On categories of tilting modules

Or: Mind your poles
Daniel Tubbenhauer

Joint with Paul Wedrich
August 2020

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and $b=n p+b_{0}\left(a_{0}, b_{0}\right.$ zeroth digit of the p-adic expansion). Then

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\binom{m}{n}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q}
$$

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and $b=n p+b_{0}$ (a_{0}, b_{0} zeroth digit of the p-adic expansion). Then

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\binom{m}{n}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q}
$$

Philosophy. Only the vanishing order of $\left[\begin{array}{l}v \\ w\end{array}\right]_{q}$ matters for this lecture ;-).

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and $b=n p+b_{0}\left(a_{0}, b_{0}\right.$ zeroth digit of the p-adic expansion). Then

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\binom{m}{n}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q}
$$

Philosophy. Only the vanishing order of $\left[\begin{array}{c}v \\ w\end{array}\right]_{q}$ matters for this lecture ;-).
Corollary. We understand finite-dimensional modules for $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K}=\overline{\mathbb{K}})$

- generically;
- for the quantum group over \mathbb{C} at $q^{2 \ell}=1$;
- the quantum group over $\mathbb{K}, \operatorname{char}(\mathbb{K})=p$ and $q^{2 \ell}=1$ (mixed case);
- in prime characteristic $\operatorname{char}(\mathbb{K})=p$.

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and $b=n p+b_{0}\left(a_{0}, b_{0}\right.$ zeroth digit of the p-adic expansion). Then

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\binom{m}{n}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q} .
$$

Philosophy. Only the vanishing order of $\left[\begin{array}{c}v \\ w\end{array}\right]_{q}$ matters for this lecture ;-).
Corollary. We understand finite-dimensional modules for $\mathrm{SL}_{2}=\mathrm{SL}_{2}(\mathbb{K}=\overline{\mathbb{K}})$

- generically;
- for the quantum group over \mathbb{C} at $q^{2 \ell}=1$;
- the quantum group over $\mathbb{K}, \operatorname{char}(\mathbb{K})=p$ and $q^{2 \ell}=1$ (mixed case);
- in prime characteristic $\operatorname{char}(\mathbb{K})=p$.

Example/Remark.

$$
\mathbb{K}=\overline{\mathbb{F}}_{p}, \boldsymbol{q}=1(\text { known as characteristic } p)
$$

$$
\text { and } a=\left[a_{r}, \ldots, a_{0}\right]_{p}, b=\left[b_{r}, \ldots, b_{0}\right]_{p} \text { (the } p \text {-adic expansions), then }
$$

$$
\binom{a}{b}=\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\left[\begin{array}{l}
a_{r} \\
b_{r}
\end{array}\right]_{q} \ldots\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q}=\binom{a_{r}}{b_{r}} \ldots\binom{a_{0}}{b_{0}} .
$$

Folklore, Lucas ~ 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and

Examples for $a=1331=11^{3}$ and $b=a-1$.

$$
\text { If } \begin{array}{rl}
\mathbb{K}=\mathbb{C}, q & q 1, \text { then } q \operatorname{char}(\mathbb{K})=0, a=[1331]_{0} \text { and } b=[1330]_{0} \\
& \Rightarrow\left[\begin{array}{l}
1331 \\
1330
\end{array}\right]_{q}=\binom{1331}{1330}=1331 \text { does not vanish. }
\end{array}
$$

If $\mathbb{K}=\mathbb{C}, q=\exp (2 \pi i / 11)$, then $q \operatorname{char}(\mathbb{K})=11, a=[121,0]_{11}$ and $b=[120,10]_{11}$ $\Rightarrow\left[\begin{array}{c}1331 \\ 1330\end{array}\right]_{q}=121 \cdot\left[\begin{array}{c}0 \\ 10\end{array}\right]_{q}$ vanishes of order one.

If $\mathbb{K}=\overline{\mathbb{F}}_{11}, q=3$, then $q \operatorname{char}(\mathbb{K})=5, a=[266,1]_{5}, b=[266,0]_{5}$ and $\frac{a-1}{5}=\frac{b}{5}=[2,2,2]_{11}$ $\Rightarrow[1331]_{q}=1 \cdot 1 \cdot 1 \cdot[1]_{q}$ does not vanish.

$$
\text { If } \mathbb{K}=\overline{\mathbb{F}}_{11}, q=1 \text {, then } q \operatorname{char}(\mathbb{K})=11, a=[1,0,0,0]_{11} \text { and } b=[0,10,10,10]_{11}
$$ $\Rightarrow[1331]_{q}=1 \cdot 0 \cdot 0 \cdot[0]_{q}$ vanishes of order three.

the quantum group over $\mathbb{N}, \operatorname{crar}(\mathbb{N})=p$ and $q^{-}=1$ (mixed case);

- in prime characteristic $\operatorname{char}(\mathbb{K})=p$.

Example/Remark.

$$
\mathbb{K}=\overline{\mathbb{F}}_{p}, \boldsymbol{q}=1(\text { known as characteristic } p),
$$

and $a=\left[a_{r}, \ldots, a_{0}\right]_{p}, b=\left[b_{r}, \ldots, b_{0}\right]_{p}$ (the p-adic expansions), then

$$
\binom{a}{b}=\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\left[\begin{array}{l}
a_{r} \\
b_{r}
\end{array}\right]_{q} \ldots\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
b_{0}
\end{array}\right]_{q}=\binom{a_{r}}{b_{r}} \ldots\binom{a_{0}}{b_{0}}}
\end{array}\right.
$$

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})=p, a=m p+a_{0}$ and $b=n p+b_{0}$ (a_{0}, b_{0} zeroth digit of the p-adic expansion). Then

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\binom{m}{n}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right]_{q} .
$$

Philosophy. Only the vanishing order of $\left[\begin{array}{c}v \\ w \\ w\end{array}\right]_{q}$ matters for this lecture ;-).
Corollary. W¢

- genericall
- for the q
- the quant stick with characteristic p, but
- the quantum group is a "zeroth digit only" version of it;
the mixed cases is a mixture of the two. ${ }^{2}(\mathbb{K}=\overline{\mathbb{K}})$
- in prime characteristic $\operatorname{char}(\mathbb{K})=p$.

Weyl ~1923. The SL_{2} Weyl modules $\Delta(v-1)$.

$$
\begin{aligned}
& \Delta(1-1) \\
& x^{0} y^{0} \\
& \Delta(2-1) \\
& X^{1} Y^{0} \quad X^{0} Y^{1} \\
& \Delta(3-1) \\
& x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2} \\
& \Delta(4-1) \quad x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} Y^{2} \quad x^{0} y^{3} \\
& \Delta(5-1) \\
& x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4} \\
& \Delta(6-1) \quad X^{5} Y^{0} \quad x^{4} Y^{1} \quad x^{3} Y^{2} \quad x^{2} Y^{3} \quad x^{1} Y^{4} \quad X^{0} Y^{5} \\
& \Delta(7-1) \quad x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} Y^{5} \quad x^{0} y^{6}
\end{aligned}
$$

Weyl

Example $\Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}$.

The columns are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!

$$
\begin{array}{lccccc}
\Delta(4-1) & x^{3} y^{0} \quad x^{2} y^{1} \quad x^{1} y^{2} \quad x^{0} y^{3} \\
\Delta(5-1) & x^{4} y^{0} \quad x^{3} y^{1} \quad x^{2} y^{2} \quad x^{1} y^{3} \quad x^{0} y^{4} \\
\Delta(6-1) & x^{5} y^{0} \quad x^{4} y^{1} \quad x^{3} y^{2} \quad x^{2} y^{3} \quad x^{1} y^{4} \quad x^{0} y^{5} \\
\Delta(7-1) & x^{6} y^{0} \quad x^{5} y^{1} \quad x^{4} y^{2} \quad x^{3} y^{3} \quad x^{2} y^{4} \quad x^{1} y^{5} \quad x^{0} y^{6}
\end{array}
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's columns are expansions of $(a X+c Y)^{v-i}(b X+d Y)^{i-1}$.

> Weyl
> Example $\Delta(7-1)=\mathbb{K} X^{6} Y^{0} \oplus \cdots \oplus \mathbb{K} X^{0} Y^{6}$.

The columns are expansions of $(a X+c Y)^{7-i}(b X+d Y)^{i-1}$. Binomials!
Example $\Delta(7-1)$, characteristic 0 .
$\Delta(4-1)$
$\Delta(5-1)$
$\Delta(6-1)$
$\Delta(7-1)$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ matrix who's

No zeros $\Rightarrow \Delta(7-1)$ simple.
Example $\Delta(7-1)$, characteristic 5.

We found a submodule.

Weyl ~1923. The SL_{2} WevL modules $\Delta(v-1)$

When is $\Delta(v-1)$ simple?

Ringel, Donkin \sim 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}$.

Tilting modules $\mathrm{T}(v-1)$

General.

These facts hold in general, and
the first bullet point is
the general definition.

- are those modules with a $\Delta(w-1)$ - and a $\nabla(w-1)$-filtration;
- are parameterized by dominant integral weights;
- are highest weight modules;
- satisfy reciprocity $(\mathrm{T}(v-1): \Delta(w-1))=(\mathrm{T}(v-1): \nabla(w-1))=\left[\Delta\left(w^{\prime}-1\right)\right.$: $\left.\mathrm{L}\left(v^{\prime}-1\right)\right]=\left[\nabla\left(w^{\prime}-1\right): \mathrm{L}\left(v^{\prime}-1\right)\right]$;
- form a basis of the Grothendieck group unitriangular w.r.t. simples;
- satisfy (a version of) Schur's lemma $\operatorname{dim}_{\mathbb{K}} \operatorname{Hom}(\mathrm{T}(v-1), \mathrm{T}(w-1))=$ $\sum_{x<\min (v, w)}(\mathrm{T}(v-1): \Delta(x-1))(\mathrm{T}(w-1): \nabla(x-1))$
- are simple generically;
- have a root-binomial-criterion to determine whether they are simple.

Let \mathcal{T} ilt be the category of tilting modules.
Goal. Describe \mathcal{T} ilt by generators and relations.

Ringel, Donkin \sim 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}$.

Tilting mod

- are tho
- are par
- are higt $k=\max \left\{\nu_{p}\left(\binom{v-1}{w-1}\right), w \leq v\right\}$. (Order of vanishing of $\binom{v-1}{w-1}$.)
- satisfy $\mathrm{L}\left(v^{\prime}-1\right.$
- form a
- satisfy
\sum_{x}
- are simple
- have a roo

Let \mathcal{T} ilt be the

$$
\begin{gathered}
\binom{v-1}{w-1}=(H U G E)=[\ldots, \neq 0,0,0,0,0]_{11} . \\
\Rightarrow \mathrm{T}(220540-1) \text { has } 2^{4} \text { Weyl factors. }
\end{gathered}
$$

Ringel, Donkin \sim 1991. The indecomposable SL_{2} tilting modules $\mathrm{T}(v-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}$.

Tilting modules $\mathrm{T}(v-1)$

- are those modules with a $\Delta(w-1)$ - and a $\nabla(w-1)$-filtration;
- Which Weyl factors does $\mathrm{T}(v-1)$ have a.k.a. the negative digits game?
- Weyl factors of $\mathrm{T}(v-1)$ are
$\Delta\left(\left[a_{r}, \pm a_{r-1}, \ldots, \pm a_{0}\right]_{p}-1\right)$ where $v=\left[a_{r}, \ldots, a_{0}\right]_{p}$.
- satisfy (a version of) Schur's lemma $\operatorname{dim}_{\mathbb{K}} \operatorname{Hom}(\mathrm{T}(v-1), \mathrm{T}(w-1))=$ $\sum_{x<\min (v, w}$
- are simple
- have a root

Example $\mathrm{T}(220540-1)$ for $p=11$?

$$
v=220540=[1,4,0,7,7,1]_{11} ;
$$

has Weyl factors $[1, \pm 4,0, \pm 7, \pm 7, \pm 1]_{11}$;
Let \mathcal{T} ilt be the

$$
\text { e.g. } \Delta\left(218690=[1,4,0,-7,-7,-1]_{11}-1\right) \text { appears. s. }
$$

Strategical interlude.

Strategical interlude.

Start.

What remains to be done?

No more sins!
What is the diagrammatic incarnation of the Frobenius $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{cc}a^{p} & b^{p} \\ c^{p} & d^{p}\end{array}\right)$?
The mixed case will be easier but might be a pain to write down.
Up next: the first steps towards higher ranks, i.e. let us try $U_{q}\left(\mathfrak{s l}_{3}\right)$ for q a primitive complex 2ℓ th root of unity.

Strategical interlude.

Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^{*}, q \operatorname{char}(\mathbb{K})-p_{,} a-m p+a_{0}$ and
$b=n p+b_{0}\left(z_{s}, b_{0}\right.$ zeroth digitit of the $p-a d i$ expansion $)$ Then

$$
\left[\begin{array}{l}
\vec{b} \\
b
\end{array}\right]_{G}-\binom{m}{n}\left[\begin{array}{l}
\infty 0 \\
b_{0}
\end{array}\right]_{q}
$$

Philosophy. Only the vanishing order of $[0,]_{q}$ matters for thes lecture ;
Corollary. We understand finite-dimensional modules for $\mathrm{SL}_{2}-\mathrm{SL}_{2}(\mathrm{~K}-\mathbb{K})$

- generically.
- for the quantum group over C at $\mathrm{q}^{2 x}-1$
- the quantum group over X , char($(\mathbb{K})-\rho$ and $4^{2 x}-1$ (mixed case):
- in prime characteristic thar(K) $-\rho$.

$$
\begin{aligned}
& \Delta(\lambda) \otimes \Delta(1) \approx \Delta(\lambda+1) \oplus \Delta(\lambda-1), \\
& \mid \cdots \longrightarrow c_{1}, \frown
\end{aligned}
$$

The SL, fivion rules for $\Delta(1)=\mathrm{C}(5,8)=1$

Rumer-Teller-Weyl ~ 1933, Elias ~ 2015 a la Littelmann \sim 1995. For any path π in the dominant Weyt chamber define d(a) inductively by

$$
s_{1}(f): \square \Rightarrow \square \mid \quad \sigma_{-1}(f): \square \square \square
$$

Flip to obtion $\mathrm{u}(\pi)$ and stick them together. This gives an integral basis / of Wech. ω

The result. There oxists a K -algetra Z_{p} defined as a (very explicit) quotient of the
 additione, K-linear categgric

sending indecomposable tilting modules to indecamposable projectives.

Figure: The full stiquiver contiming the first 53 vertices of the quiver undertying z \rightarrow antor

```
Weyl \(\sim\) 1923. The SLL Weyl modules \(\Delta(v-1)\).
Weyl ~1923. The SLI Weyl modules \(\Delta(v-1)\).
\(\left(\begin{array}{l}\therefore \\ f \\ d\end{array}\right) \mapsto\) matrix who's columus are expansons of \((a X+c Y)^{w-1}(b X+d Y)^{\gamma-1}\).
```


Strategical intertude.

Bases of hom $\left(\Delta(1)^{i}, \Delta(1)^{(6)}\right)$.
The integral hasis). The standard basis 5 . The tilting basis T. - Defined over $Z \quad$ - Defined generically, - Defined generically

- Nexded for the trans.
having poles. - Needed for the trans. having poles.
tion from charateris. Aut without poles.

- Algetraicallyr - Algebraically: Algebraically:
- Bottleneck principle: - Bottleneck principle: - Bottleneck principle:

There is still much to do...

$$
\begin{aligned}
& \text { The SLL fusion rules for } \Delta(1)-C\left(c_{1}, c_{-1}\right): \\
& \qquad \Delta(\lambda) \otimes \Delta(1) \approx \Delta(\lambda+1) \oplus \Delta(\lambda-1),
\end{aligned}
$$

Rumer-Teller-Weyl ~ 1933, Elias ~ 2015 a la Littelmann \sim 1995. For any path π in the dominant Weyt chamber define $d(\pi)$ inductively by

$$
s_{1}(f): \square \Rightarrow \square \mid \quad \sigma_{-3}(f): \square \square \square
$$

fip to obtion $u(\pi)$ and stick them together. This gives an integral basis / of Webl. \Leftrightarrow

The result. There oxists a K -algetra Z_{p} defined as a (very explicit) quotient of the path algete of zo infinite fracta-like quiver. Let p Mod. Z_{p} p denoce the categoy of additime, K-linear categorics

sending indecomposable tilting modules to indecamposable projectives.

Figure: The full stiquiver contiming the first 53 vertices of the quiver undertying z \rightarrow Com

Bases of hom $\left(\Delta(1)^{1}, \Delta(1)^{-\pi}\right)$.
The integral hasis). The standard basis 5 . The tilting basis T. - Defined over Z

- Neded for the trans. . Defined genenically, - Devined gening poles. $\begin{aligned} & \text { benerically } \\ & \text { but without poles. }\end{aligned}$ - Needed for the trans. having poles.
tion from characteris. Aut without poles. tion from chatacteris. Artin-Medderourn \rightarrow. The
tic 0 to ρ.
- Algetraicallyr - Agebraically: - Algebraically:
- Bottleneck principle: - Bottleneck principle: - Bottleneck principle:
-

Thanks for your attention!

Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\nabla(v-1)$ for $p=5$.

$\nabla(7-1)$ has $\mathrm{L}(7-1)$ and $\mathrm{L}(3-1)$. Note $7=[1,2]_{5}$ and $3=[3,-2]_{5}$.

Weyl \sim 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\nabla(v-1)$ for $p=5$.

Pascals triangle modulo $p=5$ picks out the simples, e.g. an unbroken east-west line is a Weyl module which is simple.

[^0]Weyl ~ 1923. The SL_{2} simples $\mathrm{L}(v-1)$ in $\nabla(v-1)$ for $p=5$.

$$
x^{2} y^{0} \quad x^{1} y^{1} \quad x^{0} y^{2}
$$

$\nabla(7-1)$ has $L(7-1)$ and $L(3-1)$. Note $7=[1,2]_{5}$ and $3=[3,-2]_{5}$.
"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendieck group: $[\mathrm{T}(\lambda)]=[\Delta(\lambda)]+\sum_{\mu<\lambda}(\mathrm{T}(\lambda): \Delta(\mu))[\Delta(\mu)]$.
Let $\overline{\mathrm{T}}(\lambda)=\Delta(\lambda) \oplus \bigoplus_{\mu<\lambda}(\mathrm{T}(\lambda): \Delta(\mu)) \Delta(\mu)$, seen generically.
Philosophy. Never ever go to characteristic p - its too complicated. Work with $\overline{\mathrm{T}}(\lambda)$ instead, "the characteristic 0 cousin of $\mathrm{T}(\lambda)$ ".

Then

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{End}(\mathrm{T}(\lambda))=\operatorname{dim}_{\text {gen }} \operatorname{End}(\overline{\mathrm{T}}(\lambda))=1+\sum_{\mu<\lambda}(\mathrm{T}(\lambda): \Delta(\mu))^{2},
$$

by Schur's lemma. (Similarly for hom-spaces, of course.)
"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendif	Weyl clustering algorithm.	A) : $\Delta(\mu))[\Delta(\mu)]$.
Let $\overline{\mathrm{T}}(\lambda)=\Delta(\lambda) \oplus ¢$	$\Delta(1)^{k}$ has the following tilting summands.	ly.
Philosophy. Never $\overline{\mathrm{T}}(\lambda)$ instead, "the ch	Take the highest appearing weight $v-1$; $\text { set } \overline{\mathrm{T}}(v-1)=\underset{\text { repeat. }}{\bigoplus_{w \in \text { NDG }} \Delta(w-1) ;}$	plicated. Work with

Then

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{End}(\mathrm{T}(\lambda))=\operatorname{dim}_{\operatorname{gen}} \operatorname{End}(\overline{\mathrm{T}}(\lambda))=1+\sum_{\mu<\lambda}(\mathrm{T}(\lambda): \Delta(\mu))^{2},
$$

by Schur's lemma. (Similarly for hom-spaces, of course.)
"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendif Let $\overline{\mathrm{T}}(\lambda)=\Delta(\lambda) \oplus$	Weyl clustering algorithm. $\Delta(1)^{k}$ has the following tilting summands.	A) : $\Delta(\mu))[\Delta(\mu)]$. ly.
Philosophy. Never $\overline{\mathrm{T}}(\lambda)$ instead, "the ol	Take the highest appearing weight $v-1$; set $\overline{\mathrm{T}}(v-1)=\underset{w \in \text {. }}{\substack{ \\\text { repeat. }}} \begin{gathered}\text {. }\end{gathered}$	plicated. Work with

Then

$$
\begin{aligned}
& \mathrm{T}(v-1) \text { vs. } \overline{\mathrm{T}}(v-1) . \\
& \left.\left.\begin{array}{c}
\operatorname{Tim}(v-1) \text { vs. } \bar{T}(v-1) . \\
\text { ur's lemma. } \begin{array}{c}
\text { The idempotents in } \operatorname{End}(\bar{T}(v-1)) \text { inducing } \\
\text { the splitting into summands have poles, } \\
\text { and } \mathrm{T}(v-1) \text { does not split into Weyl factors. }
\end{array} \\
\text { and }
\end{array} \right\rvert\, \lambda(\mu)\right)^{2},
\end{aligned}
$$

Rumer-Teller-Weyl ~1932, Temperley-Lieb ~ 1971, Kauffman ~ 1987.

The category \mathcal{W} eb is the monoidal \mathbb{Z}-linear category monoidally generated by

$$
\text { object generators : } \bullet, \quad \text { morphism generators }: ~ \frown: \mathbb{1} \rightarrow \bullet^{\otimes 2}, \bigcup_{\bullet} \bullet^{\otimes 2} \rightarrow \mathbb{1} \text {, }
$$

Figure: Conventions and examples. The crosing is from "G. Rumer, E. Teler., H. Weyl. Eine firi die Valenztheorie geeignete
Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1932),

The SL_{2} fusion rules for $\Delta(1)=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{-1}\right\}$:

$$
\begin{aligned}
& \Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1), \\
& \mid \longrightarrow \varepsilon_{1}, \curvearrowleft \rightsquigarrow \varepsilon_{-1} \longleftarrow .
\end{aligned}
$$

Rumer-Teller-Weyl \sim 1933, Elias ~ 2015 à la Littelmann \sim 1995. For any path π in the dominant Weyl chamber define $\mathrm{d}(\pi)$ inductively by

$$
\varepsilon_{1}(\mathrm{f}): \mathrm{f} \mapsto \square \mathrm{f} \mid, \quad \varepsilon_{-1}(\mathrm{f}): \square \mathrm{f} \mapsto \square \mathrm{f} .
$$

Flip to obtain $\mathrm{u}(\pi)$ and stick them together. This gives an integral basis / of \mathcal{W} eb.

Example.

The SL_{2} fusion rul

$$
\pi=\varepsilon_{1} \varepsilon_{1} \varepsilon_{-1} \varepsilon_{1}
$$

Non-example.

1995. For any path π in the dom

Example (four boundary points).

$$
\begin{aligned}
& \pi_{1}=\varepsilon_{1} \varepsilon_{1} \varepsilon_{1} \varepsilon_{1} \\
& \pi_{2}=\varepsilon_{1} \varepsilon_{-1} \varepsilon_{1} \varepsilon_{1}, \quad \pi_{3}=\varepsilon_{1} \varepsilon_{1} \varepsilon_{-1} \varepsilon_{1}, \quad \pi_{4}=\varepsilon_{1} \varepsilon_{1} \varepsilon_{1} \varepsilon_{-1} \\
& \pi_{5}=\varepsilon_{1} \varepsilon_{-1} \varepsilon_{1} \varepsilon_{-1}, \quad \pi_{6}=\varepsilon_{1} \varepsilon_{1} \varepsilon_{-1} \varepsilon_{-1}
\end{aligned}
$$

$$
\mathrm{d}\left(\pi_{1}\right)=|\quad| 1
$$

$$
\mathrm{d}\left(\pi_{2}\right)=\curvearrowleft \mathrm{d}\left(\pi_{3}\right)=\curvearrowright\left(\mathrm{d}\left(\pi_{4}\right)=\right.
$$

$$
\mathrm{d}\left(\pi_{5}\right)=\curvearrowleft \curvearrowright \mathrm{d}\left(\pi_{6}\right)=\curvearrowleft \curvearrowleft .
$$

The SL_{2} fusion rules for $\Delta(1)=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{-1}\right\}$:

$$
\begin{aligned}
& \Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1), \\
& \mid \text { in } \longrightarrow \varepsilon_{1}, \quad \curvearrowleft \text { tu } \varepsilon_{-1} \longleftarrow .
\end{aligned}
$$

Jones \sim 1985, Wenzl ~ 1989, Cooper-Hogancamp \sim 2012. For any path π in the dominant Weyl chamber define $\tilde{d}(\pi)$ inductively by

Flip to obtain $\tilde{\mathrm{u}}(\pi)$ and stick them together. This gives a standard basis S of \mathcal{W} eb.

Flip to obtain $\tilde{\mathrm{u}}(\pi)$ and stick them together. This gives a standard basis S of \mathcal{W} eb.

The SL_{2} fusion rules for $\Delta(1)=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{-1}\right\}$:

$$
\begin{aligned}
& \Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1), \\
& \mid \text { in } \longrightarrow \varepsilon_{1}, \quad \curvearrowleft \text { tu } \varepsilon_{-1} \longleftarrow .
\end{aligned}
$$

Burrull-Libedinsky-Sentinelli ~2019. For any path π in the dominant Weyl chamber define $\overline{\mathrm{d}}(\pi)$ inductively by

Flip to obtain $\overline{\mathrm{u}}(\pi)$ and stick them together. This gives a tilting basis T of \mathcal{W} eb.

General.

The SL_{2} fusion rules for $\Delta(1)=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{-1}\right\}$:

In order to prove \mathcal{W} eb $\cong \mathcal{F}$ und we need

- a functor $\Gamma: \mathcal{W}$ eb $\rightarrow \mathcal{F}$ und defined integrally;
- an integral basis / of \mathcal{W} eb;
- that $\Delta(1)$ is tilting regardless of \mathbb{K} (by a very general argument, which I learned from Andersen-Stroppel ~ 2015, this implies that hom-spaces in \mathcal{F} und are flat);
- to prove fully faithfulness 「 generically.

General.

The first, second and last bullet points are known in type A and should work more generally.
The third bullet point works verbatim for tensor products of any minuscule modules.
Example. Exterior powers of $\Delta\left(\omega_{1}\right)$ in type A
\Rightarrow the Cautis-Kamnitzer-Morrison exterior web calculus works verbatim in characteristic p (as observed by Elias ~ 2015).
Non-example. Symmetric powers of $\Delta\left(\omega_{1}\right)$ in type A
\Rightarrow the Rose (Vaz-Wedrich) symmetric web calculus in characteristic p is still to be found.

Bases of hom $\left(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j}\right)$.

The integral basis I.

- Defined over \mathbb{Z}.
- Needed for the transition from characteristic 0 to p.
- Algebraically:

$$
\Delta(1)^{\otimes i} \rightarrow \mathrm{wt}(\lambda) \hookrightarrow \Delta(1)^{\otimes j} .
$$

- Bottleneck principle:

$$
c_{\lambda}^{\mathrm{u}, \mathrm{~d}}=-\frac{\mathrm{u}}{\mathrm{~d}} \mathrm{wt}(\lambda) .
$$

The standard basis S.

- Defined generically, having poles.
- Artin-Wedderburn basis \Rightarrow trivial relations.
- Algebraically:

$$
\Delta(1)^{\otimes i} \rightarrow \Delta(\lambda) \hookrightarrow \Delta(1)^{\otimes j} \text {. }
$$

- Bottleneck principle:

$$
\tilde{\mathrm{c}}_{\lambda}^{\tilde{u}, \tilde{\mathrm{~d}}}=--\frac{\tilde{\mathrm{u}}}{\tilde{\mathrm{~d}}}-\Delta(\lambda) .
$$

The tilting basis T.

- Defined generically, but without poles.
- The one we want for \mathcal{T} ilt.
- Algebraically:

$$
\Delta(1)^{\otimes i} \rightarrow \overline{\mathrm{~T}}(\lambda) \hookrightarrow \Delta(1)^{\otimes j} .
$$

- Bottleneck principle:

$$
\overline{\mathrm{c}}_{\lambda}^{\overline{\mathrm{u}}, \overline{\mathrm{~d}}}=-\frac{\overline{\mathrm{u}}}{\overline{\mathrm{~d}}}=\overline{\mathrm{T}}(\lambda)
$$

General.

This is a well-known strategy which works in quite some generality, e.g. for cellular categories à la Graham-Lehrer, Westbury, Elias-Lauda. Modern examples. Light leaves à la Libedinsky, light ladders à la Elias, bases of End(tilting) à la Andersen-Stroppel, KLR-type-bases à la Hu-Mathas, more..

Bases of $\operatorname{hom}\left(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j}\right)$.

$$
\text { Base change for } \overline{\mathrm{T}}\left([1,1]_{11}\right)=\Delta\left([1,1]_{11}\right) \oplus \Delta\left([1,-1]_{11}\right)
$$

$S=\left\{\tilde{\mathrm{c}}_{[1,1]_{11}}, \tilde{\mathrm{c}}_{[1,-1]_{11}}\right\}, \tilde{\mathrm{c}}_{[1,1]_{11}}$ and $\tilde{\mathrm{c}}_{[1,-1]_{11}}$ are orthogonal idempotents.

$$
T=\left\{\overline{\mathrm{c}}_{[1,1]_{11}}, \overline{\mathrm{c}}_{[1,-1]_{11}}\right\}, \text { and relations to be found. }
$$

Base change matrix $T \rightarrow S$ is $\left(\begin{array}{cc}1 & 0 \\ 1 & \kappa^{-1 / 2}\end{array}\right)$, where $\kappa=[1,-1]_{11} /[1,0]_{11}=10 / 11$, gives

$$
\begin{gathered}
\overline{\mathrm{c}}_{[1,1]_{11}}^{2}=\left(\tilde{\mathrm{c}}_{[1,1]_{11}}+\tilde{\mathrm{c}}_{[1,-1]_{11}}\right)^{2}=\tilde{\mathrm{c}}_{[1,1]_{11}}+\tilde{\mathrm{c}}_{[1,-1]_{11}}=\overline{\mathrm{c}}_{[1,1]_{11}} \\
\overline{\mathrm{c}}_{[1,1]_{11}} \overline{\mathrm{c}}_{[1,-1]_{11}}=\overline{\mathrm{c}}_{[1,-1]_{11}} \overline{\mathrm{c}}_{[1,1]_{11}} \\
\overline{\mathrm{c}}_{[1,-1]_{11}}^{2}=11 / 10 \cdot \tilde{\mathrm{c}}_{[1,-1]_{11}}=0 \bmod 11
\end{gathered}
$$

Thus, the endomorphism space is $\mathbb{K}[X] /\left(X^{2}\right)$.

Original sin. In order to get $\overline{\mathrm{T}}(\lambda)$ I need to know the tilting characters.

So I cannot use the presentation of \mathcal{T} ilt to say anything new about the objects, a.k.a. tilting modules.

Figure: The quantum tilting characters for SL_{3}, due to Soergel and Stroppel ~ 1997.
Not much more is known in general, but there are some notable exceptions e.g. Jensen ~2000, Parker ~2008, Lusztig-Williamson ~2017.

The result. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p}$ denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additive, \mathbb{K}-linear categories

$$
\mathcal{F}: \mathcal{T} \text { ilt } \xlongequal{\cong} \mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p},
$$

sending indecomposable tilting modules to indecomposable projectives.

Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

The result. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p}$ denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additiv Example, generation 0, i.e. only one non-zero digit.

In this case the quiver has no edges.
sendin
Continuing this periodically gives a quiver for \mathcal{T} ilt in characteristic zero.
(This is the semisimple case: the quiver has to be boring.)

Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component
of the quiver is a bunch of type A graphs glued together in a matrix-grid.
Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1 digit, and there are "squares commute" relations.

Continuing this periodically gives a quiver for projective $G_{2} T$-modules (due to Andersen ~2019).

The result. There exists a \mathbb{K}-algebra Z_{p} defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $\mathrm{p} \mathcal{M o d}-\mathrm{Z}_{p}$ denote the category of finitely-generated, projective (right-)modules for Z_{p}. There is an equivalence of additive, \mathbb{K}-linear categories

$$
\mathcal{F}: \mathcal{T} \text { ilt } \xlongequal{\leftrightarrows} \mathrm{p} \text { Mod- } \mathrm{Z}_{0},
$$

In general, Z_{p} is basically a bunch of zigzag algebras

sendin | (there are scalars and a lower-order-error term, but never mind) |
| :---: |
| glued together in a fractal-way, according to the digits of $v=\left[a_{r}, \ldots, a_{0}\right]_{\rho}$. |

Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_{3}.

The SL_{3} fusion rules for $\Delta((1,0))=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{0}, \varepsilon_{-1}\right\}$:

$$
\Delta(\lambda) \otimes \Delta((1,0)) \cong \Delta(\lambda+(1,0)) \oplus \Delta(\lambda+(-1,1)) \oplus \Delta(\lambda+(0,-1))
$$

Elias $\boldsymbol{\sim}$ 2015 à la Littelmann \sim 1995. For any path π in the dominant Weyl chamber define $\mathrm{d}(\pi)$ inductively by

Flip to obtain $\mathrm{u}(\pi)$ and stick them together. This gives an integral basis $/$ of \mathcal{W} eb.

There is of course the dual picture for the second fundamental module - it is omitted to make this slide less cumbersome.

The SL_{3} fusion rules for $\Delta((1,0))=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{0}, \varepsilon_{-1}\right\}$:

$$
\Delta(\lambda) \otimes \Delta((1,0)) \cong \Delta(\lambda+(1,0)) \oplus \Delta(\lambda+(-1,1)) \oplus \Delta(\lambda+(0,-1))
$$

Kuperberg $\sim \mathbf{1 9 9 5}$, $\operatorname{Kim} \sim \mathbf{2 0 0 6}$, Elias $\sim \mathbf{2 0 1 5}$. For any path π in the dominant Weyl chamber define $\tilde{\mathrm{d}}(\pi)$ inductively by

Flip to obtain $\tilde{u}(\pi)$ and stick them together. This gives a standard basis S of \mathcal{W} eb.

The SL_{3} fusion rules for $\Delta((1,0))=\mathbb{C}\left\{\varepsilon_{1}, \varepsilon_{0}, \varepsilon_{-1}\right\}$:

$$
\Delta(\lambda) \otimes \Delta((1,0)) \cong \Delta(\lambda+(1,0)) \oplus \Delta(\lambda+(-1,1)) \oplus \Delta(\lambda+(0,-1))
$$

Libedinsky-Patimo $\boldsymbol{\sim}$ 2020. For any path π in the dominant Weyl chamber define $\overline{\mathrm{d}}(\pi)$ inductively by

Flip to obtain $\overline{\mathrm{u}}(\pi)$ and stick them together. This gives a tilting basis T of \mathcal{W} eb.

The tilting characters, and thus the tilting projectors, are given by path folding.
Examples (blue="leading summand", green="other summands").

Flip to obtain $\overline{\mathrm{u}}(\pi)$ and stick them together. This gives a tilting basis T of \mathcal{W} eb.

[^0]: Picture from https://commons.wikimedia.org/wiki/File:Pascal_triangle_modulo_5.png

