary cats}),$

such that there are no non-zero proper \mathscr{C} -stable ideals.

There is also the notion of 2-equivalence.

"Lifting" No-representation theory

Example (Mazorchuk-Miemietz & Soergel & Khovanov-Mazorchuk-Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

(Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0} .')

Symmetric group: the 2-simples are categorifications of the simples.

2-runctor

s

Example (Kildetoft-Mackaay-Mazorchuk-Miemietz-Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ ϵ the classification is widely open.

"Lifting" No-representation theory

Example (Mazorchuk-Miemietz & Soergel & Khovanov-Mazorchuk-Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

(Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0} .')

Symmetric group: the 2-simples are categorifications of the simples.

2-runctor

Example (Kildetoft-Mackaay-Mazorchuk-Miemietz-Zhang & ...).

sl TQuotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ ϵ the classification is widely open. **Example.** \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of **Example (Mackaay–Mazorchuk–Miemietz & Kirillov–Ostrik & Elias & ...).**

Singular Soergel bimodules and various 2-subcategories (+fc) are finitary 2-categories. (Coxeter=Weyl: 'Indecomposable projective functors between singular blocks of O.')

For a quotient of maximal singular type \tilde{A}_1 non-trivial 2-simples are ADE classified.

Excuse me?

"Lifting" \mathbb{N}_0 -representation theory

An additive, \mathbb{K} -linear, idempotent complete, Krull–Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

5		
	Question ("2-representation theory").	
A simple transiti	/e	e, K-linear
2-functor	Classify all 2-simples of a fixed finitary 2-category.	
Г	This is the categorification of	1
such that there	0	
There is also th	Classify all simples a fixed finite-dimensional algebra',	
Example. ℕ₀-a	but much harder, e.g. it is unknown whether there are always only finitely many 2-simples.	tegorification of
2-categories and	z-modules, and 140-equivalence comes nom z-equ	dvalence upstairs.

A few words about the 'How to' (for dihedral groups)

Decategorification. What is the corresponding question about \mathbb{N}_0 -matrices?

Chebyshev–Smith–Lusztig ~ ADE-type-answer . ⊳

► **Construction.** Does every candidate solution downstairs actually lifts?

- ▷ "Brute force" (Khovanov–Seidel–Andersen–)Mackaay → zig-zag algebras.
- ▷ "Smart" Mackaay–Mazorchuk–Miemietz → "Cartan approach". ♥ Details

▶ **Redundancy.** Are the constructed 2-representations equivalent?

 \triangleright $\mathcal{M}_{\Gamma} \cong \mathcal{M}_{\Gamma'} \Leftrightarrow \Gamma \cong \Gamma'.$

- ▶ **Completeness.** Are we missing 2-representations?
 - \triangleright This is where a grading assumption comes in.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ~1992 & Williamson ~2010 & Elias ~2013 & ...). There are dihedral (singular) Soergel bimodules (s) \mathscr{W}_{e+2} categorify the dihedral algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann \sim 2016).

Complete, irredundant list of graded simple 2-representations of \mathscr{W}_{e+2} :

Apex1 cellS - t cell
$$\mathfrak{M}$$
 cell2-reps. $\mathcal{M}_{0,0}$ $\mathcal{M}_{ADE+bicolering}$ for $e+2 = Cox.$ num. $\mathcal{M}_{2,2}$

From dihedral groups to SL(2)

Observation. For $e \to \infty$ the dihedral group W_{e+2} becomes the affine Weyl group W_{∞} of type A₁, and the left cells are now

Fact. (Andersen–Mackaay ~2014). The 2-module for the trivial cell L₁, and the 2-module for the type A Dynkin diagrams 'survive' the limit $e \rightarrow \infty$ and are also 2-modules for affine type A₁ Soergel bimodules.

Theorem. (Riche–Williamson ${\sim}2015$ & Elias–Losev ${\sim}2017$ & Achar–Makisumi–Riche–Williamson ${\sim}2017$).

Combining these 2-modules gives the category of tilting modules for SL(2) in prime p > 2 characteristic, with θ_s and θ_t acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

From dihedral groups to SL(2)

Playing the same game for, say, $\mathrm{SL}(3)$ almost works perfectly fine. One gets:

- ► Trihedral Hecke algebras and trihedral Soergel bimodules.
- ► These are controlled by higher rank Chebyshev polynomials.
- ▶ These relate to semisimple quantum \mathfrak{sl}_3 -modules.
- ► These describe tilting modules for SL(3) at roots of unity or in prime characteristic (for p > 3). One gets a trihedral zig-zag • quive? (in the root of unity case; the modular case being trickier).
- Similarly for SL(N) (for p > N).

I won't say what 'almost' means precisely. Roughly, the 'percentage' one can describe using orthogonal polynomials is $\frac{1}{N-1}$. But this $\frac{1}{N-1}$ -part works out nicely.

There is still much to do...

Thanks for your attention!

$$\begin{array}{l} U_0(X) = 1, \ U_1(X) = X, \ X \ U_{e+1}(X) = U_{e+2}(X) + U_e(X) \\ U_0(X) = 1, \ U_1(X) = 2X, \ 2X \ U_{e+1}(X) = U_{e+2}(X) + U_e(X) \end{array}$$

Kronecker ~1857. Any complete set of conjugate algebraic integers in] - 2, 2[is a subset of $roots(U_{e+1}(X))$ for some *e*.

Figure: The roots of the Chebyshev polynomials (of the second kind).

The KL basis elements for $\mathrm{S}_3\cong\mathrm{W}_3$ with $\mathtt{sts}=\textit{w}_0=\mathtt{tst}$ are:

$$\begin{aligned} \theta_1 &= 1, \quad \theta_s = s+1, \quad \theta_t = t+1, \quad \theta_{ts} = ts+s+t+1, \\ \theta_{st} &= st+s+t+1, \quad \theta_{w_0} = w_0 + ts + st+s+t+1. \end{aligned}$$

Figure: The character table of $S_3 \cong W_3$.

The KL basis elements for $S_3 \cong W_3$ with $sts = w_0 = tst$ are:

$$\begin{split} \theta_1 &= 1, \quad \theta_{\mathrm{s}} = \mathrm{s} + 1, \quad \theta_{\mathrm{t}} = \mathrm{t} + 1, \quad \theta_{\mathrm{ts}} = \mathrm{t} \mathrm{s} + \mathrm{s} + \mathrm{t} + 1, \\ \theta_{\mathrm{st}} &= \mathrm{s} \mathrm{t} + \mathrm{s} + \mathrm{t} + 1, \quad \theta_{\mathrm{w}_0} = \mathrm{w}_0 + \mathrm{t} \mathrm{s} + \mathrm{s} \mathrm{t} + \mathrm{s} + \mathrm{t} + 1. \end{split}$$

	θ_1	$ heta_{ extsf{s}}$	$ heta_{t}$	$ heta_{ts}$	$ heta_{ t st}$	θ_{w_0}
	1	2	2	4	4	6
₽	2	2	2	1	1	0
	1	0	0	0	0	0

Figure: The character table of $S_3 \cong W_3$.

The KL basis elements for $S_3 \cong W_3$ with $sts = w_0 = tst$ are:

$$\begin{split} \theta_1 &= 1, \quad \theta_{\mathtt{s}} = \mathtt{s} + 1, \quad \theta_{\mathtt{t}} = \mathtt{t} + 1, \quad \theta_{\mathtt{ts}} = \mathtt{t} \mathtt{s} + \mathtt{s} + \mathtt{t} + 1, \\ \theta_{\mathtt{st}} &= \mathtt{s} \mathtt{t} + \mathtt{s} + \mathtt{t} + 1, \quad \theta_{\mathtt{w}_0} = \mathtt{w}_0 + \mathtt{t} \mathtt{s} + \mathtt{s} \mathtt{t} + \mathtt{s} + \mathtt{t} + 1. \end{split}$$

Figure: The character table of $S_3 \cong W_3$.

The KL basis elements for $S_3 \cong W_3$ with $sts = w_0 = tst$ are:

$$\theta_1=1,\quad \theta_{\mathtt{s}}=\mathtt{s}+1,\quad \theta_{\mathtt{t}}=\mathtt{t}+1,\quad \theta_{\mathtt{t}\mathtt{s}}=\mathtt{t}\mathtt{s}+\mathtt{s}+\mathtt{t}+1,$$

The first ever published character table (\sim 1896) by Frobenius. Note the root of unity ρ .

> [1011] FROMENTIES Über Gruppencharaktere. 27 ^{sa}men Factor f abgeschen) einen relativen Charakter von S, und umwechter tisst sich jeder relative Charakter von S, ²₂₀,...,²₂₀₋₁, and einen ⁵der mehrere Arten durch Hinzufügung passender Werthe ²₂₀,...,²₂₀₋₁, ²a einem Charakter von S⁵ ergänzen.

§ 8.

Ich will nun die Theorie der Gruppencharaktere an einigen Bei-⁵tielen erläutern. Die geraden Permutationen von 4 Symbolen bilden ⁵the Gruppe 5 der Ordnung h=12. Ihre Elementz erfallen in 4 Classen, ⁴te Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der ⁵hlung 3 zwei inverse Classen (2) und (3) = (2). Sei ρ eine primitive ⁶wisselw Gurzel der Einheit.

Tetraed	er. 7	i = 1	2.
---------	-------	-------	----

	X ⁽⁰⁾	X ⁽¹⁾	$\chi^{(2)}$	X ⁽³⁾	h_{α}
Xo	1	3.	1	1	1
XI	1	-1	1	1	3
X2	1	0	ρ	ρ^2	4
Xa	1	0	ρ^2	ρ	4

(Robinson ~1938 &)Schensted ~1961 & Kazhdan–Lusztig ~1979. Elements of $S_n \xleftarrow{1:1} (P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_n :

- ▶ $s \sim_{\mathsf{L}} t$ if and only if Q(s) = Q(t).
- ▶ $s \sim_{\mathsf{R}} t$ if and only if P(s) = P(t).
- ▶ $s \sim_J t$ if and only if P(s) and P(t) have the same shape.

Example (n = 3).

(Robinson ~1938 &)Schensted ~1961 & Kazhdan–Lusztig ~1979. Elements of $S_n \xleftarrow{1:1} (P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_n :

- ▶ $s \sim_{\mathsf{L}} t$ if and only if Q(s) = Q(t).
- ▶ $s \sim_{\mathsf{R}} t$ if and only if P(s) = P(t).
- ▶ $s \sim_J t$ if and only if P(s) and P(t) have the same shape.

(Robinson ~1938 &)Schensted ~1961 & Kazhdan–Lusztig ~1979. Elements of $S_n \xleftarrow{1:1} (P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_n :

- ▶ $s \sim_{\mathsf{L}} t$ if and only if Q(s) = Q(t).
- ▶ $s \sim_{\mathsf{R}} t$ if and only if P(s) = P(t).
- ▶ $s \sim_J t$ if and only if P(s) and P(t) have the same shape.

(Robinson ~1938 &)Schensted ~1961 & Kazhdan–Lusztig ~1979. Elements of $S_n \xleftarrow{1:1} (P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_n :

- ▶ $s \sim_{\mathsf{L}} t$ if and only if Q(s) = Q(t).
- ▶ $s \sim_{\mathsf{R}} t$ if and only if P(s) = P(t).
- ▶ $s \sim_J t$ if and only if P(s) and P(t) have the same shape.

In case you are wondering why this is supposed to be true, here is the main observation of $Smith \sim \!\! 1969\!\!:$

$$XT_{n-1}(X) = \pm \det(XId - A(D_n)) \pm (-1)^{n \mod 4}$$

first kind Chebyshev poly. '=' char. poly. of the type D_n graph $(n = \frac{e+4}{2})$.

Theorem (Mackaay–Mazorchuk–Miemietz \sim 2016). Let \mathscr{C} be a fiat

2-category. For $i \in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i,i) = \mathscr{C}(i,i)$). Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{C} having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For any simple 2-representation \mathscr{M} of \mathscr{C} , there exists a simple algebra 1-morphism A in $\overline{\mathscr{C}}$ (the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent (as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M} \operatorname{od}_{\overline{\mathscr{C}}}(A)$.

"Cartan approach".					
This means for us that it suffices to find					
algebra 1-morphisms in the semisimple 2-category $m\mathcal{W}_{e+2}$ (the maximally singular ones)					
which we can then 'induce up' to \mathscr{W}_{e+2} .					
	So it remains to study 2-modules of mW_{e+2} .				
Theorem (Mackaa	But how to do that? Be a fiat				
2-category. For any	simple 2-representation ${\mathscr M}$ of ${\mathscr C},$ there exists a simple algebra				
1-morphism A in $\overline{\mathscr{C}}$	(the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent				
(as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}\mathrm{od}_{\overline{\mathscr{C}}}(A)$					

TI /NA I		(0) (°.					
"Cartan approach".							
algebra 1-morphisms ir	This means for us that it suffices to find the semisimple 2-category $m \mathscr{W}_{e+2}$ (the m which we can then 'induce up' to \mathscr{W}_{e+2} .	aximally singular ones)					
S Theorem (Mackaa	to it remains to study 2-modules of $m \mathscr{W}_{e+2}$ But how to do that?	2. 6 be a fiat					
2-category. For any s 1-morphism A in $\overline{\mathscr{C}}$	Idea: Chebyshev knows everything!	exists a simple algebra that ${\mathscr M}$ is equivalent					
(as a 2-representation	So where have we seen the magic formula	objects of $\mathscr{M}\mathrm{od}_{\overline{\mathscr{C}}}(\mathrm{A})$					
	$X U_{e+1}(X) = U_{e+2}(X) + U_e(X)$						
	before?						

Back

Theorem (Mackaay–Mazorchuk–Miemietz \sim **2016).** Let \mathscr{C} be a fiat 2-category. For $i \in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i,i) = \mathscr{C}(i,i)$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathcal{A} and the equivalence classes of Quantum Satake (Elias \sim 2013). sir Let Q_e be the semisimplyfied quotient of the category of **Tł** 2-0 1-1 (quantum) \mathfrak{sl}_2 -modules for η being a $2(e+2)^{\text{th}}$ primitive, complex root of unity. bra There are two degree-zero equivalences, depending on a choice of a starting color, ent (as A). $S_{a}^{s}: \mathcal{O}_{e} \to m \mathcal{W}_{e+2}$ and $S_e^t: \mathcal{Q}_e \to m \mathcal{W}_{e+2}.$

The point: it suffices to find algebra objects in Q_e .

Back

Theorem (Mackaay–Mazorchuk–Miemietz \sim 2016). Let \mathscr{C} be a fiat

2-category. For $i \in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i,i) = \mathscr{C}(i,i)$). Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes

Theorem (Macka The algebra objects in Q_e are ADE classified.) be a fiat 2-category. For any simple 2-representation \mathcal{M} of \mathcal{C} , there exists a simple algebra 1-morphism A in $\overline{\mathcal{C}}$ (the projective abelianization of \mathcal{C}) such that \mathcal{M} is equivalent (as a 2-representation of \mathcal{C}) to the subcategory of projective objects of \mathcal{M} od $_{\mathcal{K}}(A)$.

		So who colored my Dynkin diagram?	I			
Theore	em (N		fiat			
2-category. F		Satake did.	i in C	(in		
particul	ar, 🚿		ween th	е		
equivale	ence c	And why does the quantum Satake correspondence exists?	nce clas	ses of		
simple 2	2-repr	Because Chebyshev encodes both change of basis matrices:				
Theore	em (N	$\{L_1^{\otimes k}\} \longleftrightarrow \{L_e\}$	fiat			
2-categ	ory. F	and	imple algebra			
1-morph	hism /	$\{BS \text{ basis}\} \iff \{KL \text{ basis}\}.$	is equi	valent		
(as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}\mathrm{od}_{\overline{\mathscr{C}}}(A)$						
		Aside:				
One can check that the objects of Kirillov–Ostrik are in fact algebra objects						
	by using the symmetric web calculus á la Rose \sim 2015.					
Une can snow that these have to be all by looking at						
This was done by Etingof–Khovanov ~1995.						

Back

- (a) Leaving a 2-simplex is zero. Any oriented path of length two between non-adjacent vertices is zero.
- (b) The relations of the cohomology ring of the variety of full flags in \mathbb{C}^3 . $\alpha_{i}\alpha_{j} = \alpha_{j}\alpha_{i}, \alpha_{x} + \alpha_{y} + \alpha_{z} = 0, \alpha_{x}\alpha_{y} + \alpha_{x}\alpha_{z} + \alpha_{y}\alpha_{z} = 0 \text{ and } \alpha_{x}\alpha_{y}\alpha_{z} = 0.$
- (c) Sliding loops. $j|i\alpha_i = -\alpha_j j|i, j|i\alpha_j = -\alpha_i j|i \text{ and } j|i\alpha_k = \alpha_k j|i = 0.$
- (d) Zig-zag. $i|j|i = \alpha_i \alpha_j$.
- (e) Zig-zig equals zag times loop. $k|j|i = k|i\alpha_i = -\alpha_k k|i$.
- (f) Boundary. Some extra conditions along the boundary.

◀ Back