# 2-representations of Soergel bimodules—dihedral case

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer



Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

September 2019

Let  $A(\Gamma)$  be the adjacency matrix of a finite, connected, loopless graph  $\Gamma$ . Let  $U_{e+1}(X)$  be the  $\bullet$  Chebyshev polynomial.

Let  $A(\Gamma)$  be the adjacency matrix of a finite, connected, loopless graph  $\Gamma$ . Let  $U_{e+1}(X)$  be the  $\bigcirc$  Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{\begin{array}{c}1 & 3 & 2\\ \bullet & \bullet & \bullet\end{array}}_{\bullet} \xrightarrow{A(A_{3})} = \begin{pmatrix}0 & 0 & 1\\ 0 & 0 & 1\\ 1 & 1 & 0\end{pmatrix} \xrightarrow{A(A_{3})} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

Let  $A(\Gamma)$  be the adjacency matrix of a finite, connected, loopless graph  $\Gamma$ . Let  $U_{e+1}(X)$  be the  $\bigcirc$  Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{1 \qquad 3 \qquad 2}_{\bullet} \longrightarrow A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$

$$D_{4} = \underbrace{1 \qquad 4}_{A_{3}} \longrightarrow A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

Let  $A(\Gamma)$  be the adjacency matrix of a finite, connected, loopless graph  $\Gamma$ . Let  $U_{e+1}(X)$  be the  $\bigcirc$  Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \frac{1}{2} \xrightarrow{3}{2} \xrightarrow{2}{} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6})) \qquad \checkmark \text{ for } e = 2$$

$$D_{4} = \underbrace{1}_{4} \xrightarrow{4}_{3} \xrightarrow{} A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$\checkmark \text{ for } e = 4$$



## A bit of motivation

### **2** Dihedral (2-)representation theory

- Classical vs. N-representation theory
- Dihedral  $\mathbb{N}$ -representation theory
- Categorified picture

#### 3 Non-semisimple fusion rings

- The asymptotic limit
- The limit  $v \to 0$  of the  $\mathbb{N}$ -representations
- Beyond

## $\mathfrak{g}$ semisimple Lie algebra gives $\mathcal{O} \supset \mathcal{O}_0$ . Bernšteĭn–Gel'fand ~1980. Projective functors $\mathcal{P}$ act on $\mathcal{O}_0$ and

 $\mathcal{O}_0 \curvearrowleft \mathcal{P} \xrightarrow{\mathsf{decat.}} \mathbb{Z}[W] \curvearrowleft \mathbb{Z}[W]$ 

categorifies the regular representation of the associated Weyl group W. Aside. Add grading and get Hecke algebra.

List of properties.

- ▶  $\mathcal{O} \cong A\text{-}p\mathcal{M}od$  for A a finite-dimensional algebra. "Finitary 2-module"

Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.

| g semisimple |                                                                                                         |   |
|--------------|---------------------------------------------------------------------------------------------------------|---|
| Bernšteĭn–   | $\mathfrak{q} = \mathfrak{sl}_m.$                                                                       |   |
|              | $y = x_m$ .                                                                                             |   |
| categorifies | 2-simples are in 1:1 correspondence with simples of $W = S_m$ .<br>Beyond this case not much was known. | , |
| Aside. Add   | Beyond this case not much was known.<br>grading and get Hecke algebra.                                  | • |

List of properties.

- ▶ P is additive, Krull-Schmidt, C-linear and monoidal, has finitely many indecomposables, and Hom-spaces are finite-dimensional. An adjoint of a projective functor is a projective functor. "Finitary/fiat acting 2-category"
- $\blacktriangleright~\mathcal{O}\cong A\text{-}p\mathcal{M}od$  for A a finite-dimensional algebra. "Finitary 2-module"

Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.





 $\mathfrak{g}$  semisimple Lie algebra gives  $\mathcal{O} \supset \mathcal{O}_0$ . Bernšteĭn–Gel'fand ~1980. Projective functors  $\mathcal{P}$  act on  $\mathcal{O}_0$  and

 $\mathcal{O}_0 \curvearrowleft \mathcal{P} \xrightarrow{\mathsf{decat.}} \mathbb{Z}[W] \curvearrowleft \mathbb{Z}[W]$ 

categorifies the regular representation of the associated Weyl group W. Aside. Add grading and get Hecke algebra.



Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

**Idea (Coxeter**  $\sim$ **1934**++**). Example.** These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:



$$W_{e+2} = \langle \mathbf{s} | \mathbf{Fact. The symmetries are given by exchanging flags.}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle,$$
  
e.g.:  $W_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle$ 



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &\text{e.g.:} \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$





$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = \mathbf{1}, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g.: \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$



#### Dihedral representation theory on one slide.

The Bott–Samelson (BS) generators  $b_s = s + 1, b_t = t + 1$ . There is also a Kazhdan–Lusztig (KL) basis  $c_w$ . We will nail it down later.

 $\textbf{One-dimensional modules.} \ \ M_{\lambda_{s},\lambda_{t}},\lambda_{s},\lambda_{t}\in\mathbb{C}, b_{s}\mapsto\lambda_{s},b_{t}\mapsto\lambda_{t}.$ 

| $e \equiv 0 \mod 2$                  | $e \not\equiv 0 \mod 2$ |
|--------------------------------------|-------------------------|
| $M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2}$ | $M_{0,0}, M_{2,2}$      |

**Two-dimensional modules.**  $M_z, z \in \mathbb{C}, b_s \mapsto \begin{pmatrix} 2 & z \\ 0 & 0 \end{pmatrix}, b_t \mapsto \begin{pmatrix} 0 & 0 \\ \overline{z} & 2 \end{pmatrix}$ .

| $e \equiv 0 \mod 2$                                  | $e \not\equiv 0 \mod 2$                      |
|------------------------------------------------------|----------------------------------------------|
| $\mathbf{M}_{z}, z \in \mathbf{V}_{e}^{\pm} - \{0\}$ | $\mathrm{M}_{z}, z \in \mathrm{V}_{e}^{\pm}$ |

 $V_e = \operatorname{roots}(U_{e+1}(X))$  and  $V_e^{\pm}$  the  $\mathbb{Z}/2\mathbb{Z}$ -orbits under  $z \mapsto -z$ .





 $V_e = \operatorname{roots}(U_{e+1}(X))$  and  $V_e^{\pm}$  the  $\mathbb{Z}/2\mathbb{Z}$ -orbits under  $z \mapsto -z$ .



Daniel Tubbenhauer

An algebra A with a fixed basis  $B^A$  is called a (multi)  $\mathbb N\text{-algebra}$  if  $xy\in\mathbb NB^A\quad(x,y\in B^A).$ 

A A-module M with a fixed basis  $B^M$  is called a  $\mathbb N\text{-module}$  if

$$xm \in \mathbb{N}B^M$$
 ( $x \in B^A, m \in B^M$ ).

These are  $\mathbb{N}$ -equivalent if there is a  $\mathbb{N}$ -valued change of basis matrix.

**Example.**  $\mathbb{N}$ -algebras and  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-categories and 2-modules, and  $\mathbb{N}$ -equivalence comes from 2-equivalence.

Ar Group algebras of finite groups with basis given by group elements are N-algebras. The regular module is an N-module.

A A-module M with a fixed basis  $B^M$  is called a  $\mathbb N\text{-module}$  if

$$xm\in \mathbb{N}B^M \quad (x\in B^A, m\in B^M).$$

These are  $\mathbb{N}$ -equivalent if there is a  $\mathbb{N}$ -valued change of basis matrix.

**Example.**  $\mathbb{N}$ -algebras and  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-categories and 2-modules, and  $\mathbb{N}$ -equivalence comes from 2-equivalence.

| Ar                                                                                            | Example (group like).                                                                                                      |      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
| Group algebras of finite groups with basis given by group elements are $\mathbb N$ -algebras. |                                                                                                                            |      |
|                                                                                               | The regular module is an $\mathbb N$ -module.                                                                              |      |
| A A-r                                                                                         | Example (group like).                                                                                                      |      |
|                                                                                               | Fusion rings are with basis given by classes of simples are $\ensuremath{\mathbb{N}}\xspace$ -algebras.                    |      |
| These                                                                                         | Key example: $\mathcal{K}_0(\mathcal{R}	ext{ep}(\mathcal{G},\mathbb{C}))$ (easy $\mathbb{N}	ext{-representation theory}).$ |      |
| Fxam                                                                                          | Key example: $K_0(\mathcal{R}ep_q^{ss}(U_q(\mathfrak{g})) = G_q)$ (intricate $\mathbb{N}$ -representation theory).         | n of |
|                                                                                               | gories and 2-modules, and $\mathbb{N}$ -equivalence comes from 2-equivalence.                                              | . 01 |



Clifford, Munn, Ponizovskii, Green ~1942++, Kazhdan-Lusztig ~1979.  $x \leq_L y$  if y appears in zx with non-zero coefficient for  $z \in B^A$ .  $x \sim_L y$  if  $x \leq_L y$  and  $y \leq_L x$ .

 $\sim_L$  partitions A into left cells L. Similarly for right R, two-sided cells LR or  $\mathbb{N}\text{-modules}.$ 

A  $\mathbb N\text{-module }M$  is transitive if all basis elements belong to the same  $\sim_\mathsf{L}$  equivalence class. An apex of M is a maximal two-sided cell not killing it.

**Fact.** Each transitive  $\mathbb{N}$ -module has a unique apex.

Hence, one can study them cell-wise.

**Example.** Transitive  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-simples.

Clifford, Munn, Ponizovskii, Green ~1942++, Kazhdan-Lusztig ~1979.

Transitive  $\mathbb{N}$ -modules are  $\mathbb{C}[G/H]$  for  $H \subset G$  subgroup/conjugacy. The apex is G.

A  $\mathbb N\text{-module}\ M$  is transitive if all basis elements belong to the same  $\sim_{\mathsf{L}}$  equivalence class. An apex of M is a maximal two-sided cell not killing it.

**Fact.** Each transitive  $\mathbb{N}$ -module has a unique apex.

Hence, one can study them cell-wise.

**Example.** Transitive  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-simples.

N-







Daniel Tubbenhauer



























 $M = \mathbb{C}(1, 2, 3, 4, 5)$ Hence, by Smith's (CP) and Lusztig: We get a representation of  $W_{e+2}$ if  $\Gamma$  is a ADE Dynkin diagram for e + 2 being the Coxeter number. That these are  $\mathbb{N}$ -modules  $\frown$  from categorification. 'Smaller solutions' are never ℕ-modules. 











Example.

There are two path from 2 to itself: 2 and 2|3|2 = 2|4|2 = 2|5|2.

▷ A coherent choice of natural transformations can be made. (Skipped today.)





We get a categorical action of  $W_7$ :

- $\triangleright$  The category to act on is  $Z(D_5)$ - $p\mathcal{M}od$ .
- $\triangleright \text{ We have endofunctors } \mathrm{B_s} = \bigoplus_{\blacktriangledown} P_i \otimes {}_i P \otimes \_ \text{ and } \mathrm{B_t} = \bigoplus_{\bigstar} P_j \otimes {}_j P \otimes \_.$
- $\vartriangleright\,$  Lemma. The relations of  $b_{\rm s}$  and  $b_{\rm t}$  are satisfied by these functors.
- ▷ A coherent choice of natural transformations can be made. (Skipped today.)



We get a categorical action of  $W_7$ :

- $\triangleright$  The category to act on is  $Z(D_5)$ - $p\mathcal{M}od$ .
- $\triangleright \text{ We have endofunctors } \mathrm{B_s} = \bigoplus_{\blacktriangledown} P_i \otimes {}_iP \otimes \_ \text{ and } \mathrm{B_t} = \bigoplus_{\bigstar} P_j \otimes {}_jP \otimes \_.$
- $\vartriangleright\,$  Lemma. The relations of  $b_{\rm s}$  and  $b_{\rm t}$  are satisfied by these functors.
- ▷ A coherent choice of natural transformations can be made. (Skipped today.)



## Example.

We get a categorical

- The category to  $\frac{One checks that B_t(P_2) \cong P_3 \oplus P_4 \oplus P_5}{One checks that B_t(P_2) \cong P_3 \oplus P_4 \oplus P_5}$ .
- $\triangleright \text{ We have endofunctors } \mathrm{B_s} = \bigoplus_{\blacktriangledown} P_i \otimes {}_i P \otimes \_ \text{ and } \mathrm{B_t} = \bigoplus_{\bigstar} P_j \otimes {}_j P \otimes \_.$
- $\vartriangleright\,$  Lemma. The relations of  $b_{\rm s}$  and  $b_{\rm t}$  are satisfied by these functors.
- ▷ A coherent choice of natural transformations can be made. (Skipped today.)





▷ A coherent choice of natural transformations can be made. (Skipped today.)

























*a*=asymptotic element and  $[2] = 1 + v^2$ . (Note the "subalgebras".)

|                  | as               | a <sub>sts</sub> | a <sub>st</sub> | a <sub>t</sub>   | a <sub>tst</sub> | a <sub>ts</sub>           |
|------------------|------------------|------------------|-----------------|------------------|------------------|---------------------------|
| as               | as               | a <sub>sts</sub> | a <sub>st</sub> |                  |                  |                           |
| a <sub>sts</sub> | a <sub>sts</sub> | as               | a <sub>st</sub> |                  |                  |                           |
| a <sub>ts</sub>  | a <sub>ts</sub>  | a <sub>ts</sub>  | $a_t + a_{tst}$ |                  |                  |                           |
| a <sub>t</sub>   |                  |                  |                 | a <sub>t</sub>   | $a_{tst}$        | a <sub>ts</sub>           |
| atst             |                  |                  |                 | a <sub>tst</sub> | at               | a <sub>ts</sub>           |
| a <sub>st</sub>  |                  |                  |                 | a <sub>st</sub>  | a <sub>st</sub>  | $a_{\rm s} + a_{\rm sts}$ |

|                | Cs                        | Csts                                   | Cst                            | Ct                        | Ctst                         | Cts                                       |
|----------------|---------------------------|----------------------------------------|--------------------------------|---------------------------|------------------------------|-------------------------------------------|
| Cs             | [2] <i>c</i> <sub>s</sub> | [2]c <sub>sts</sub>                    | [2]c <sub>st</sub>             | Cst                       | $c_{st} + c_{w_0}$           | $c_{\rm s} + c_{\rm sts}$                 |
| Csts           | $[2]c_{sts}$              | $[2]c_{s} + [2]^{2}c_{w_{0}}$          | $[2]c_{st} + [2]c_{w_0}$       | $c_{\rm s} + c_{\rm sts}$ | $c_{s} + [2]^{2} c_{w_{0}}$  | $c_{\rm s} + c_{\rm sts} + [2]c_{\rm WO}$ |
| Cts            | [2] <i>c</i> ts           | $[2]c_{ts} + [2]c_{w_0}$               | $[2]c_{t} + [2]c_{tst}$        | $c_{t} + c_{tst}$         | $c_t + c_{tst} + [2]c_{w_0}$ | $2c_{ts} + c_{w_0}$                       |
| C <sub>t</sub> | Cts                       | $c_{ts} + c_{w_0}$                     | $c_{t} + c_{tst}$              | [2] <i>c</i> t            | $[2]c_{tst}$                 | [2] <i>c</i> ts                           |
| Ctst           | $c_{t} + c_{tst}$         | $c_{t} + [2]^{2} c_{w_{0}}$            | $c_{t} + c_{tst} + [2]c_{w_0}$ | $[2]c_{tst}$              | $[2]c_t + [2]^2 c_{w_0}$     | $[2]c_{ts} + [2]c_{w_0}$                  |
| Cst            | $c_{\rm s} + c_{\rm sts}$ | $c_{\rm s}+c_{\rm sts}+[2]c_{\rm w_0}$ | $2c_{st} + c_{w_0}$            | [2]c <sub>st</sub>        | $[2]c_{st} + [2]c_{w_0}$     | $[2]c_{\rm s} + [2]c_{\rm sts}$           |

The limit  $v \rightarrow 0$  is much simpler! Have you seen this  $\frown$  before ?

Back to graphs. Example (e = 2).

$$\begin{split} \mathbf{M} &= \mathbb{C}\langle 1,2,3\rangle \\ & \overbrace{1}^{*} & \overbrace{3}^{*} & \overbrace{2}^{*} \\ \mathbf{c}_{\mathrm{s}} &\leadsto \begin{pmatrix} 1+\mathbf{v}^{2} & 0 & \mathbf{v} \\ 0 & 1+\mathbf{v}^{2} & \mathbf{v} \\ 0 & 0 & 0 \end{pmatrix} & \mathbf{c}_{\mathrm{t}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \end{pmatrix} \\ \mathbf{c}_{\mathrm{sts}} &\leadsto \begin{pmatrix} 0 & 1+\mathbf{v}^{2} & \mathbf{v} \\ 1+\mathbf{v}^{2} & 0 & \mathbf{v} \\ 0 & 0 & 0 \end{pmatrix} & \mathbf{c}_{\mathrm{tst}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \end{pmatrix} \\ \mathbf{c}_{\mathrm{ts}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1+\mathbf{v}^{2} & 1+\mathbf{v}^{2} & \mathbf{v} \end{pmatrix} & \mathbf{c}_{\mathrm{st}} &\leadsto \begin{pmatrix} \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \\ \mathbf{v} & \mathbf{v} & 1+\mathbf{v}^{2} \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$















First try: What are the asymptotic limits of finite types?



▶ No luck in finite Weyl type:  $v \to 0$  is (almost always)  $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$ .

- ▶ No luck in dihedral type:  $v \to 0$  is  $SL(2)_q$   $(q^{2(n-2)} = 1)$ .
- ▶ No luck for the pentagon types  $H_3$  and  $H_4$ .
- ▷ Maybe generalize the dihedral case?



- ▶ No luck in finite Weyl type:  $v \to 0$  is (almost always)  $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$ .
- ▶ No luck in dihedral type:  $v \to 0$  is  $SL(2)_q$   $(q^{2(n-2)} = 1)$ .
- ▶ No luck for the pentagon types  $H_3$  and  $\frown H_4$ .
- ▷ Maybe generalize the dihedral case?







- ▶ No luck in finite Weyl type:  $v \to 0$  is (almost always)  $\mathcal{R}ep((\mathbb{Z}/2\mathbb{Z})^k)$ .
- ▶ No luck in dihedral type:  $v \rightarrow 0$  is  $SL(2)_q$   $(q^{2(n-2)} = 1)$ .
- ▶ No luck for the pentagon types  $H_3$  and  $\frown H_4$ .
- ▷ Maybe generalize the dihedral case?





The type A family

The type D family

The type E exceptions

-

Upshot of this approach.

F is a finite type ADE graph

entries of  $U_s(A)$  do not grow when  $e \rightarrow \infty$ 

F is an affine type ADE graph if and only if entries of  $U_i(A)$  grave linearly when  $e \rightarrow \infty$ . F is neither finite nor affine type ADE graph if and only if tries of  $U_i(A)$  grow exposes taily when  $e \rightarrow c$ .

Too explicit - no chance to work in gener

cation of something that does work in ge

ry explicit and one can get further consequ



Example (e = 2). Simples associated to cells

Classical representation theory. The simples from before



KL basis. ADE diagrams and ranks of transitive N-modules.



The simples are arranged according to cells. However, a cell might have more than one associated simple.

(For the experts: This means that the Hocke algebra with the KL basis is ingeneral not cellular in the sense of Graham-Lehrer.)

### -

#### Example (e = 2).



Comparison of multiplication tables:



#### N-modules via graphs.





- We get a categorical action of W7:
- > The category to act on is 2(Da)-gMod.
- $\triangleright$  We have endofunctors  $B_i = \bigoplus_i P_i \otimes_i P \otimes_{-i}$  and  $B_i = \bigoplus_i P_i \otimes_i P \otimes_{-i}$
- > Lemma. The relations of b, and b, are satisfied by these functors.
- > A coherent choice of natural transformations can be made. (Skipped today,

ik and Nationham Asymptotics of Song-Hamilton attend one

Back to graphs. Example (e = 2).



## There is still much to do...

Separatur 2000 10/25



The type A family

The type D family

The type E exceptions

-

Upshot of this approach.

F is a finite type ADE graph

estries of  $U_n(A)$  do not grow when  $v \to \infty$ . It is an affine type ADE graph if and only if estries of  $U_n(A)$  grow linearly when  $v \to \infty$ . It is neither forker nor affine type ADE graph if and only if origin of  $U_n(A)$  grow exponentially when  $v \to \infty$ . Problem with this association.

Too explicit - no chance to work in gener

cation of something that does work in ge

ry explicit and one can get further consequ



Example (e = 2). Simples associated to cells

Classical representation theory. The simples from before



KL basis. ADE diagrams and ranks of transitive N-modules.



The simples are arranged according to cells. However, a cell might have more than one associated simple.

(For the experts: This means that the Hocke algebra with the KL basis is ingeneral not cellular in the sense of Graham-Lehrer.)

### -

#### Example (e = 2).



Comparison of multiplication tables:



#### N-modules via graphs.





- We get a categorical action of W7:
- > The category to act on is 2(Da)-g/Mod.
- $\triangleright$  We have endofunctors  $B_1 = \bigoplus_{i \in I} P_i \otimes_i P \otimes_{-i}$  and  $B_1 = \bigoplus_{i \in I} P_i \otimes_i P \otimes_{-i}$
- > Lemma. The relations of b, and b, are satisfied by these functors.
- > A coherent choice of natural transformations can be made. (Skipped today)

   Base balance
   Represente transformations
   Represente transformations

Back to graphs. Example (e = 2).

|                                                                                 | M | - C(1, | 2, 3) |                                                                                  |
|---------------------------------------------------------------------------------|---|--------|-------|----------------------------------------------------------------------------------|
|                                                                                 | 1 | 3      | 2     |                                                                                  |
| $a_n \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$    |   |        |       | $a_{i} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$   |
| $a_{mn} \sim \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ |   |        |       | $a_{int} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ |
| $a_{1n} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ |   |        |       | $a_{ab} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$  |

## Thanks for your attention!

$$\begin{array}{l} U_0(X) = 1, \ U_1(X) = X, \ X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \\ U_0(X) = 1, \ U_1(X) = 2X, \ 2X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \end{array}$$

**Kronecker** ~1857. Any complete set of conjugate algebraic integers in ]-2, 2[ is a subset of  $roots(U_{e+1}(X))$  for some *e*.



Figure: The roots of the Chebyshev polynomials (of the second kind).



Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by dimension:  $1, \infty, 3, 5, 3, 4, 4, 4, 3, 3, 3, 3, 3, \ldots$ 

## Examples.

Type  $A_3 \leftrightarrow tetrahedron \leftrightarrow symmetric group S_4$ . Type  $B_3 \leftrightarrow tetrahedron \leftrightarrow Weyl group (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ . Type  $H_3 \leftrightarrow dodecahedron/icosahedron \leftrightarrow exceptional Coxeter group.$ 

(Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)



The positivity on the KL basis is non-trivial. **Example** (e = 2). What happens for a different graph? For example,

$$\mathbf{\Gamma} = \mathbf{r}, \quad A(\mathbf{\Gamma}) = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

$$b_{1} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$b_{s} \rightsquigarrow \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b_{ts} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 2 & 5 \end{pmatrix}, b_{sts} \rightsquigarrow \begin{pmatrix} 8 & 4 & 10 \\ 4 & 2 & 5 \\ 0 & 0 & 0 \end{pmatrix},$$

$$b_{t} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix}, b_{st} \rightsquigarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, b_{tst} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 10 & 5 & 10 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 20 & 10 & 25 \end{pmatrix} \leadsto b_{tsts}.$$

The positivity on KL basis.  
**Example (e = 2)**  

$$c_1 = b_1, c_s = b_s, c_t = b_t, c_{ts} = b_{ts}, c_{st} = b_{st}, but$$
 $c_{sts} = b_{sts} - b_s$  and  $c_{tst} = b_{tst} - b_t$ 
and  $c_{stst} = b_{stst} - 2b_{st}$  and  $c_{tsts} = b_{tsts} - 2b_{ts}$ .

$$b_{1} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$b_{s} \rightsquigarrow \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b_{ts} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 2 & 5 \end{pmatrix}, b_{sts} \rightsquigarrow \begin{pmatrix} 8 & 4 & 10 \\ 4 & 2 & 5 \\ 0 & 0 & 0 \end{pmatrix},$$

$$b_{t} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix}, b_{st} \rightsquigarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, b_{tst} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 10 & 5 & 10 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 20 & 10 & 25 \end{pmatrix} \leadsto b_{tsts}.$$

The positivity on  
**Example (e = 2)**  

$$c_1 = b_1, c_s = b_s, c_t = b_t, c_{ts} = b_{ts}, c_{st} = b_{st},$$
  
 $but$   
 $c_{sts} = b_{sts} - b_s$  and  $c_{tst} = b_{tst} - b_t$   
and  $c_{stst} = b_{stst} - 2b_{st}$  and  $c_{tsts} = b_{tsts} - 2b_{ts}$ .

$$c_{1} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$c_{s} \rightsquigarrow \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}, c_{ts} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 2 & 5 \end{pmatrix}, c_{sts} \rightsquigarrow \begin{pmatrix} 6 & 4 & 8 \\ 4 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix},$$

$$c_{t} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 1 & 2 \end{pmatrix}, c_{st} \rightsquigarrow \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, c_{tst} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 8 & 4 & 8 \end{pmatrix},$$

$$c_{stst} \rightsquigarrow \begin{pmatrix} 12 & 6 & 12 \\ 6 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 12 & 16 & 15 \end{pmatrix} \nleftrightarrow c_{tsts}.$$

The positivity on the KL basis is non-trivial. **Example** (e = 2). What happens for a different graph? For example,







# **Example** (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

|          | M <sub>0,0</sub> | M <sub>2,0</sub> | $M_{\sqrt{2}}$       | M <sub>0,2</sub> | M <sub>2,2</sub> |
|----------|------------------|------------------|----------------------|------------------|------------------|
| atom     | sign             | trivial-sign     | rotation             | sign-trivial     | trivial          |
| rank     | 1                | 1                | 2                    | 1                | 1                |
| apex(KL) | 1                | <u>s</u> –       | <mark>(5)</mark> – ( | <u>s</u> –       | wo               |

KL basis. ADE diagrams and ranks of transitive  $\mathbb{N}$ -modules.

|          | bottom cell | ▼ ★ ▼                         | * * *                         | top cell |
|----------|-------------|-------------------------------|-------------------------------|----------|
| atom     | sign        | $M_{2,0} \oplus M_{\sqrt{2}}$ | $M_{0,2} \oplus M_{\sqrt{2}}$ | trivial  |
| rank     | 1           | 3                             | 3                             | 1        |
| apex(KL) | 1           | <b>(5)</b> – <b>(5)</b>       | <b>S</b> – <b>O</b>           | wo       |

The simples are arranged according to cells. However, a cell might have more than one associated simple.

(For the experts: This means that the Hecke algebra with the KL basis is in general not cellular in the sense of Graham–Lehrer.)

The fusion ring  $K_0(SL(2)_q)$  for  $q^{2e} = 1$  has simple objects  $[L_0], [L_1], [L_2]$ . The limit  $v \to 0$  has simple objects  $a_s, a_{sts}, a_s, a_{st}, a_t, a_{ts}, a_{ts}$ .

Comparison of multiplication tables:

|                                                                                                                                           |                   | as              | a <sub>sts</sub> | a <sub>st</sub>   | a <sub>t</sub>   | a <sub>tst</sub> | a <sub>ts</sub>           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|------------------|-------------------|------------------|------------------|---------------------------|
| $\left  \begin{array}{c c} [L_0] & [L_2] \end{array} \right   [L_1]$                                                                      | as                | a₅              | a <sub>sts</sub> | a <sub>st</sub>   |                  |                  |                           |
|                                                                                                                                           | asts              | asts            | as               | a <sub>st</sub>   |                  |                  |                           |
| $\begin{bmatrix} L_0 \end{bmatrix} \begin{bmatrix} L_0 \end{bmatrix} \begin{bmatrix} L_2 \end{bmatrix} \begin{bmatrix} L_1 \end{bmatrix}$ | & a <sub>ts</sub> | a <sub>ts</sub> | a <sub>ts</sub>  | $a_{t} + a_{tst}$ |                  |                  |                           |
| $[L_2]  [L_2]  [L_0]  [L_1]$                                                                                                              |                   |                 | - 65             |                   | -                | -                |                           |
| $[L_1] \ [L_1] \ [L_1] \ [L_0] + [L_2]$                                                                                                   | at                |                 |                  |                   | a <sub>t</sub>   | a <sub>tst</sub> | a <sub>ts</sub>           |
|                                                                                                                                           | $a_{tst}$         |                 |                  |                   | a <sub>tst</sub> | a <sub>t</sub>   | a <sub>ts</sub>           |
|                                                                                                                                           | ast               |                 |                  |                   | ast              | ast              | $a_{\rm s} + a_{\rm sts}$ |

The limit  $v \to 0$  is a bicolored version of  $K_0(SL(2)_q)$ :

 $a_{\mathrm{s}}\&a_{\mathrm{t}}\longleftrightarrow [L_0], \quad a_{\mathrm{sts}}\&a_{\mathrm{tst}}\longleftrightarrow [L_2], \quad a_{\mathrm{st}}\&a_{\mathrm{ts}} \longleftrightarrow [L_1].$ 

The fusion ring  $K_0(SO(3)_q)$  for  $q^{2e} = 1$  has simple objects  $[L_0], [L_2]$ . The  $\mathcal{H}$ -cell limit  $v \to 0$  has simple objects  $a_s, a_{sts}$ .

Comparison of multiplication tables:

The  $\mathcal{H}$ -cell limit  $v \to 0$  is  $K_0(SO(3)_q)$ :

$$a_{s} \iff [L_{0}], \quad a_{sts} \iff [L_{2}].$$

The fusion ring  $K_0(SO(3)_q)$  for  $q^{2e} = 1$  has simple objects  $[L_0], [L_2]$ . The  $\mathcal{H}$ -cell limit  $v \to 0$  has simple objects  $a_s, a_{sts}$ .

Comparison of multiplication tables:





The zigzag algebra  $Z(\Gamma)$   $\checkmark \xleftarrow{u}{d} \bigstar \xleftarrow{u}{d} \checkmark$ uu = 0 = dd, ud = du

Apply the usual philosophy:

- ▶ Take projectives  $P_s = \bigoplus_{\intercal} P_i \otimes_i P \otimes_{\_}$  and  $P_t = \bigoplus_{\bigstar} P_j \otimes_j P \otimes_{\_}$ .
- ▶ Get endofunctors  $B_s = P_s \otimes_{Z(\Gamma)} \text{ and } B_t = P_t \otimes_{Z(\Gamma)} -$ .
- ▶ Check: These decategorify to b<sub>s</sub> and b<sub>t</sub>. (Easy.)
- ► Check: These give a genuine 2-representation. (Bookkeeping.)
- ► Check: There are no graded deformations. (Bookkeeping.)

Difference to  $SL(2)_q$ : There is an honest quiver as this is non-semisimple.

| cell              | 0 | 1  | 2   | 3   | 4   | 5    | 6=6′ | 5′   | 4′  | 3′  | 2′  | 1′ | 0′ |
|-------------------|---|----|-----|-----|-----|------|------|------|-----|-----|-----|----|----|
| size              | 1 | 32 | 162 | 512 | 625 | 1296 | 9144 | 1296 | 625 | 512 | 162 | 32 | 1  |
| а                 | 0 | 1  | 2   | 3   | 4   | 5    | 6    | 15   | 16  | 18  | 22  | 31 | 60 |
| $\mathtt{v}\to 0$ |   | 2□ | 2□  | 2□  |     |      | big  |      |     | 2□  | 2□  | 2□ |    |

he big cell: 
$$\begin{array}{c|c} 14_{8,8} & 13_{10,8} & 14_{6,8} \\ \hline 13_{8,10} & 18_{10,10} & 18_{6,10} \\ \hline 14_{8,6} & 18_{10,6} & 24_{6,6} \end{array}$$



Т

### Example (Fusion graphs for level 3).



In the non-semisimple case one gets quiver algebras supported on these graphs. ("Trihedral zigzag algebras".)

Stop - you are annoying!