A tale of dihedral groups, SL(2), and beyond

Or: \mathbb{N}_{0}-matrices, my love

Daniel Tubbenhauer

Joint work with Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz
July 2018

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsiter polmomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsitev polmomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{gathered}
\mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{x}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
\mathrm{A}_{3}=\stackrel{1}{2} \longrightarrow\left(\begin{array}{llll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \rightarrow \quad A\left(\mathrm{~A}_{3}\right)=\sim
\end{gathered}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebersey polvomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& \mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{2} \sim 2\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{X})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{4} \rightarrow \int_{3}^{2} A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebersey polvomial.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& \mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{\bullet} \xrightarrow{3} \xrightarrow{2} \sim \sim A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{X})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{4} \rightarrow \overbrace{3}^{2} \rightarrow\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\} \\
& \text { for } e=4
\end{aligned}
$$

(1) Dihedral representation theory

- A brief primer on \mathbb{N}_{0}-representation theory
- Dihedral \mathbb{N}_{0}-representation theory
(2) Dihedral 2-representation theory
- A brief primer on 2-representation theory
- Dihedral 2-representation theory
(3) Towards modular representation theory
- SL(2)
- ...and beyond

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:
should do the Hecke case,
but I will keep it easy.

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \text { tst }}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\mathrm{stst}\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\mathrm{stst}\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The main example today: dihedral groups

The dihedral groups are of Coxeter type $I_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

For the moment: Never mind!

Lowest cell.

The main example today: dihedral groups

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

For the moment: Never mind!

Lowest cell.
Highest cell.

The main example today: dihedral groups

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

For the moment: Never mind!

The main example today: dihedral groups

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{aligned}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

For the moment: Never mind!

Lowest cell.
Highest cell.
s-cell.
t-cell.

Dihedral representation

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), \theta_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ \bar{z} & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide

One-dimension	Proposition (Lusztig?). The list of one- and two-dimensional $\mathrm{W}_{\text {e }+2}$-modules is a complete, irredundant list of simple modules.	
	$\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$	$\mathrm{M}_{0,0}, \mathrm{M}_{2,2}$
Two-dimensional modules. $\mathrm{M}_{\mathrm{z}}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\binom{2}{2}, \theta_{\mathrm{t}} \mapsto\left(\begin{array}{ll}0 & 0 \\ \bar{z} & 2\end{array}\right)$.		
	$e \equiv 0 \bmod 2$	$e \not \equiv 0 \bmod 2$
	$\mathrm{M}_{\mathrm{z}}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}$	$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}$
$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.		

Dihedral representation theory on one slide

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Example.
$\mathrm{M}_{0,0}$ is the sign representation and $\mathrm{M}_{2,2}$ is the trivial representation.
In case e is odd, $\mathrm{U}_{e+1}(\mathrm{X})$ has a constant term, so $\mathrm{M}_{2,0}, \mathrm{M}_{0,2}$ are not representations.

$$
\mathrm{MI}_{z}, Z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Example.

Two-dim $\quad M_{z}$ for z being a root of the Chebyshev polynomial is a representation because the braid relation in terms of BS generators involves the coefficients of the Chebyshev polynomial.

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dih ϵ

Example.

One-c These representations are indexed by $\mathbb{Z} / 2 \mathbb{Z}$-orbits of the Chebyshev roots:

\mathbb{N}_{0}-algebras and their representations

An algebra P with a basis B^{P} with $1 \in \mathrm{~B}^{\mathrm{P}}$ is called a \mathbb{N}_{0}-algebra if

$$
x y \in \mathbb{N}_{0} B^{P} \quad\left(x, y \in B^{P}\right)
$$

A P-module M with a basis B^{M} is called an \mathbb{N}_{0}-module if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right) .
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

A P-module M with a basis B^{M} is called an \mathbb{N}_{0}-module if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right)
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.

The regular representation is an \mathbb{N}_{0}-module.
$x v \in \mathbb{N}_{n} B^{P} \quad\left(x, v \in B^{P}\right)$

Example.

A P. The regular representation of group algebras decomposes over \mathbb{C} into simples. However, this decomposition is almost never an \mathbb{N}_{0}-equivalence.

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

Cells of \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules

Kazhdan-Lusztig ~ 1979. $\mathrm{x} \leq_{L} \mathrm{y}$ if x appears in zy with non-zero coefficient for some $z \in B^{P} . x \sim_{L} y$ if $x \leq_{L} y$ and $y \leq_{L} x$.
\sim_{L} partitions P into cells L . Similarly for right R , two-sided cells J or \mathbb{N}_{0}-modules.

An \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.

Example. Transitive \mathbb{N}_{0}-modules arise as decategorifications of simple 2-modules.

Cells of \mathbb{N} Philosophy.

Imagine a graph whose vertices are the x's or the m's. $v_{1} \rightarrow v_{2}$ if v_{1} appears in $z v_{2}$.
Kazhdan-Lus some $z \in B^{P}$. \sim_{L} partitions

An \mathbb{N}_{0}-module equivalence cla

Example. Tra "The basic building blocks of \mathbb{N}_{0}-representation theory". ple 2-modules.

Cells of $\mathbb{N} \quad$ Philosophy.

Imagine a graph whose vertices are the x's or the m's. $v_{1} \rightarrow v_{2}$ if v_{1} appears in $z v_{2}$.

$$
\text { cells }=\text { connected components }
$$

$$
\text { transitive }=\text { one connected component }
$$

Example. Tra "The basic building blocks of \mathbb{N}_{0}-representation theory". ple 2-modules.

Cells of $\mathbb{N} \quad$ Philosophy.

Imagine a graph whose vertices are the x's or the m's. $v_{1} \rightarrow v_{2}$ if v_{1} appears in $z v_{2}$.
Kazhdan-Lus some $z \in B^{P}$. \sim_{L} partitions

An \mathbb{N}_{0}-module equivalence cla

Example. Tra "The basic building blocks of \mathbb{N}_{0}-representation theory". ple 2-modules.

Example.
Group algebras with the group element basis have only one cell, G itself.
Kazh some Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G. \sim_{L} partitions P into cells L . Similarly for right R , two-sided cells J or \mathbb{N}_{0}-modules.

An \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.

Example. Transitive \mathbb{N}_{0}-modules arise as decategorifications of simple 2-modules.

Example.
Group algebras with the group element basis have only one cell, G itself.
Kazh some

Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.

$\sim_{\text {L }}$ partit	Example (Kazhdan-Lusztig ~1979).	-modules.
An \mathbb{N}_{0}-m equivalen	Hecke algebras for the symmetric group with KL basis have \square coming from the Robinson-Schensted correspondence. The transitive \mathbb{N}_{0}-modules are the simples with apex given by elements for the same shape of Young tableaux.	

Example. Transitive \mathbb{N}_{0}-modules arise as decategorifications of simple 2-modules.

Example.

Group algebras with the group element basis have only one cell, G itself.
Kazh some

Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.

$\sim_{\text {L }}$ partit	Example (Kazhdan-Lusztig ~1979).	-modules.
An \mathbb{N}_{0}-m equivalen	Hecke algebras for the symmetric group with KL basis have \square coming from the Robinson-Schensted correspondence. The transitive \mathbb{N}_{0}-modules are the simples with apex given by elements for the same shape of Young tableaux.	

Exan		
	Hecke algebras for the dihedral group with KL basis have the following cells: We will see the transitive \mathbb{N}_{0}-modules in a second.	dules.

Example.

Group algebras with the group element basis have only one cell, G itself.
Kazh some

Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.

$\sim_{\text {L }}$ partit	Example (Kazhdan-Lusztig ~1979).	-modules.
An \mathbb{N}_{0}-m equivalen	Hecke algebras for the symmetric group with KL basis have \square coming from the Robinson-Schensted correspondence. The transitive \mathbb{N}_{0}-modules are the simples with apex given by elements for the same shape of Young tableaux.	

Example.
Group algebras with the group element basis have only one cell, G itself.
Kazh some

Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for H being a subgroup. The apex is G.

$\sim_{\text {L }}$ partit	Example (Kazhdan-Lusztig ~1979).	-modules.
An \mathbb{N}_{0}-m equivalen	Hecke algebras for the symmetric group with KL basis have calls coming from the Robinson-Schensted correspondence. The transitive \mathbb{N}_{0}-modules are the simples with apex given by elements for the same shape of Young tableaux.	

	Example (Lusztig ≤ 2003). Hecke algebras for the dihedral gTwo-sided cells vourtir KL basis have the following cells: We will see the transitive \mathbb{N}_{0}-modules in a second.	
Exar		ules.

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{c|c|ccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cc|c|cc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccc|c|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{c|cccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ll|l|l}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 1 & 0 & 0 \\
2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lll|l|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Constru	The adjacency matrix $A(\Gamma)$ of Γ is $A(\Gamma)=\left(\begin{array}{lllll} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right)$ These are W_{e+2}-modules for some e only if $A(\Gamma)$ is killed by the Chebyshev polynomial $\mathrm{U}_{e+1}(\mathrm{x})$. Morally speaking: These are constructed as the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Hence, by Smith's (CP) and Lusztig: We get a representation of $\mathrm{W}_{\mathrm{e}+2}$ if $\boldsymbol{\Gamma}$ is a ADE Dynkin diagram for $e+2$ being the Coxeter number.

That these are \mathbb{N}_{0}-modules follows from categorification.

1	3	2	4	5

'Smaller solutions' are never \mathbb{N}_{0}-modules.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Classification.

Complete, irredundant ilit of transitive \mathbb{N}_{0}-modules of W_{e+2} :

Apex	(1) cell	(S)-(c) cell	(No) cell
\mathbb{N}_{0}-reps.	$\mathrm{M}_{0,0}$	$\mathrm{M}_{\text {ADE }+ \text { bicolering }}$ for $e+2=$ Cox. num.	$\mathrm{M}_{2,2}$

I learned this from/with Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

"Lifting" \mathbb{N}_{0}-representation theory

An additive, \mathbb{K}-linear, idempotent complete, Krull-Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

A simple transitive 2 -representation (2-simple) of \mathscr{C} is an additive, \mathbb{K}-linear 2-functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) },
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

A simple transitive 2 -representation (2-simple) of \mathscr{C} is an additive, \mathbb{K}-linear 2-functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) }
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

Example.
B- $\mathcal{M o d}(+\mathrm{fc}=$ some finiteness condition $)$ is a prototypical object of \mathscr{A}^{f}.
A 2-module for us is very often on the category of quiver representations.
 2-functor

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}}(=2 \text {-cat of finitary cats })
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Liftino" $\mathbb{N}_{n-r e n r e s e n t a t i n n ~ t h e n r v ~}^{\text {-ren }}$ Example.		
An add finitar	- $\mathcal{M o d}\left(+\mathrm{fc}=\right.$ some finiteness condition) is a prototypical object of \mathscr{A}^{f}.	called
A 2-module for us is very often on the category of quiver representations. 		
2-functor Example (Mazorchuk Miemietz Zhang \& .)		
such th There i	The 2-category of projective endofunctors of B- $\mathcal{M o d}(+\mathrm{fc})$ is 2-finitary. The non-trivial 2-simples are given by tensoring with $\mathrm{B} \varepsilon \otimes \varepsilon \mathrm{B}$.	

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.
"Liftino" No-renresentatinn thenrvExample.
A 2-module for us is very often on the category of quiver representations.
 2-functor

Example (Mazorchuk-Miemietz-Zhang \& ...).

such th The 2-category of projective endofunctors of $\mathrm{B}-\mathcal{M o d}(+\mathrm{fc})$ is 2-finitary.
There i
The non-trivial 2-simples are given by tensoring with $\mathrm{B} \varepsilon \otimes \varepsilon \mathrm{B}$.
Examnle \mathbb{N}_{n}-aloehras and \mathbb{N}_{n}-modules arise naturallv as the decatecorification of 2 Example (Mazorchuk-Miemietz \& Chuang-Rouquier \& Khovanov-Lauda \& ...).
2-Kac-Moody algebras (+fc) are finitary 2-categories.
Their 2-simples are categorifications of the simples.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).
Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0}. ')
Symmetric group: the 2-simples are categorifications of the simples.

$$
\mathscr{M}: \mathscr{C} \rightarrow \mathscr{A}^{\mathrm{f}} \text { (= 2-cat of finitary cats) }
$$

such that there are no non-zero proper \mathscr{C}-stable ideals.
There is also the notion of 2-equivalence.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: 'Indecomposable projective functors on $\mathcal{O}_{0} .{ }^{\text {. }}$)
Symmetric group: the 2-simples are categorifications of the simples.
Example (Kildetoft-Mackaay-Mazorchuk-Miemietz-Zhang \& ...).
Suotients of Soergel bimodules $(+\mathrm{fc})$, e.g. small quotients, are finitary 2-categories.
Except for the small quotients+ ϵ the classification is widely open.
Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategoritication of
2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence upstairs.

"Lifting" \mathbb{N}_{n}-representation theorv

Example (Mazorchuk-Miemietz \& Soergel \& Khovanov-Mazorchuk-Stroppel \& ...).

> Soergel bimodules for finite Coxeter groups are finitary 2-categories. (Coxeter=Weyl: 'Indecomposable projective functors on \mathcal{O}_{0}. ')

Symmetric group: the 2-simples are categorifications of the simples.

"Lifting" \mathbb{N}_{0}-representation theory

An additive, \mathbb{K}-linear, idempotent complete, Krull-Schmidt 2-category \mathscr{C} is called finitary if some finiteness conditions hold.

A simple transitil 2-functor	Question ("2-representation theory").	e, \mathbb{K}-linear
	Classify all 2-simples of a fixed finitary 2-category.	
such that there There is also th '	Classify all simples a fixed finite-dimensional algebra',	',
Example. $\mathbb{N}_{0}-\frac{a}{}$ 2-categories anc	but much harder, e.g. it is unknown whether there are always only finitely many 2 -simples.	tegorification of uvalence upstairs

A few words about the 'How to' (for dihedral groups)

- Decategorification. What is the corresponding question about \mathbb{N}_{0}-matrices?
\triangleright Chebyshev-Smith-Lusztig \rightsquigarrow ADE-type-answer.
- Construction. Does every candidate solution downstairs actually lifts?
\triangleright "Brute force" (Khovanov-Seidel-Andersen-)Mackaay \rightsquigarrow zig-zag algebras.
\triangleright "Smart" Mackaay-Mazorchuk-Miemietz \rightsquigarrow "Cartan approach"
- Redundancy. Are the constructed 2-representations equivalent?
$\triangleright \mathscr{M}_{\boldsymbol{\Gamma}} \cong \mathscr{M}_{\boldsymbol{\Gamma}^{\prime}} \Leftrightarrow \boldsymbol{\Gamma} \cong \boldsymbol{\Gamma}^{\prime}$.
- Completeness. Are we missing 2-representations?
\triangleright This is where a grading assumption comes in.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ~1992 \& Williamson ~2010 \& Elias ~2013 \& ...). There are dihedral (singular) Soergel bimodules (\boldsymbol{s}) \mathscr{W}_{e+2} categorify the dihedral algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules (Kildetoft-Mackaay-Mazorchuk-Miemietz-Zimmermann ~ 2016).

Complete, irredundant list of graded simple 2-representations of \mathscr{W}_{e+2} :

Apex	(1) cell	(S) - (t) cell	(NO cell
2-reps.	$\mathscr{M}_{0,0}$	$\mathscr{M}_{\text {ADE }+ \text { bicolering }}$ for $e+2=$ Cox. num.	$\mathscr{M}_{2,2}$

From dihedral groups to $\mathrm{SL}(2)$

Observation. For $e \rightarrow \infty$ the dihedral group W_{e+2} becomes the affine Weyl group W_{∞} of type A_{1}, and the left cells are now

Fact. (Andersen-Mackaay ~2014). The 2-module for the trivial cell L_{1}, and the 2-module for the type A Dynkin diagrams 'survive' the limit $e \rightarrow \infty$ and are also 2-modules for affine type A_{1} Soergel bimodules.

Theorem. (Riche-Williamson ~2015 \& Elias-Losev ~2017 \&
Achar-Makisumi-Riche-Williamson ~2017).
Combining these 2 -modules gives the category of tilting modules for SL(2) in prime $p>2$ characteristic, with θ_{s} and θ_{t} acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

From dihedral groups to SL(2)

Quiver. Zig-zag algebras living on the SL(2) weight lattice or on the trivial and s left cells of W_{∞} :

Leaving a 1 -simplex is zero.
Any oriented path of length two between non-adjacent vertices is zero.

Fact the 2 also	The relations of the cohomology ring of the variety of full flags in \mathbb{C}^{2}. $\alpha_{\mathrm{x}} \alpha_{\mathrm{y}}=\alpha_{\mathrm{y}} \alpha_{\mathrm{x}}, \alpha_{\mathrm{x}}+\alpha_{\mathrm{y}}=0, \alpha_{\mathrm{x}} \alpha_{\mathrm{y}}=0$	$\begin{aligned} & \text { nd } \\ & \text { are } \end{aligned}$
The Ach Com $p>$	$\begin{gathered} \text { Zig-zag. } \\ \mathrm{i}\|\mathrm{j}\| \mathrm{i}=\alpha_{\mathrm{x}}-\alpha_{\mathrm{y}} . \end{gathered}$ Boundary condition. The end-space of the vertex for the trivial cell is trivial.	prime
Hen	This is the quiver for tilting modules of the quantum group at a root of unity $\mathrm{q}^{2 k}=1$ for $k>2$. The (yet to be calculated) quiver in characteristic p can be obtained similarly.	dules.

Higher ranks

Playing the same game for, say, SL(3) almost works perfectly fine. One gets:

- Trihedral Hecke algebras and trihedral Soergel bimodules.
- These are controlled by higher rank Chebyshev polynomials.
- These relate to semisimple quantum $\mathfrak{s l}_{3}$-modules.
- These describe tilting modules for SL(3) at roots of unity or in prime characteristic (for $p>3$). One gets a trihedral zig-zag (in the root of unity case; the modular case being trickier).
- Similarly for $\operatorname{SL}(N)$ (for $p>N$).

I won't say what 'almost' means precisely. Roughly, the 'percentage' one can describe using orthogonal polynomials is $\frac{1}{N-1}$. But this $\frac{1}{N-1}$-part works out nicely.
$U_{0}(x)-1, \quad U_{1}(x)-x, \quad x U_{t+1}(x)-U_{t+z}(x)+U_{6}(x)$

Dihedral representation forn

$$
\begin{array}{c:c}
e=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline \mathrm{M}_{0,0} \mathrm{M}_{2,0,} \mathrm{M}_{0,2}, \mathrm{M}_{2,2} & \mathrm{M}_{0,0,} \mathrm{M}_{2,2}
\end{array}
$$

Two-dimensional modules. $\mathrm{M}_{x}, z \in \mathrm{C}, \theta_{2} \mapsto\left(\frac{2}{a} \overline{0}\right) \cdot \theta_{\mathrm{E}} \mapsto\left(\frac{\rho}{\rho}\right)$

$$
\begin{array}{l|l}
e=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline \mathrm{M}_{s}, z \in \mathrm{~V}_{\varepsilon}^{t}-(0) & \mathrm{M}_{2, z \in \mathrm{~V}_{z}^{t}}
\end{array}
$$

$\mathrm{V}_{\mathrm{f}}-\operatorname{roost}\left(\mathrm{U}_{\theta+1}(\mathrm{x})\right]$ and V : the $Z / 2 Z$-orbits under $z \mapsto-z$.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ~ 1992 \& Williamson ~ 2010 \& Elias $\sim 2013 \& ~ . .$.$)) There$ are dihhedral (singular) Soergel bimodules (s) W_{s+2} categraify the dithedral algebra(oid) with indecomposables categorifing the KL basis.
Classification of dilibedral 2 -modules
(Kildetoft-Mackaay-Mazorchuk-Miemietz-Zimmermann ~2016).

Complete, irredurdant list of groded simple 2 -repersentations of \mathbb{W}_{+12}

Kronecher ~ 1857. Any complete set of conjugate alsebraic integers in $1-2.2 \mid$ is
asubset of roocs $\left(U_{s+1}(x)\right)$ for some e.

∞

The main example today: dihedral groups
The dihedral groups are of Coxeter type $\mathrm{b}_{2}(\mathrm{e}+2$):

Example. These are the symmetry groups of neguar $e+2$-gons, e.e. for $e=2$ the Coxeter complex is:

(a) Leaving a 2 -simplex is zero. Any oriented path of length two between non-adjecent wertices is zero.
(b) The relations of the cohomology ring of the variety of full flags in C^{3}.
(c) $\alpha_{4} \alpha_{1}-a_{j} \alpha_{4} \alpha_{2}+a_{y}+\alpha_{2}-\alpha_{1} \alpha_{4} \alpha_{y}+\alpha_{2} \alpha_{2}+a_{y} \alpha_{2}=0$ and $\alpha_{4} \alpha_{y} \alpha_{2}=0$
(c) Sliding loops. $j \mid\left\{\alpha_{1}--\alpha_{j} j|i, j|\left|\alpha_{j}--\alpha_{3} j\right| 1\right.$ and $j| | \alpha_{k}=\alpha_{k} j \mid 1-0$.
(d) Zig-zag. 1$]\left._{\mathrm{j}}\right|_{1}-\alpha_{i} \alpha_{j}$
(e) Zig -zig equals zag times hoap. $\mathrm{k}|\mathrm{j}| 1-\mathrm{k}_{\mathrm{i}}\left|a_{4}=-\omega_{3} \mathrm{x}\right| 1$.
(f) Boundary. Some extra conditions along the houndary.
∞

There is still much to do.
$U_{0}(x)-1, \quad U_{1}(x)-x, \quad x U_{t+1}(x)-U_{t+z}(x)+U_{6}(x)$

One-dimensional modules. $\mathrm{M}_{\mathrm{x}_{-\lambda}}, \lambda_{\mathrm{c}}, \lambda_{\mathrm{s}} \in \mathrm{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}-\theta_{\mathrm{L}} \mapsto \lambda_{\mathrm{c}}$.

$$
\begin{array}{c:c}
e=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline \mathrm{M}_{0,0} \mathrm{M}_{2,0,} \mathrm{M}_{0,2}, \mathrm{M}_{2,2} & \mathrm{M}_{0,0,} \mathrm{M}_{2,2}
\end{array}
$$

Two-dimensional modules. $\mathrm{M}_{x}, z \in \mathrm{C}, \theta_{2} \mapsto\left(\frac{2}{a} \overline{0}\right) \cdot \theta_{\mathrm{E}} \mapsto\left(\frac{\rho}{\rho}\right)$

$$
\begin{array}{c|c}
e=0 \bmod 2 & e \neq 0 \bmod 2 \\
\hdashline \mathrm{M}_{s, z \in} \in \mathrm{~N}_{\delta}^{t}-(0) & \mathrm{M}_{z, z \in \mathrm{~V}_{t}}
\end{array}
$$

$\mathrm{V}_{0}-\operatorname{roots}\left(\mathrm{U}_{0+1}(\mathrm{x})\right)$ and V_{0}^{\prime} the $Z / 2 Z$-orbits under $z \mapsto-z$

2-representations of dihedral Soergel bimodules

Theorem (Soergel ~ 1992 \& Williamson $\sim 2010 \&$ Elias $\sim 2013 \& \ldots$). There are dihhedral (singular) Soergel himodules (s) W_{s+2} categraify the dithedral alebra(oid) with indecomposables categoriffying the KL basis.
Classification of dilibedral 2 -modules
(Kildetoft-Markaiy-Mazorchuk-Miemietz-Zimmermann ~2016).

Complete, irredurdant list of groded simple 2 -reperesentations of W_{t+2} :

Kronecker ~ 1857. Any complete set of conjugate algetraic integers in $]-2.2 \mid$ is
$=$ sulbet of rooses $\left(U_{\alpha+1}(x)\right)$ for some e.

∞

The main example today: dihedral groups
The dihedral groups are of Coveter type $\mathrm{I}_{2}(\mathrm{e}+2)$:

Example. These are the symmetry groups of neguar $e+2$-gons, e.e. for $e=2$ the Coxeter complex is:

(a) Leaving a 2 -simplex is zero. Any oriented path of length two between non-adjocent vertices is zero.
(b) The relations of the cohomology ring of the variety of full flags in C^{3}.
(c) $\alpha_{4} \alpha_{1}-a_{j} \alpha_{4} \alpha_{4}+a_{y}+\alpha_{2}-\alpha_{1} \alpha_{4} \alpha_{7}+\alpha_{2} \alpha_{2}+a_{y} \alpha_{2}=0$ and $\alpha_{4} \alpha_{y} \alpha_{2}=0$
(c) Sliding loops. $j \mid\left\{\alpha_{1}--\alpha_{j} j|i, j|\left|\alpha_{j}-\alpha_{3} j\right| 1\right.$ and $j| | \alpha_{k}=\alpha_{k} j \mid 1-0$.
(d) Zig-zag. $1|\mathrm{j}| 1-\alpha_{i} \alpha$,

(f) Boundary. Some extra conditions along the houndary.
\cdots

Thanks for your attention!

$$
\begin{array}{ll}
\mathrm{U}_{0}(\mathrm{X})=1, & \mathrm{U}_{1}(\mathrm{X})=\mathrm{X}, \\
\left.\mathrm{U}_{0}(\mathrm{X})=1, \quad \mathrm{U}_{\mathrm{e}+1}(\mathrm{X})=2 \mathrm{X}\right)=2 \mathrm{X}, & 2 \mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
\end{array}
$$

Kronecker $\boldsymbol{\sim}$ 1857. Any complete set of conjugate algebraic integers in] $-2,2$ [is a subset of roots $\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

	1	s	t	ts	st	w_{0}
$\square \square$	1	1	1	1	1	1
\square	2	0	0	-1	-1	0
\square	1	-1	-1	1	1	-1

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1 \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1
\end{gathered}
$$

	θ_{1}	θ_{s}	θ_{t}	θ_{ts}	θ_{st}	$\theta_{w_{0}}$
$\square \square$	1	2	2	4	4	6
\square	2	2	2	1	1	0
\square	1	0	0	0	0	0

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $S_{3} \cong W_{3}$ with sts $=w_{0}=$ tst are:

$$
\begin{gathered}
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1, \\
\theta_{\mathrm{st}}=\mathrm{st}+\mathrm{s}+\mathrm{t}+1, \quad \theta_{w_{0}}=w_{0}+\mathrm{ts}+\mathrm{st}+\mathrm{s}+\mathrm{t}+1 .
\end{gathered}
$$

Figure: The character table of $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$.

The KL basis elements for $\mathrm{S}_{3} \cong \mathrm{~W}_{3}$ with sts $=w_{0}=$ tst are:

$$
\theta_{1}=1, \quad \theta_{\mathrm{s}}=\mathrm{s}+1, \quad \theta_{\mathrm{t}}=\mathrm{t}+1, \quad \theta_{\mathrm{ts}}=\mathrm{ts}+\mathrm{s}+\mathrm{t}+1,
$$

The first ever published character table (~ 1896) by Frobenius. Note the root of unity ρ.

[1011]

Frobienus: Über Gruppencharaktere.
27
samen Factor f abgesehen) einen relativen Charakter von 5 , und umSekehrt lässt sich jeder relative Charakter von $5, \chi_{0}, \cdots \chi_{k-1}$, auf eine
oder mehrere Arten durch Hinzufügung passender Werthe $\chi_{t}, \cdots \chi_{k<-1}$
${ }^{2} 4$ einem Charakter von 5 ' ergainzen.

§ 8.

Ich will nun die Theorie der Gruppencharaktere an einigen BeiSielen erläutern. Die geraden Permutationen von 4 Symbolen bilden cine Gruppe 5 der Ordnung $h=12$. Ihre Elemente zerfallen in 4 Classen, die Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der $0_{\text {rdnung }} 3$ zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei ρ eine primitive cobische Wurzel der Einheit.

Tetraeder. $h=12$.

	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	$h_{a z}$
χ_{0}	1	3	1	1	1
χ_{1}	1	-1	1	1	3
X_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{\mathrm{R}} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

Left cells

$1 \mathrm{~m} \rightarrow$ [12|3, $112 / 3$
w_{0} <ms $\frac{1}{\frac{2}{3}}, \frac{1}{\frac{1}{3}}$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

$$
\begin{array}{|l|}
\hline \text { Right cells } \\
\hline
\end{array}
$$

$1 \rightarrow m \rightarrow[12 / 3,112 \mid 3$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979.

Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right and two-sided cells of S_{n} :

- $s \sim_{L} t$ if and only if $Q(s)=Q(t)$.
- $s \sim_{R} t$ if and only if $P(s)=P(t)$.
- $s \sim_{\jmath} t$ if and only if $P(s)$ and $P(t)$ have the same shape.

Example ($n=3$).

$1 \leftrightarrow \square \square \square, \square \square$

$$
t \leadsto \square, \square
$$

(Robinson ~1938 \&)Schensted ~1961 \& Kazhdan-Lusztig ~1979. Elements of $\mathrm{S}_{n} \stackrel{1: 1}{\longleftrightarrow}(P, Q)$ standard Young tableaux of the same shape. Left, right

	Apexes:						
		θ_{1}	$\theta_{\text {s }}$	$\theta_{\text {t }}$	$\theta_{\text {ts }}$	$\theta_{\text {st }}$	$\theta_{w_{0}}$
	$\square \square$	1	2	2	4	4	6
Exampl	\square	2	2	2	1	1	0
	\square	1	0	0	0	0	0
	The \mathbb{N}_{0}-representations are the simples.						

In case you are wondering why this is supposed to be true, here is the main observation of Smith ~1969:

$$
\mathrm{U}_{e+1}(\mathrm{X}, \mathrm{Y})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{~A}_{e+1}\right)\right)
$$

Chebyshev poly. $=$ char. poly. of the type A_{e+1} graph and

$$
\mathrm{XT}_{n-1}(\mathrm{X})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{D}_{n}\right)\right) \pm(-1)^{n \bmod 4}
$$

first kind Chebyshev poly. ' $=$ ' char. poly. of the type D_{n} graph ($n=\frac{e+4}{2}$).

The type A family
$e=0$
∇
$e=1$

$e=3$

. .
\star

The type D family

$e=4$

$e=6$

The type E exceptions

The type A family

The type D family
$e=8$
$e=10$

Note: Almost none of these are simple since they grow in rank with growing e.
This is the opposite from the symmetric group case.

> Theorem (Mackaay-Mazorchuk-Miemietz ~ 2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2 -representations of \mathscr{C} having a non-trivial value at i.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For any simple 2 -representation \mathscr{M} of \mathscr{C}, there exists a simple algebra 1-morphism A in $\overline{\mathscr{C}}$ (the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent (as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}_{\operatorname{od}}^{\overline{\mathscr{C}}}(\mathrm{A})$.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of sir Quantum Satake (Elias ~2013).

Let \mathcal{Q}_{e} be the semisimplyfied quotient of the category of Tl (quantum) $\mathfrak{s l}_{2}$-modules for η being a $2(e+2)^{\text {th }}$ primitive, complex root of unity. | 2- $\begin{array}{l}\text { 1-1 } \\ \text { (as } \\ \\ \\ \mathrm{S}_{e}^{\mathrm{s}}: \mathcal{Q}_{e} \rightarrow \boldsymbol{m}^{2} \mathscr{W}_{e+2} \\ \text { and } \\ \mathrm{S}_{e}^{\mathrm{t}}: \mathcal{Q}_{e} \rightarrow \boldsymbol{m}^{2} \mathscr{W}_{e+2} .\end{array}$ |
| :--- |

The point: it suffices to find algebra objects in \mathcal{Q}_{e}.

Theorem (Mackaay-Mazorchuk-Miemietz ~2016). Let \mathscr{C} be a fiat 2-category. For i $\in \mathscr{C}$, consider the endomorphism 2-category \mathscr{A} of i in \mathscr{C} (in particular, $\mathscr{A}(i, i)=\mathscr{C}(i, i))$. Then there is a natural bijection between the equivalence classes of simple 2-representations of \mathscr{A} and the equivalence classes of simple 2-representa Theorem (Kirillov-Ostrik ~2003).

Theorem (Mackad, The algebra objects in \mathcal{Q}_{e} are ADE classified., be a fiat 2-category. For any simple 2-representation \mathscr{M} of \mathscr{C}, there exists a simple algebra 1-morphism A in $\mathscr{\mathscr { C }}$ (the projective abelianization of \mathscr{C}) such that \mathscr{M} is equivalent (as a 2-representation of \mathscr{C}) to the subcategory of projective objects of $\mathscr{M}_{\operatorname{od}_{\overline{\mathscr{C}}}}(\mathrm{A})$.

(a) Leaving a 2 -simplex is zero. Any oriented path of length two between non-adjacent vertices is zero.
(b) The relations of the cohomology ring of the variety of full flags in \mathbb{C}^{3}. $\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}=\alpha_{\mathrm{j}} \alpha_{\mathrm{i}}, \alpha_{\mathrm{x}}+\alpha_{\mathrm{y}}+\alpha_{\mathrm{z}}=0, \alpha_{\mathrm{x}} \alpha_{\mathrm{y}}+\alpha_{\mathrm{x}} \alpha_{\mathrm{z}}+\alpha_{\mathrm{y}} \alpha_{\mathrm{z}}=0$ and $\alpha_{\mathrm{x}} \alpha_{\mathrm{y}} \alpha_{\mathrm{z}}=0$.
(c) Sliding loops. $\mathrm{j}\left|\mathrm{i} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{j}} \mathrm{j}\right| \mathrm{i}, \mathrm{j}\left|\mathrm{i} \alpha_{\mathrm{j}}=-\alpha_{\mathrm{i}} \mathrm{j}\right| \mathrm{i}$ and $\mathrm{j}\left|\mathrm{i} \alpha_{\mathrm{k}}=\alpha_{\mathrm{k}} \mathrm{j}\right| \mathrm{i}=0$.
(d) Zig-zag. $\mathbf{i}|\mathrm{j}| \mathrm{i}=\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}$.
(e) Zig-zig equals zag times loop. $\mathrm{k}|\mathrm{j}| \mathrm{i}=\mathrm{k}\left|\mathrm{i} \alpha_{\mathrm{i}}=-\alpha_{\mathrm{k}} \mathrm{k}\right| \mathrm{i}$.
(f) Boundary. Some extra conditions along the boundary.

