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Folklore, Lucas ∼1878. Let q ∈ K∗, qchar(K) = p, a = mp + a0 and
b = np + b0 (a0, b0 zeroth digit of the p-adic expansion). Then

[
a

b

]

q

=

(
m

n

)[
a0

b0

]

q

.

Example/Remark.

K = Fp, q = 1 (known as characteristic p),
and a = [ar , ..., a0]p, b = [br , ..., b0]p (the p-adic expansions), then

(
a
b

)
=
[
a
b

]
q

=
[
ar
br

]
q
...
[
a0
b0

]
q

=
(
ar
br

)
...
(
a0
b0

)
.

Examples for a = 1331 = 113 and b = a− 1.

If K = C, q = 1, then qchar(K) = 0, a = [1331]0 and b = [1330]0

⇒
[

1331
1330

]
q

=
(

1331
1330

)
= 1331 does not vanish.

If K = C, q = exp(2πi/11), then qchar(K) = 11, a = [121, 0]11 and b = [120, 10]11

⇒
[

1331
1330

]
q

= 121 ·
[

0
10

]
q

vanishes of order one.

If K = F11, q = 3, then qchar(K) = 5, a = [266, 1]5, b = [266, 0]5 and a−1
5

= b
5

= [2, 2, 2]11

⇒ [1331]q = 1 · 1 · 1 · [1]q does not vanish.

If K = F11, q = 1, then qchar(K) = 11, a = [1, 0, 0, 0]11 and b = [0, 10, 10, 10]11

⇒ [1331]q = 1 · 0 · 0 · [0]q vanishes of order three.

I will stick with characteristic p, but

the quantum group is a “zeroth digit only” version of it;

the mixed cases is a mixture of the two.
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Weyl ∼1923. The SL2 Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

(
a b
c d

)
7→ matrix who’s columns are expansions of (aX + cY )v−i (bX + dY )i−1.

The simples

Example ∆(7−1) = KX 6Y 0 ⊕ · · · ⊕KX 0Y 6.

( a b
c d ) acts as




a6 a5b a4b2 ... ... ... d6

6a5c 5a4bc+a5d 4a3b2c+2a4bd ... ... ... 6bd5

15a4c2 10a3bc2+5a4cd 6a2b2c2+8a3bcd+a4d2 ... ... ... 15b2d4

20a3c3 10a2bc3+10a3c2d 12a2bc2d+4a3cd2 ... ... ... 20b3d3

15a2c4 5abc4+10a2c3d b2c4+8abc3d+6a2c2d2 ... ... ... 15b4d2

6ac5 5ac4d+bc5 2bc4d+4ac3d2 ... ... ... 6b5d

c6 c5d c4d2 ... ... ... b6




The columns are expansions of (aX + cY )7−i (bX + dY )i−1. Binomials!

Example ∆(7−1), characteristic 0.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
6 ... ... ... ... ... 6

15 ... ... ... ... ... 15
20 ... ... ... ... ... 20
15 ... ... ... ... ... 15
6 ... ... ... ... ... 6
1 ... ... ... ... ... 1




No zeros ⇒ ∆(7−1) simple.

Example ∆(7−1), characteristic 5.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
1 ... ... ... ... ... 1
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
1 ... ... ... ... ... 1
1 ... ... ... ... ... 1




We found a submodule.

When is ∆(v−1) simple?

∆(v−1) is simple

⇔
(
v−1
w−1

)
6= 0 for all w ≤ v

⇔ (Lucas’s theorem)

v = [ar , 0, ..., 0]p.

General.
Weyl ∆(λ) and dual Weyl ∇(λ)

are easy a.k.a. standard;
are parameterized by dominant integral weights;

are highest weight modules;
are defined over Z;

have the classical Weyl characters;
form a basis of the Grothendieck group unitriangular w.r.t. simples;

satisfy (a version of) Schur’s lemma dimK Exti (∆(λ),∇(µ)) = δi,0δλ,µ ;

are simple generically;
have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis ∼1973).
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When is ∆(v−1) simple?

∆(v−1) is simple

⇔
(
v−1
w−1

)
6= 0 for all w ≤ v

⇔ (Lucas’s theorem)

v = [ar , 0, ..., 0]p.

General.
Weyl ∆(λ) and dual Weyl ∇(λ)

are easy a.k.a. standard;
are parameterized by dominant integral weights;

are highest weight modules;
are defined over Z;

have the classical Weyl characters;
form a basis of the Grothendieck group unitriangular w.r.t. simples;

satisfy (a version of) Schur’s lemma dimK Exti (∆(λ),∇(µ)) = δi,0δλ,µ ;

are simple generically;
have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis ∼1973).
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Ringel, Donkin ∼1991. The indecomposable SL2 tilting modules T(v−1) are the
indecomposable summands of ∆(1)⊗i .

Tilting modules T(v−1)
• are those modules with a ∆(w−1)- and a ∇(w−1)-filtration;
• are parameterized by dominant integral weights;
• are highest weight modules;
• satisfy reciprocity

(
T(v−1) : ∆(w−1)

)
=
(
T(v−1) : ∇(w−1)

)
= [∆(w ′−1) :

L(v ′−1)] = [∇(w ′−1) : L(v ′−1)];
• form a basis of the Grothendieck group unitriangular w.r.t. simples;
• satisfy (a version of) Schur’s lemma dimK Hom

(
T(v−1), T(w−1)

)
=∑

x<min(v ,w)

(
T(v−1) : ∆(x−1)

)(
T(w−1) : ∇(x−1)

)
Why the name? ;

• are simple generically;
• have a root-binomial-criterion to determine whether they are simple.

Let T ilt be the category of tilting modules.

Goal. Describe T ilt by generators and relations.

General.
These facts hold in general, and

the first bullet point is
the general definition.

How many Weyl factors does T(v−1) have?

# Weyl factors of T(v−1) is 2k where

k = max{νp
((

v−1
w−1

))
,w ≤ v}. (Order of vanishing of

(
v−1
w−1

)
.)

determined by (Lucas’s theorem)

non-zero non-leading digits of v = [ar , ar−1, ..., a0]p.

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

Maximal vanishing for w = 75594 = [0, 5, 1, 8, 8, 2]11;

(
v−1
w−1

)
= (HUGE) = [..., 6= 0, 0, 0, 0, 0]11.

⇒ T(220540−1) has 24 Weyl factors.

Which Weyl factors does T(v−1) have a.k.a. the negative digits game?

Weyl factors of T(v−1) are

∆([ar ,±ar−1, ...,±a0]p−1) where v = [ar , ..., a0]p.

Example T(220540−1) for p = 11?

v = 220540 = [1, 4, 0, 7, 7, 1]11;

has Weyl factors [1,±4, 0,±7,±7,±1]11;

e.g. ∆(218690 = [1, 4, 0,−7,−7,−1]11−1) appears.
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Strategical interlude.

Start.

Define a category Web
by generators-relations.

How?

Find a standard basis S
of Web (splitting off ∆).

How?

Find a tilting basis T of
Web (splitting off T).

How?

Find an integral basis I
of Web.

How?

Prove Web ∼=Z Fund
(⊗-gen. by ∆(1)).

How?

Write down the base
change matrix S to T .

Why?

Make sure that there are
no poles.

Original sin

Goal achieved: T ilt via
generators and realtions.

Quiver

reduce mod p

General.
This strategy should work in types ABCD.

(I will zoom in on this in a second.)

What remains to be done?

No more sins!

What is the diagrammatic incarnation of the Frobenius ( a b
c d ) 7→

(
ap bp

cp dp

)
?

The mixed case will be easier but might be a pain to write down.

Up next: the first steps towards higher ranks,
i.e. let us try Uq(sl3) for q a primitive complex 2`th root of unity.
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Strategical interlude.

Start.

Define a category Web
by generators-relations.

Basically the same.

Find a standard basis S
of Web (splitting off ∆).

Basically the same.

Find a tilting basis T of
Web (splitting off T).

Basically the same.

Find an integral basis I
of Web.

Basically the same.

Prove Web ∼=Z[q±1] Fund

(e.g. ∆
(

(1, 0)
)
∈ Fund).

Remains the same.

Write down the base
change matrix S to T .

Remains the same.

Make sure that there are
no poles.
Same problem as before!

Goal achieved: T ilt via
generators and realtions.

To be done...

specialize q
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Folklore, Lucas ∼1878. Let q ∈ K∗, qchar(K) = p, a = mp + a0 and
b = np + b0 (a0, b0 zeroth digit of the p-adic expansion). Then

[
a

b

]

q

=

(
m

n

)[
a0

b0

]

q

.

Philosophy. Only the vanishing order of
[
v
w

]
q

matters for this lecture ;-).

Corollary. We understand finite-dimensional modules for SL2 = SL2(K = K)

• generically;

• for the quantum group over C at q2` = 1;

• the quantum group over K, char(K) = p and q2` = 1 (mixed case);

• in prime characteristic char(K) = p.

Example/Remark.

K = Fp, q = 1 (known as characteristic p),
and a = [ar , ..., a0]p, b = [br , ..., b0]p (the p-adic expansions), then

(
a
b

)
=
[
a
b

]
q

=
[
ar
br

]
q
...
[
a0
b0

]
q

=
(
ar
br

)
...
(
a0
b0

)
.

Examples for a = 1331 = 113 and b = 1.

If K = C, q = 1, then qchar(K) = 0 and a = [1331]0

⇒ [1331]q = [1331]q does not vanish.

If K = C, q = exp(2πi/11), then qchar(K) = 11 and a = [112, 0]11

⇒ [1331]q = 112 · [0]q vanishes of order one.

If K = F13, q = 2, then qchar(K) = 6 and a = [1, 0, 0, 5, 5]6, a− 5 = [7, 11, 0]13

⇒ [1331]q = 7 · 11 · 0 · [5]q vanishes of order one.

If K = F11, q = 1, then qchar(K) = 11 and a = [1, 0, 0, 0]11

⇒ [1331]q = 1 · 0 · 0 · [0]q vanishes of order three.

I will stick with characteristic p, but

the quantum group is a “zeroth digit only” version of it;

the mixed cases is a mixture of the two.
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Weyl ∼1923. The SL2 Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

(
a b
c d

)
7→ matrix who’s columns are expansions of (aX + cY )v−i (bX + dY )i−1.

The simples

Example ∆(7−1) = KX 6Y 0 ⊕ · · · ⊕KX 0Y 6.

( a b
c d ) acts as




a6 a5b a4b2 ... ... ... d6

6a5c 5a4bc+a5d 4a3b2c+2a4bd ... ... ... 6bd5

15a4c2 10a3bc2+5a4cd 6a2b2c2+8a3bcd+a4d2 ... ... ... 15b2d4

20a3c3 10a2bc3+10a3c2d 12a2bc2d+4a3cd2 ... ... ... 20b3d3

15a2c4 5abc4+10a2c3d b2c4+8abc3d+6a2c2d2 ... ... ... 15b4d2

6ac5 5ac4d+bc5 2bc4d+4ac3d2 ... ... ... 6b5d

c6 c5d c4d2 ... ... ... b6




The columns are expansions of (aX + cY )7−i (bX + dY )i−1. Binomials!

Example ∆(7−1), characteristic 0.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
6 ... ... ... ... ... 6

15 ... ... ... ... ... 15
20 ... ... ... ... ... 20
15 ... ... ... ... ... 15
6 ... ... ... ... ... 6
1 ... ... ... ... ... 1




No zeros ⇒ ∆(7−1) simple.

Example ∆(7−1), characteristic 5.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
1 ... ... ... ... ... 1
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
1 ... ... ... ... ... 1
1 ... ... ... ... ... 1




We found a submodule.

When is ∆(v−1) simple?

∆(v−1) is simple

⇔
(
v−1
w−1

)
6= 0 for all w ≤ v

⇔ (Lucas’s theorem)

v = [ar , 0, ..., 0]p.

General.
Weyl ∆(λ) and dual Weyl ∇(λ)

are easy a.k.a. standard;
are parameterized by dominant integral weights;

are highest weight modules;
are defined over Z;

have the classical Weyl characters;
form a basis of the Grothendieck group unitriangular w.r.t. simples;

satisfy (a version of) Schur’s lemma dimK Exti (∆(λ),∇(µ)) = δi,0δλ,µ ;

are simple generically;
have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis ∼1973).
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The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Rumer–Teller–Weyl ∼1933, Elias ∼2015 à la Littelmann ∼1995. For any
path π in the dominant Weyl chamber define d(π) inductively by

ε1(f) : f 7→ f , ε−1(f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

General.
As long as you have a web calculus, this works in general.

Example.

Non-example.

Example (four boundary points).

General.
As long as you have a web calculus, this works in general,

e.g. Elias has explained how to define the highest weight projectors “ẽ”.

Example.

General.

As long as you know the tilting characters , this works in general

e.g. one can define the highest weight tilting projectors “e”.

Example.

The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Rumer–Teller–Weyl ∼1933, Elias ∼2015 à la Littelmann ∼1995. For any
path π in the dominant Weyl chamber define d(π) inductively by

ε1(f) : f 7→ f , ε−1(f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

General.
As long as you have a web calculus, this works in general.

Example.

Non-example.

Example (four boundary points).

General.
As long as you have a web calculus, this works in general,

e.g. Elias has explained how to define the highest weight projectors “ẽ”.

Example.

General.

As long as you know the tilting characters , this works in general

e.g. one can define the highest weight tilting projectors “e”.

Example.

Bases of hom
(
∆(1)⊗i ,∆(1)⊗j

)
.

The integral basis I .

• Defined over Z.

• Needed for the transi-
tion from characteris-
tic 0 to p.

• Algebraically:

∆(1)⊗i � wt(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
wt(λ) .

The standard basis S .

• Defined generically,
having poles.

• Artin–Wedderburn ba-
sis ⇒ trivial relations.

• Algebraically:

∆(1)⊗i � ∆(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

c̃ũ,d̃λ =
d̃

ũ
∆(λ) .

The tilting basis T .

• Defined generically,
but without poles.

• The one we want for
T ilt.

• Algebraically:

∆(1)⊗i � T(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
T(λ) .

Back

General.
This is a well-known strategy which works in quite some generality, e.g. for cellular categories à la Graham–Lehrer, Westbury, Elias–Lauda.

Modern examples. Light leaves à la Libedinsky, light ladders à la Elias, bases of End(tilting) à la Andersen–Stroppel, KLR-type-bases à la Hu–Mathas, more...

Base change for T([1, 1]11) = ∆([1, 1]11)⊕∆([1,−1]11).

S = {c̃[1,1]11
, c̃[1,−1]11

}, c̃[1,1]11
and c̃[1,−1]11

are orthogonal idempotents .

T = {c[1,1]11
, c[1,−1]11

}, and relations to be found.

Base change matrix T → S is
(

1 0

1 κ−1/2

)
, where κ = [1,−1]11/[1, 0]11 = 10/11, gives

c2
[1,1]11

= (c̃[1,1]11
+ c̃[1,−1]11

)2 = c̃[1,1]11
+ c̃[1,−1]11

= c[1,1]11
,

c[1,1]11
c[1,−1]11

= c[1,−1]11
c[1,1]11

,
c2

[1,−1]11
= 11/10 · c̃[1,−1]11

= 0 mod 11 .

Thus, the endomorphism space is K[X ]/(X 2).

The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.
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Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.

The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.
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Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.

The SL3 fusion rules for ∆
(
(1, 0)

)
= C{ε1, ε0, ε−1}:

∆(λ)⊗∆
(
(1, 0)

) ∼= ∆(λ+(1, 0))⊕∆(λ+(−1, 1))⊕∆(λ+(0,−1)),

! +1

01

−1

, ! +1

01

−1

, ! +1

01

−1

.

Libedinsky–Patimo ∼2020. For any path π in the dominant Weyl chamber
define d(π) inductively by

ε+1 (f) : f 7→ f , ε01 (f) : f 7→ f

e∗
, ε−1 (f) : f 7→

f

e′

.

Flip to obtain u(π) and stick them together. This gives a tilting basis T of Web.

Back

There is of course the dual picture for the second fundamental
module – it is omitted to make this slide less cumbersome.

Examples (blue=“all positive”, red=“non-examples”).

Example for π = +1 +2 −102+1.

dπ = and d̃π =

21

22

12

and dπ =

21

22

12

From rank 2 onward you
have crossings since e.g.

∆((1, 0)) ⊗ ∆((0, 1)) ∼=
∆((0, 1)) ⊗ ∆((1, 0)) but 6=.

They are mostly harmless – ignore them for today.

The tilting characters, and thus the tilting projectors, are given by path folding.

Examples (blue=“leading summand”, green=“other summands”).

There is still much to do...

Thanks for your attention!
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Folklore, Lucas ∼1878. Let q ∈ K∗, qchar(K) = p, a = mp + a0 and
b = np + b0 (a0, b0 zeroth digit of the p-adic expansion). Then

[
a

b

]

q

=

(
m

n

)[
a0

b0

]

q

.

Philosophy. Only the vanishing order of
[
v
w

]
q

matters for this lecture ;-).

Corollary. We understand finite-dimensional modules for SL2 = SL2(K = K)

• generically;

• for the quantum group over C at q2` = 1;

• the quantum group over K, char(K) = p and q2` = 1 (mixed case);

• in prime characteristic char(K) = p.

Example/Remark.

K = Fp, q = 1 (known as characteristic p),
and a = [ar , ..., a0]p, b = [br , ..., b0]p (the p-adic expansions), then

(
a
b

)
=
[
a
b

]
q

=
[
ar
br

]
q
...
[
a0
b0

]
q

=
(
ar
br

)
...
(
a0
b0

)
.

Examples for a = 1331 = 113 and b = 1.

If K = C, q = 1, then qchar(K) = 0 and a = [1331]0

⇒ [1331]q = [1331]q does not vanish.

If K = C, q = exp(2πi/11), then qchar(K) = 11 and a = [112, 0]11

⇒ [1331]q = 112 · [0]q vanishes of order one.

If K = F13, q = 2, then qchar(K) = 6 and a = [1, 0, 0, 5, 5]6, a− 5 = [7, 11, 0]13

⇒ [1331]q = 7 · 11 · 0 · [5]q vanishes of order one.

If K = F11, q = 1, then qchar(K) = 11 and a = [1, 0, 0, 0]11

⇒ [1331]q = 1 · 0 · 0 · [0]q vanishes of order three.

I will stick with characteristic p, but

the quantum group is a “zeroth digit only” version of it;

the mixed cases is a mixture of the two.
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Weyl ∼1923. The SL2 Weyl modules ∆(v−1).

∆(1−1)

∆(2−1)

∆(3−1)

∆(4−1)

∆(5−1)

∆(6−1)

∆(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4

X5Y 0 X4Y 1 X3Y 2 X2Y 3 X1Y 4 X0Y 5

X6Y 0 X5Y 1 X4Y 2 X3Y 3 X2Y 4 X1Y 5 X0Y 6

(
a b
c d

)
7→ matrix who’s columns are expansions of (aX + cY )v−i (bX + dY )i−1.

The simples

Example ∆(7−1) = KX 6Y 0 ⊕ · · · ⊕KX 0Y 6.

( a b
c d ) acts as




a6 a5b a4b2 ... ... ... d6

6a5c 5a4bc+a5d 4a3b2c+2a4bd ... ... ... 6bd5

15a4c2 10a3bc2+5a4cd 6a2b2c2+8a3bcd+a4d2 ... ... ... 15b2d4

20a3c3 10a2bc3+10a3c2d 12a2bc2d+4a3cd2 ... ... ... 20b3d3

15a2c4 5abc4+10a2c3d b2c4+8abc3d+6a2c2d2 ... ... ... 15b4d2

6ac5 5ac4d+bc5 2bc4d+4ac3d2 ... ... ... 6b5d

c6 c5d c4d2 ... ... ... b6




The columns are expansions of (aX + cY )7−i (bX + dY )i−1. Binomials!

Example ∆(7−1), characteristic 0.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
6 ... ... ... ... ... 6

15 ... ... ... ... ... 15
20 ... ... ... ... ... 20
15 ... ... ... ... ... 15
6 ... ... ... ... ... 6
1 ... ... ... ... ... 1




No zeros ⇒ ∆(7−1) simple.

Example ∆(7−1), characteristic 5.

“( 1 1
1 1 )” acts as




1 ... ... ... ... ... 1
1 ... ... ... ... ... 1
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
1 ... ... ... ... ... 1
1 ... ... ... ... ... 1




We found a submodule.

When is ∆(v−1) simple?

∆(v−1) is simple

⇔
(
v−1
w−1

)
6= 0 for all w ≤ v

⇔ (Lucas’s theorem)

v = [ar , 0, ..., 0]p.

General.
Weyl ∆(λ) and dual Weyl ∇(λ)

are easy a.k.a. standard;
are parameterized by dominant integral weights;

are highest weight modules;
are defined over Z;

have the classical Weyl characters;
form a basis of the Grothendieck group unitriangular w.r.t. simples;

satisfy (a version of) Schur’s lemma dimK Exti (∆(λ),∇(µ)) = δi,0δλ,µ ;

are simple generically;
have a root-binomial-criterion to determine whether they are simple (Jantzen’s thesis ∼1973).
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Strategical interlude.

Start.

Define a category Web
by generators-relations.

How?

Find a standard basis S
of Web (splitting off ∆).

How?

Find a tilting basis T of
Web (splitting off T).

How?

Find an integral basis I
of Web.

How?

Prove Web ∼=Z Fund
(⊗-gen. by ∆(1)).

How?

Write down the base
change matrix S to T .

Why?

Make sure that there are
no poles.

Original sin

Goal achieved: T ilt via
generators and realtions.

Quiver

reduce mod p

General.
This strategy should work in types ABCD.

(I will zoom in on this in a second.)

What remains to be done?

No more sins!

What is the diagrammatic incarnation of the Frobenius ( a b
c d ) 7→

(
ap bp

cp dp

)
?

The mixed case will be easier but might be a pain to write down.

Up next: the first steps towards higher ranks,
i.e. let us try Uq(sl3) for q a primitive complex 2`th root of unity.
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The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Rumer–Teller–Weyl ∼1933, Elias ∼2015 à la Littelmann ∼1995. For any
path π in the dominant Weyl chamber define d(π) inductively by

ε1(f) : f 7→ f , ε−1(f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

General.
As long as you have a web calculus, this works in general.

Example.

Non-example.

Example (four boundary points).

General.
As long as you have a web calculus, this works in general,

e.g. Elias has explained how to define the highest weight projectors “ẽ”.

Example.

General.

As long as you know the tilting characters , this works in general

e.g. one can define the highest weight tilting projectors “e”.

Example.

The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Rumer–Teller–Weyl ∼1933, Elias ∼2015 à la Littelmann ∼1995. For any
path π in the dominant Weyl chamber define d(π) inductively by

ε1(f) : f 7→ f , ε−1(f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

General.
As long as you have a web calculus, this works in general.

Example.

Non-example.

Example (four boundary points).

General.
As long as you have a web calculus, this works in general,

e.g. Elias has explained how to define the highest weight projectors “ẽ”.

Example.

General.

As long as you know the tilting characters , this works in general

e.g. one can define the highest weight tilting projectors “e”.

Example.

Bases of hom
(
∆(1)⊗i ,∆(1)⊗j

)
.

The integral basis I .

• Defined over Z.

• Needed for the transi-
tion from characteris-
tic 0 to p.

• Algebraically:

∆(1)⊗i � wt(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
wt(λ) .

The standard basis S .

• Defined generically,
having poles.

• Artin–Wedderburn ba-
sis ⇒ trivial relations.

• Algebraically:

∆(1)⊗i � ∆(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

c̃ũ,d̃λ =
d̃

ũ
∆(λ) .

The tilting basis T .

• Defined generically,
but without poles.

• The one we want for
T ilt.

• Algebraically:

∆(1)⊗i � T(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
T(λ) .

Back

General.
This is a well-known strategy which works in quite some generality, e.g. for cellular categories à la Graham–Lehrer, Westbury, Elias–Lauda.

Modern examples. Light leaves à la Libedinsky, light ladders à la Elias, bases of End(tilting) à la Andersen–Stroppel, KLR-type-bases à la Hu–Mathas, more...

Base change for T([1, 1]11) = ∆([1, 1]11)⊕∆([1,−1]11).

S = {c̃[1,1]11
, c̃[1,−1]11

}, c̃[1,1]11
and c̃[1,−1]11

are orthogonal idempotents .

T = {c[1,1]11
, c[1,−1]11

}, and relations to be found.

Base change matrix T → S is
(

1 0

1 κ−1/2

)
, where κ = [1,−1]11/[1, 0]11 = 10/11, gives

c2
[1,1]11

= (c̃[1,1]11
+ c̃[1,−1]11

)2 = c̃[1,1]11
+ c̃[1,−1]11

= c[1,1]11
,

c[1,1]11
c[1,−1]11

= c[1,−1]11
c[1,1]11

,
c2

[1,−1]11
= 11/10 · c̃[1,−1]11

= 0 mod 11 .

Thus, the endomorphism space is K[X ]/(X 2).

The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.
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Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.

The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.

v

T

Δ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

0 1 2 3

1

4

0

5 6

4

7

3

8 9

7

10

6

11

5

12

10

6

4

13

9

7

3

14

2

15

13

3

1

16

12

4

0

17 18

16

19

15

20

14

21

19

15

13

22

18

16

12

23

11

24

22

12

10

25

21

13

9

26 27

25

28

24

29

23

30

28

24

22

31

27

25

21

32

20

33

31

21

19

34

30

22

18

35

17

36

34

18

16

37

33

19

15

38

32

20

14

39

37

33

31

21

19

15

13

40

36

34

30

22

18

16

12

41

29

23

11

42

40

30

28

24

22

12

10

43

39

31

27

25

21

13

9

44

8

45

43

9

7

46

42

10

6

47

41

11

5

48

46

42

40

12

10

6

4

49

45

43

39

13

9

7

3

50

38

14

2

51

49

39

37

15

13

3

1

52

48

40

36

16

12

4

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

.

Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.

The SL3 fusion rules for ∆
(
(1, 0)

)
= C{ε1, ε0, ε−1}:

∆(λ)⊗∆
(
(1, 0)

) ∼= ∆(λ+(1, 0))⊕∆(λ+(−1, 1))⊕∆(λ+(0,−1)),

! +1

01

−1

, ! +1

01

−1

, ! +1

01

−1

.

Libedinsky–Patimo ∼2020. For any path π in the dominant Weyl chamber
define d(π) inductively by

ε+1 (f) : f 7→ f , ε01 (f) : f 7→ f

e∗
, ε−1 (f) : f 7→

f

e′

.

Flip to obtain u(π) and stick them together. This gives a tilting basis T of Web.

Back

There is of course the dual picture for the second fundamental
module – it is omitted to make this slide less cumbersome.

Examples (blue=“all positive”, red=“non-examples”).

Example for π = +1 +2 −102+1.

dπ = and d̃π =

21

22

12

and dπ =

21

22

12

From rank 2 onward you
have crossings since e.g.

∆((1, 0)) ⊗ ∆((0, 1)) ∼=
∆((0, 1)) ⊗ ∆((1, 0)) but 6=.

They are mostly harmless – ignore them for today.

The tilting characters, and thus the tilting projectors, are given by path folding.

Examples (blue=“leading summand”, green=“other summands”).

There is still much to do...

Thanks for your attention!
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Weyl ∼1923. The SL2 simples L(v−1) in ∇(v−1) for p = 5.

∇(1−1) L(1−1)

∇(2−1) L(2−1)

∇(3−1) L(3−1)

∇(4−1) L(4−1)

∇(5−1) L(5−1)

∇(6−1) L(6−1)

∇(7−1) L(7−1)

X0Y 0

X1Y 0 X0Y 1

X2Y 0 X1Y 1 X0Y 2

X3Y 0 X2Y 1 X1Y 2 X0Y 3

X4Y 0 X3Y 1 X2Y 2 X1Y 3 X0Y 4
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Pascals triangle modulo p = 5 picks out the simples,
e.g. an unbroken east-west line is a Weyl module which is simple.

Picture from https://commons.wikimedia.org/wiki/File:Pascal_triangle_modulo_5.png

I should have told you that the zeros in the matrix
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1 ... ... ... ... ... 1
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
0 ... ... ... ... ... 0
1 ... ... ... ... ... 1
1 ... ... ... ... ... 1




are of order 1. Keeping track of these orders lets you pinpoint all simples.
I will come back to this for the tilting modules.
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“Schur’s tilting lemma a.k.a. Weyl clustering”.

In the Grothendieck group: [T(λ)] = [∆(λ)] +
∑
µ<λ

(
T(λ) : ∆(µ)

)
[∆(µ)].

Let T(λ) = ∆(λ)⊕⊕µ<λ

(
T(λ) : ∆(µ)

)
∆(µ), seen generically.

Philosophy. Never ever go to characteristic p – its too complicated. Work with
T(λ) instead, “the characteristic 0 cousin of T(λ)”.

Then

dimK End
(
T(λ)

)
= dimgen End

(
T(λ)

)
= 1 +

∑
µ<λ

(
T(λ) : ∆(µ)

)2
,

by Schur’s lemma. (Similarly for hom-spaces, of course.)

Back

Weyl clustering algorithm.

∆(1)k has the following tilting summands.

Take the highest appearing weight v − 1;
set T(v−1) =

⊕
w∈NDG ∆(w−1);

repeat.

T(v−1) vs. T(v−1).

The idempotents in End(T(v−1)) inducing
the splitting into summands have poles,

and T(v−1) does not split into Weyl factors.
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Rumer–Teller–Weyl ∼1932, Temperley–Lieb ∼1971, Kauffman ∼1987.
The category Web is the monoidal Z-linear category monoidally generated by

object generators : •, morphism generators : : 1→ •⊗2, : •⊗2 → 1,

relations : = −2, = = .

Y
f ↑
X

= ,
Z

g ↑
Y

= ,
Z

gf ↑
X

= .

Figure: Conventions and examples. The crossing is from “G. Rumer, E. Teller, H. Weyl. Eine für die Valenztheorie geeignete

Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1932),

Volume: 1932, pages 499–504.”.

Back

General.
For type A we have webs

à la Kuperberg ∼1997, Cautis–Kamnitzer–Morrison ∼2012.
For types BCD there are some partial results,

e.g. Brauer ∼1937, Kuperberg ∼1997,
Sartori ∼2017, Rose–Tatham ∼2020.
Outside of these types I do not even
expect our approach to work anyway.



The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Rumer–Teller–Weyl ∼1933, Elias ∼2015 à la Littelmann ∼1995. For any
path π in the dominant Weyl chamber define d(π) inductively by

ε1(f) : f 7→ f , ε−1(f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

General.
As long as you have a web calculus, this works in general.

Example.

Non-example.

Example (four boundary points).

General.
As long as you have a web calculus, this works in general,

e.g. Elias has explained how to define the highest weight projectors “ẽ”.

Example.

General.

As long as you know the tilting characters , this works in general

e.g. one can define the highest weight tilting projectors “e”.

Example.
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The SL2 fusion rules for ∆(1) = C{ε1, ε−1}:
∆(λ)⊗∆(1) ∼= ∆(λ+1)⊕∆(λ−1),

! ε1 , ! ε−1 .

Burrull–Libedinsky–Sentinelli ∼2019. For any path π in the dominant Weyl
chamber define d(π) inductively by

ε1(f) : f 7→
f

e i
, ε−1(f) : f 7→ f

e i−2

Flip to obtain u(π) and stick them together. This gives a tilting basis T of Web.
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In order to prove Web ∼= Fund we need

• a functor Γ: Web→ Fund defined integrally;

• an integral basis I of Web;

• that ∆(1) is tilting regardless of K (by a very general argument, which I
learned from Andersen–Stroppel ∼2015, this implies that hom-spaces in Fund
are flat);

• to prove fully faithfulness Γ generically.

Back

General.
The first, second and last bullet points are known in type A and should work more generally.

The third bullet point works verbatim for tensor products of any minuscule modules.
Example. Exterior powers of ∆(ω1) in type A

⇒ the Cautis–Kamnitzer–Morrison exterior web calculus works verbatim in characteristic p (as observed by Elias ∼2015).
Non-example. Symmetric powers of ∆(ω1) in type A

⇒ the Rose (Vaz–Wedrich) symmetric web calculus in characteristic p is still to be found.



Bases of hom
(
∆(1)⊗i ,∆(1)⊗j

)
.

The integral basis I .

• Defined over Z.

• Needed for the transi-
tion from characteris-
tic 0 to p.

• Algebraically:

∆(1)⊗i � wt(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
wt(λ) .

The standard basis S .

• Defined generically,
having poles.

• Artin–Wedderburn ba-
sis ⇒ trivial relations.

• Algebraically:

∆(1)⊗i � ∆(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

c̃ũ,d̃λ =
d̃

ũ
∆(λ) .

The tilting basis T .

• Defined generically,
but without poles.

• The one we want for
T ilt.

• Algebraically:

∆(1)⊗i � T(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
T(λ) .

Back

General.
This is a well-known strategy which works in quite some generality, e.g. for cellular categories à la Graham–Lehrer, Westbury, Elias–Lauda.

Modern examples. Light leaves à la Libedinsky, light ladders à la Elias, bases of End(tilting) à la Andersen–Stroppel, KLR-type-bases à la Hu–Mathas, more...

Base change for T([1, 1]11) = ∆([1, 1]11)⊕∆([1,−1]11).

S = {c̃[1,1]11
, c̃[1,−1]11

}, c̃[1,1]11
and c̃[1,−1]11

are orthogonal idempotents .

T = {c[1,1]11
, c[1,−1]11

}, and relations to be found.

Base change matrix T → S is
(

1 0

1 κ−1/2

)
, where κ = [1,−1]11/[1, 0]11 = 10/11, gives

c2
[1,1]11

= (c̃[1,1]11
+ c̃[1,−1]11

)2 = c̃[1,1]11
+ c̃[1,−1]11

= c[1,1]11
,

c[1,1]11
c[1,−1]11

= c[1,−1]11
c[1,1]11

,
c2

[1,−1]11
= 11/10 · c̃[1,−1]11

= 0 mod 11 .

Thus, the endomorphism space is K[X ]/(X 2).



Bases of hom
(
∆(1)⊗i ,∆(1)⊗j

)
.

The integral basis I .

• Defined over Z.

• Needed for the transi-
tion from characteris-
tic 0 to p.

• Algebraically:

∆(1)⊗i � wt(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:

cu,dλ =
d

u
wt(λ) .

The standard basis S .

• Defined generically,
having poles.

• Artin–Wedderburn ba-
sis ⇒ trivial relations.

• Algebraically:

∆(1)⊗i � ∆(λ) ↪→ ∆(1)⊗j.

• Bottleneck principle:
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Original sin. In order to get T(λ) I need to know the tilting characters.

So I cannot use the presentation of T ilt to say anything new about the objects,
a.k.a. tilting modules.

Figure: The quantum tilting characters for SL3, due to Soergel and Stroppel ∼1997.

Not much more is known in general, but there are some notable exceptions e.g.
Jensen ∼2000, Parker ∼2008, Lusztig–Williamson ∼2017.

Back



The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.
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Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.
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Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z3.

Back , Time is over, you fool

Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.

Continuing this periodically gives a quiver for T ilt in characteristic zero.

(This is the semisimple case: the quiver has to be boring.)

Example, generation 1, i.e. only two non-zero digit.

In this case the quiver is a bunch of type A graphs. The algebra is a zigzag algebra,
with arrows acting on the 0th digit.

Continuing this periodically gives a quiver for T ilt
for the quantum group at a complex root of unity (due to Andersen ∼2014).

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.

Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit,
and there are “squares commute” relations.

Continuing this periodically gives a quiver for projective G2T -modules
(due to Andersen ∼2019).

In general, Zp is basically a bunch of zigzag algebras
(there are scalars and a lower-order-error term, but never mind)

glued together in a fractal-way, according to the digits of v = [ar , ..., a0]p.



The result. There exists a K-algebra Zp defined as a (very explicit) quotient of the
path algebra of an infinite, fractal-like quiver. Let pMod-Zp denote the category of
finitely-generated, projective (right-)modules for Zp. There is an equivalence of
additive, K-linear categories

F : T ilt ∼=−→ pMod-Zp,

sending indecomposable tilting modules to indecomposable projectives.
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The SL3 fusion rules for ∆
(
(1, 0)

)
= C{ε1, ε0, ε−1}:

∆(λ)⊗∆
(
(1, 0)

) ∼= ∆(λ+(1, 0))⊕∆(λ+(−1, 1))⊕∆(λ+(0,−1)),

! +1

01

−1

, ! +1

01

−1

, ! +1

01

−1

.

Elias ∼2015 à la Littelmann ∼1995. For any path π in the dominant Weyl
chamber define d(π) inductively by

ε+1 (f) : f 7→ f , ε01 (f) : f 7→ f , ε−1 (f) : f 7→ f .

Flip to obtain u(π) and stick them together. This gives an integral basis I of Web.

Back

There is of course the dual picture for the second fundamental
module – it is omitted to make this slide less cumbersome.

Examples (blue=“all positive”, red=“non-examples”).

Example for π = +1 +2 −102+1.

dπ = and d̃π =

21

22

12

and dπ =

21

22

12

From rank 2 onward you
have crossings since e.g.

∆((1, 0)) ⊗ ∆((0, 1)) ∼=
∆((0, 1)) ⊗ ∆((1, 0)) but 6=.

They are mostly harmless – ignore them for today.

The tilting characters, and thus the tilting projectors, are given by path folding.

Examples (blue=“leading summand”, green=“other summands”).
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