2-representations of Soergel bimodules-dihedral case

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang
September 2019

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsiser polymmill.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{gathered}
\mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
\mathrm{A}_{3}=\stackrel{1}{2} \quad 2 \\
\longrightarrow
\end{gathered}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{2} \xrightarrow{3} \sim A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{\curvearrowleft} \rightarrow \int_{3}^{2} A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{\bullet} \longrightarrow \quad \stackrel{2}{\bullet} \longrightarrow A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \longrightarrow \quad S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=1 .\left\{\begin{array}{ll}
4 \\
4
\end{array} A_{3}^{2}\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}\right. \\
& \text { for } e=4
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let

(1) A bit of motivation
(2) Dihedral (2-)representation theory

- Classical vs. \mathbb{N}-representation theory
- Dihedral \mathbb{N}-representation theory
- Categorified picture
(3) Non-semisimple fusion rings
- The asymptotic limit
- The limit $\mathrm{v} \rightarrow 0$ of the \mathbb{N}-representations
- Beyond
\mathfrak{g} semisimple Lie algebra gives $\mathcal{O} \supset \mathcal{O}_{0}$.
Bernšteĭn-Gel'fand $\boldsymbol{\sim}$ 1980. Projective functors \mathcal{P} act on \mathcal{O}_{0} and

$$
\mathcal{O}_{0} \curvearrowleft \mathcal{P} \xrightarrow{\text { decat. }} \mathbb{Z}[W] \curvearrowleft \mathbb{Z}[W]
$$

categorifies the regular representation of the associated Weyl group W.
Aside. Add grading and get Hecke algebra.

List of properties.

- \mathcal{P} is additive, Krull-Schmidt, \mathbb{C}-linear and monoidal, has finitely many indecomposables, and Hom-spaces are finite-dimensional. An adjoint of a projective functor is a projective functor. "Finitary/fiat acting 2-category"
- $\mathcal{O} \cong \mathrm{A}-p \mathcal{M}$ od for A a finite-dimensional algebra. "Finitary 2-module"

Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.
Goal. Classify the "simplest" such actions. "Simple transitive 2-modules or 2-simples"

\mathfrak{g} semisimpl	Example/Theorem (Bernšteĭn-Gel'fand ~1980).
	$\mathfrak{g}=\mathfrak{s l}_{m}$.
categorifies	2-simples are in 1:1 correspondence with simples of $W=S_{m}$. Beyond this case not much was known.

List of properties.

- \mathcal{P} is additive, Krull-Schmidt, \mathbb{C}-linear and monoidal, has finitely many indecomposables, and Hom-spaces are finite-dimensional. An adjoint of a projective functor is a projective functor. "Finitary/fiat acting 2-category"
- $\mathcal{O} \cong \mathrm{A}-\mathrm{p} \mathcal{M}$ od for A a finite-dimensional algebra. "Finitary 2-module"

Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.

```
Goal. Classify the "simplest" such actions. "Simple transitive 2-modules or 2-simples"
```

\mathfrak{g} semisimpl	Example/Theorem (Bernšteĭn-Gel'fand ~1980).
Bernšteĭn-	$\mathfrak{g}=\mathfrak{s l}_{m}$
categorifies	2-simples are in 1:1 correspondence with simples of $W=S_{m}$. Beyond this case not much was known.

$$
\text { Soergel } \sim 1990++
$$

List of prop Soergel bimodules \mathcal{S} are a combinatorial, graded model of \mathcal{P},
\checkmark P is aq and work for any Coxeter group. \quad many
Classifying 2-simples of \mathcal{S} is classifying 2-simples of \mathcal{P}.
The main theorem tomorrow will imply a complete classification of 2-simples for \mathcal{P} for any semisimple \mathfrak{g}, except two cases in type E_{8}.

2-representation theory.

Goal. Classify the "simplest" such actions. "Simple transitive 2-modules or 2-simples"

\mathfrak{g} semisimpl	Example/Theorem (Bernšteĭn-Gel'fand ~1980).
	$\mathfrak{g}=\mathfrak{s l}_{m}$.
categorifies	2-simples are in 1:1 correspondence with simples of $W=S_{m}$. Beyond this case not much was known.

Soergel $\sim 1990+$.

List of prop Soergel bimodules \mathcal{S} are a combinatorial, graded model of \mathcal{P},

- \mathcal{P} is ad and work for any Coxeter group.
indecomposables, and Hom-spaces are tinite-dimensional. An adjoint of a
Classifying 2-simples of \mathcal{S} is classifying 2-simples of \mathcal{P}.
The main theorem tomorrow will imply a complete classification of 2 -simples for \mathcal{P} for any semisimple \mathfrak{g}, except two cases in type E_{8}.

2-repr Appearance of Soergel bimodules and there 2-representations in the wild.
\mathcal{O}, Hecke algebra, Kazhdan-Lusztig theory, braid group actions, link homologies, modular representation theory, 3-manifold invariants, tensor and fusion categories etc.
\mathfrak{g} semisimple Lie algebra gives $\mathcal{O} \supset \mathcal{O}_{0}$.
Bernšteīn-Gel'fand $\boldsymbol{\sim}$ 1980. Projective functors \mathcal{P} act on \mathcal{O}_{0} and

$$
\mathcal{O}_{0} \curvearrowleft \mathcal{P} \xrightarrow{\text { decat. }} \mathbb{Z}[W] \curvearrowleft \mathbb{Z}[W]
$$

categorifies the regular representation of the associated Weyl group W.
Aside. Add grading and get Hecke algebra.
List of proper
$\checkmark \mathcal{P}$ is addi But keep in mind that we have a more general machinery y many indecomp to study such questions. (More tomorrow.) djoint of a projective functor is a projective functor. "Finitary/fiat acting 2-category"

- $\mathcal{O} \cong \mathrm{A}-\mathrm{p} \mathcal{M}$ od for A a finite-dimensional algebra. "Finitary 2-module"

Question. What kind of theory governs such actions? Our answer. Finitary 2-representation theory.

```
Goal. Classify the "simplest" such actions. "Simple transitive 2-modules or 2-simples"
```

The dihedral groups are of corcer spe $I_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

The dihedral groups are of corecer spe $I_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

The dihedral groups are of corcer spee $\mathrm{I}_{2}(e+2)$:

$$
\begin{aligned}
W_{e+2}= & \left\langle\mathrm{s} \frac{\operatorname{Fact.}^{2} \text { The symmetries are given by exchanging flags. }}{e+2}=\overline{\mathrm{t}}_{e+2}\right\rangle \\
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\mathrm{stst}\right\rangle
\end{aligned}
$$

The dihedral groups are of corcer spe $I_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Examn Fix a flag F. $\begin{aligned} & \text { F. } \\ & \text { Idea (Coxeter } \sim 1934++ \text {). }\end{aligned}$
Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

The dihedral groups are of corcer spe $I_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Examn Fix a flag F. $\begin{aligned} & \text { F. } \\ & \text { Idea (Coxeter } \sim 1934++ \text {). }\end{aligned}$ 2-gons, e.g. for $e=2$: Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.

The dihedral groups are of corcer spe $I_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

 Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.

Write a vertex i for each H_{i}.

The dihedral groups aro of : Coreter woe $-10+2)$.

$$
\begin{aligned}
& \text { This gives a generator-relation presentation. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1 \text {, tsts }=w_{0}=\mathrm{stst}\right\rangle
\end{aligned}
$$

Fix a flag F. Idea (Coxeter $\sim 1934++$).
Examn Fix a flag F. e the svmmetry groups or regurar $e+2$-gons, e.g. for $e=2$: Fix a hyperplane H_{0} permuting the adjacent 0 -cells of F.

Fix a hyperplane H_{1} permuting the adjacent 1-cells of F, etc.

Write a vertex i for each H_{i}.
Connect i, j by an n-edge for H_{i}, H_{j} having angle $\cos (\pi / n)$.

The dihedral groups are of corcer spe $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

The dihedral groups are of corcer spe $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

The dihedral groups are of corcer spe $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

The dihedral groups are of corcer spe $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

The dihedral groups are of corcer spe $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g.: } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$:

Dihedral representation theory on one slide.
The Bott-Samelson (BS) generators $b_{\mathrm{s}}=\mathrm{s}+1, b_{\mathrm{t}}=\mathrm{t}+1$.
There is also a Kazhdan-Lusztig (KL) basis c_{w}. We will nail it down later.
One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, b_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, b_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, b_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), b_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide.

One-dimensionProposition (Lusztig?). The list of one- and two-dimensional is a complete, irredundant list of simple modules. $\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$
I learned this construction in 2017.

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, b_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), b_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide.

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, b_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, b_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Example.

$\mathrm{M}_{0,0}$ is the sign representation and $\mathrm{M}_{2,2}$ is the trivial representation.
In case e is odd, $\mathrm{U}_{e+1}(\mathrm{X})$ has a constant term, so $\mathrm{M}_{2,0}, \mathrm{M}_{0,2}$ are not representations.

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

An algebra A with a fixed basis B^{A} is called a (multi) \mathbb{N}-algebra if

$$
\mathrm{xy} \in \mathbb{N B}^{\mathrm{A}} \quad\left(\mathrm{x}, \mathrm{y} \in \mathrm{~B}^{\mathrm{A}}\right) .
$$

A A-module M with a fixed basis B^{M} is called a \mathbb{N}-module if

$$
\mathrm{xm} \in \mathbb{N B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{A}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right)
$$

These are \mathbb{N}-equivalent if there is a \mathbb{N}-valued change of basis matrix.

Example. \mathbb{N}-algebras and \mathbb{N}-modules arise naturally as the decategorification of 2 -categories and 2 -modules, and \mathbb{N}-equivalence comes from 2-equivalence.

Example (group like).

Group algebras of finite groups with basis given by group elements are \mathbb{N}-algebras.
The regular module is an \mathbb{N}-module.
A A-module M with a fixed basis B^{M} is called a \mathbb{N}-module if

$$
\mathrm{xm} \in \mathbb{N B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{A}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right)
$$

These are \mathbb{N}-equivalent if there is a \mathbb{N}-valued change of basis matrix.

Example. \mathbb{N}-algebras and \mathbb{N}-modules arise naturally as the decategorification of 2 -categories and 2-modules, and \mathbb{N}-equivalence comes from 2-equivalence.

Example (group like).

Group algebras of finite groups with basis given by group elements are \mathbb{N}-algebras.

The regular module is an \mathbb{N}-module.

Clifford, Munn, Ponizovskiï, Green $\sim 1942+$, Kazhdan-Lusztig ~ 1979. $\mathrm{x} \leq_{L} \mathrm{y}$ if y appears in zx with non-zero coefficient for $\mathrm{z} \in \mathrm{B}^{\mathrm{A}} . \mathrm{x} \sim_{L} \mathrm{y}$ if $\mathrm{x} \leq_{L} \mathrm{y}$ and $\mathrm{y} \leq_{L} \mathrm{x}$.
\sim_{L} partitions A into left cells L. Similarly for right R, two-sided cells LR or \mathbb{N}-modules.

A \mathbb{N}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}-modules arise naturally as the decategorification of 2-simples.

A \mathbb{N}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}-module has a unique apex.
Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}-modules arise naturally as the decategorification of 2-simples.

A \mathbb{N}-module M is t equivalence class. Fac Hence, one can stu	Example (group like). Fusion rings in general have only one cell since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$ such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand.	same \sim_{L} ot killing it. pex.
Example. Transitive \mathbb{N}-modules arise naturally as the decategorification of 2-simples.		

Example (group like).		
Group algebras with the group element basis have only one cell, G itself.		
\mathbb{N}-module M is t uivalence class. Fac	Example (group like). Fusion rings in general have only one cell since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$ such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand.	same \sim_{L} ot killing it. pex.
ce, one can	Cell theory is useless for them!	

Example (Lusztig \leq 2003; semigroup like).
2-sin
Left cells.
We algebras for the dihedral group with KL basis have the following cells:
Wee the transitive \mathbb{N}-modules in a second.

Example (Lusztig \leq 2003; semigroup like).
Hecke algebras for the dihedral group with KL basis have the following cells:
We will see the transitive \mathbb{N}-modules in a second.

Example (group like).		
Group algebras with the group element basis have only one cell, G itself.		
\mathbb{N}-module M is t uivalence class. Fac	Example (group like). Fusion rings in general have only one cell since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$ such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand.	same \sim_{L} ot killing it. pex.
ce, one can	Cell theory is useless for them!	

Example (Lusztig ≤ 2003; semigroup like).
2-sin
Hecke algebras for the dihedral group with KL basis have the following cells:

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{c|c|ccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cc|c|cc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccc|c|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|l|lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ll|l|l}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lll|l|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construpt a Wa_module M associated to a binartite oranh Г.
The adjacency matrix $A(\Gamma)$ of Γ is

$$
A(\boldsymbol{\Gamma})=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

These are W_{e+2}-modules for some e only if $A(\Gamma)$ is killed by the Chebyshev polynomial $U_{e+1}(\mathrm{x})$.

Morally speaking: These are constructed like the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
\begin{array}{llll}
1 & 1 & 2 & 0
\end{array} & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Hence, by Smith's (CP) and Lusztig: We get a representation of W_{e+2} if $\boldsymbol{\Gamma}$ is a ADE Dynkin diagram for $e+2$ being the Coxeter number.

That these are \mathbb{N}-modules $\quad 1$ follows from categorification.

$$
b_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\right), \quad b_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 \\
0 & 1 & 0 & 2
\end{array}\right)
$$

\mathbb{N}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Classification.					
Complete, irredundant					
apex list	of transitive \mathbb{N}-modules of W_{e+2} :				
\mathbb{N}-reps.	$\mathrm{M}_{0,0}$	$\mathrm{M}_{\mathrm{ADE}+\text { bicolering }}$ for $e+2=$ Cox. num.	$\mathrm{M}_{2,2}$		

I learned this from Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.

The composite of two arrows between different vertices is zero.
The composite of three arrows is zero.

All loops are equal.
Example.

There are two path from 2 to itself:
2 and $2\|3\| 2=2\|4\| 2=2\|5\| 2$.

\triangleright A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.
The composite of two arrows between different vertices is zero.
The composite of three arrows is zero.
All loops are equal.
We get a categorical ac Example.
\triangleright The category to ac
\triangleright We have endofunct There are two path from 2 to itself: 2 and $2|3| 2=2|4| 2=2|5| 2$.

$$
=\bigoplus_{\star} P_{j} \otimes_{j} P
$$

\qquad
\triangleright Lemma. The relations of b_{s} and b_{a} are satistied by these functors.

Example.

Projective left module $P_{i}=\mathrm{Z}\left(\mathrm{D}_{5}\right) i$.
Projective right module ${ }_{i} P=i Z\left(\mathrm{D}_{5}\right)$.
Bi-projective bimodule $P_{i} \otimes_{i} P$.

We get a categorical action of W_{7} :
\triangleright The category to act on is $\mathrm{Z}\left(\mathrm{D}_{5}\right)$ - p Mod.
\triangleright We have endofunctors $\mathrm{B}_{\mathrm{s}}=\bigoplus_{\vee} P_{i} \otimes_{i} P \otimes_{-}$and $\mathrm{B}_{\mathrm{t}}=\bigoplus_{\star} P_{j} \otimes_{j} P \otimes_{_}$.
\triangleright Lemma. The relations of b_{s} and b_{t} are satisfied by these functors.
\triangleright A coherent choice of natural transformations can be made. (Skipped today.)

We get a categorical action of W_{7} :
\triangleright The category to act on is $\mathrm{Z}\left(\mathrm{D}_{5}\right)$ - p Mod.
\triangleright We have endofunctors $\mathrm{B}_{\mathrm{s}}=\bigoplus_{\vee} P_{i} \otimes_{i} P \otimes_{-}$and $\mathrm{B}_{\mathrm{t}}=\bigoplus_{\star} P_{j} \otimes_{j} P \otimes_{_}$.
\triangleright Lemma. The relations of b_{s} and b_{t} are satisfied by these functors.
\triangleright A coherent choice of natural transformations can be made. (Skipped today.)

Example.

We get a categorical
\triangleright The category to One checks that $\mathrm{B}_{\mathrm{t}}\left(P_{2}\right) \cong P_{3} \oplus P_{4} \oplus P_{5}$.
\triangleright We have endofunctors $\mathrm{B}_{\mathrm{s}}=\bigoplus_{\nabla} P_{i} \otimes_{i} P \otimes_{-}$and $\mathrm{B}_{\mathrm{t}}=\bigoplus_{\star} P_{j} \otimes_{j} P \otimes_{-}$.
\triangleright Lemma. The relations of b_{s} and b_{t} are satisfied by these functors.
\triangleright A coherent choice of natural transformations can be made. (Skipped today.)
\square
 to the \mathbb{N}-valued action from before.

Example.

We get a categorical
\triangleright The category to One checks that $\mathrm{B}_{\mathrm{t}}\left(P_{2}\right) \cong P_{3} \oplus P_{4} \oplus P_{5}$.
\triangleright We have endofunctors $\mathrm{B}_{\mathrm{s}}=\bigoplus_{\mathrm{v}} P_{i} \otimes_{i} P \otimes$ and $\mathrm{B}_{\mathrm{t}}=\theta_{\mathrm{i}} P_{i} \otimes_{i} P \otimes$
$\triangleright \mathrm{Le}$

Example.

One easily checks that $B_{s} \circ B_{s} \cong B_{s} \oplus B_{s}$ and $B_{t} \circ B_{t} \cong B_{t} \oplus B_{t}$. This ensures a categorical action of W_{∞}.

Checking the braid-like relation for $n=7$ is a bit harder, but not much.

Classification.

We ge	Classification. Complete, irredundant list of 2-simples of W_{e+2} :			
\triangleright	apex	(1) cell	(S)- cell	(wo) cell
	2-reps.	$\mathcal{M}_{0,0}$	$\mathcal{M}_{\text {ADE+bicolering }}$ for $e+2=$ Cox. num.	$\mathcal{M}_{2,2}$

Upshot of this approach.

Very explicit and one can get further consequences, e.g. a characterization of Dynkin diagrams.

「 is a finite type ADE graph if and only if entries of $U_{e}(A)$ do not grow when $e \rightarrow \infty$.
Γ is an affine type ADE graph if and only if
entries of $U_{e}(A)$ grow linearly when $e \rightarrow \infty$.
Γ is neither finite nor affine type ADE graph if and only if
entries of $U_{e}(A)$ grow exponentially when $e \rightarrow \infty$.

We get a catego
\triangleright The categor
\triangleright We have en
\triangleright Lemma. T
\triangleright A coherent

Upshot of this approach.

Very explicit and one can get further consequences, e.g. a characterization of Dynkin diagrams.

「 is a finite type ADE graph if and only if entries of $U_{e}(A)$ do not grow when $e \rightarrow \infty$.
Γ is an affine type ADE graph if and only if
entries of $U_{e}(A)$ grow linearly when $e \rightarrow \infty$.
Γ is neither finite nor affine type ADE graph if and only if
entries of $U_{e}(A)$ grow exponentially when $e \rightarrow \infty$.

Problem with this approach.

Too explicit - no chance to work in general.
For the rest of today, I show you the decategorification of something that does work in general.

Example ($\left.I_{2}(4), e=2\right)$.

Cell structure:

left cells

1

"right modules"
two-sided cells

"bimodules"
\mathcal{H}-cells

"subalgebras"

Example ($\left.I_{2}(4), e=2\right)$.

Cell structure:

Example.

$1 \cdot 1=\mathrm{v}^{0} 1$.
(v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1$.)

Example $\left(I_{2}(4), e=2\right)$.

Cell structure:

Example.

$1 \cdot 1=\mathrm{v}^{0} 1$.
(v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1$.)

Example ($\left.I_{2}(4), e=2\right)$.

Cell structure:

Example.

$1 \cdot 1=\mathrm{v}^{0} 1$.
(v is the Hecke parameter deforming e.g. $\mathrm{s}^{2}=1$ to $T_{\mathrm{s}}^{2}=\left(\mathrm{v}^{-1}-\mathrm{v}\right) T_{\mathrm{s}}+1$.)

Examp	Fact (Lusztig ~1980++)
Cell str	For any Coxeter group W there is a well-defined function
	a : $W \rightarrow \mathbb{N}$
	which is constant on two-sided cells such that $\mathrm{v}^{\mathrm{a}} b_{w}$ has structure constants in $\mathbb{Z}[\mathrm{v}]$ up to higher cells.
	Asymptotic limit $\mathrm{v} \rightarrow 0$ " $=$ " kill non-leading terms of $c_{w}=\mathrm{v}^{\mathrm{a}} b_{w}$, e.g. $c_{\mathrm{s}}=\mathrm{v}^{1} b_{\mathrm{s}}$ and $c_{\mathrm{s}}^{2}=\left(1+\mathrm{v}^{2}\right) c_{\mathrm{s}}$.

Think: Positively graded, and asymptotic limit is taking degree 0 part.

2 1 2	2 1 1 2 1	2 1 1 2	2 1 1 2
"left modules" "right modules"	"bimodules"	"subalgebras"	

Compare multiplication tables. Example (e=2).
$a=$ asymptotic element and $[2]=1+\mathrm{v}^{2}$. (Note the "subalgebras".)

	a_{s}	a_{sts}	a_{st}	a_{t}	a_{tst}	a_{ts}
a_{s}	a_{s}	a_{sts}	a_{st}			
a_{sts}	a_{Sts}	a_{s}	a_{st}			
a_{ts}	a_{ts}	a_{ts}	$a_{\mathrm{t}}+a_{\mathrm{tst}}$			
a_{t}				a_{t}	a_{tst}	a_{ts}
a_{tst}				a_{tst}	a_{t}	a_{ts}
a_{st}				a_{st}	a_{st}	$a_{\mathrm{s}}+a_{\mathrm{sts}}$

	$C_{\text {S }}$	$C_{\text {Sts }}$	$C_{\text {st }}$	$C_{\text {t }}$	$C_{\text {tst }}$	$C_{\text {ts }}$
$C_{\text {S }}$	$[2] c_{\text {S }}$	[2] $C_{\text {sts }}$	$[2] c_{\text {st }}$	$C_{\text {st }}$	$C_{\text {st }}+C_{w_{0}}$	$C_{\mathrm{s}}+C_{\mathrm{sts}}$
$C_{\text {sts }}$	[2] $C_{\text {sts }}$	$[2] c_{s}+[2]^{2} c_{w_{0}}$	$[2] c_{\text {st }}+[2] c_{w_{0}}$	$C_{\mathrm{s}}+C_{\mathrm{sts}}$	$c_{\mathrm{S}}+[2]^{2} C_{W_{0}}$	$c_{\mathrm{s}}+C_{\mathrm{sts}}+[2] c_{w_{0}}$
$C_{\text {ts }}$	$[2] c_{\text {ts }}$	$[2] c_{\mathrm{ts}}+[2] c_{w_{0}}$	$[2] c_{\mathrm{t}}+[2] c_{\mathrm{tst}}$	$C_{\mathrm{t}}+C_{\text {tst }}$	$c_{\mathrm{t}}+c_{\mathrm{tst}}+[2] c_{w_{0}}$	$2 c_{\mathrm{ts}}+C_{w_{0}}$
$C_{\text {t }}$	$C_{\text {ts }}$	$C_{\mathrm{ts}}+C_{w_{0}}$	$C_{\mathrm{t}}+C_{\mathrm{tst}}$	[2]c	[2] $C_{\text {cst }}$	$[2] c_{\text {ts }}$
$C_{\text {tst }}$	$C_{\mathrm{t}}+C_{\text {tst }}$	$c_{\mathrm{t}}+[2]^{2} c_{w_{0}}$	$c_{\mathrm{t}}+c_{\mathrm{tst}}+[2] c_{w_{0}}$	[2] $\mathrm{ctst}^{\text {ct }}$	$[2] c+[2]^{2} c_{w_{0}}$	$[2] c_{\mathrm{ts}}+[2] c_{w_{0}}$
$C_{\text {st }}$	$C_{\mathrm{s}}+C_{\mathrm{sts}}$	$C_{s}+C_{\text {sts }}+[2] c_{w_{0}}$	$2 c_{s t}+c_{w_{0}}$	$[2] c_{\text {st }}$	$[2] c_{s t}+[2] c_{w_{0}}$	$[2] c_{\text {s }}+[2] c_{\text {sts }}$

The limit $\mathrm{v} \rightarrow 0$ is much simpler! Have you seen this

Back to graphs. Example ($e=2$).

\[

\]

Back to graphs. Example ($e=2$).

\[

\]

Back to graphs. Example ($e=2$).

$$
\begin{aligned}
& \mathrm{M}=\mathbb{C}\langle 1,2,3\rangle \\
& a_{\mathrm{s}} \leadsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& a_{\text {sts }} \leadsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& a_{\mathrm{ts}} \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Back	Example. $\begin{gathered} a_{\mathrm{st}} a_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\ {\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]} \\ \left(\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)+\left(\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) . \end{gathered}$
	$\begin{aligned} a_{\mathrm{s}} & \sim\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) & & a_{\mathrm{t}}\end{aligned} \sim\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
	$a_{\text {ts }} \leadsto\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right) \quad a_{\text {st }} \leadsto\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$

Example.

$$
\begin{gathered}
a_{\mathrm{st}} a_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\
{\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]}
\end{gathered}
$$

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot
$$

This works in general and recovers the transitive \mathbb{N}-modules of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ found by
Etingof-Khovanov ~1995, Kirillov-Ostrik ~2001 and Ostrik ~2003, which are also ADE classified.
(For the experts: the bicoloring kills the tadpole solutions.)

$$
a_{\mathrm{ts}} \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

$$
a_{\mathrm{st}} \leadsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Example.

$$
\begin{gathered}
a_{\mathrm{st}} \boldsymbol{a}_{\mathrm{ts}}=a_{\mathrm{s}}+a_{\mathrm{sts}} \\
{\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]}
\end{gathered}
$$

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot
$$

This works in general and recovers the transitive \mathbb{N}-modules of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ found by
Etingof-Khovanov ~1995, Kirillov-Ostrik ~2001 and Ostrik ~2003, which are also ADE classified.
(For the experts: the bicoloring kills the tadpole solutions.)
$a_{\mathrm{ts}}\left(\begin{array}{c|c}\hline \text { However, at this point this was just an observation } & 1 \\ \text { and it took a while until we understood its meaning. } & 1 \\ \text { (Cliffhanger: Wait for tomorrow.) } & 0\end{array}\right)$

Back to graphs. Example ($e=2$).

Back to graphs. Example ($e=2$).

Where to find $\mathrm{SL}(m)_{q}$?

First try: What are the asymptotic limits of finite types?

- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\operatorname{Rep}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types H_{3} and H_{4}.
\triangleright Maybe generalize the dihedral case?

Where to find $\mathrm{SL}(m)_{q}$?

First try: What are the asvmntotic limits of finite tunes? Idea 1: Chebyshev knows everything!

- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\operatorname{Rep}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types H_{3} and (H4).
\triangleright Maybe generalize the dihedral case?

Where to find $\mathrm{SL}(m)_{q}$?

First try: What are the asvmntotic limits of finite tunes?
Idea 1: Chebyshev knows everything!
So where have we seen the magic formula

$\mathrm{X} \mathrm{U}_{m+1}(\mathrm{X})=\mathrm{U}_{m+2}(\mathrm{X})+\mathrm{U}_{m}(\mathrm{X})$ before?

Here:

$$
[2] \cdot[e+1]=[e+2]+[e]
$$

$$
\mathrm{L}_{1} \otimes \mathrm{~L}_{e+1} \cong \mathrm{~L}_{e+2} \oplus \mathrm{~L}_{e}
$$

$-\mathrm{N} \mathrm{L}_{e}=e^{\text {th }}$ symmetric power of the vector representation of (quantum) $\mathfrak{s l}_{2}$.
\rightarrow No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.

- No luck for the pentagon types H_{3} and
\triangleright Maybe generalize the dihedral case?

Where to find $\mathrm{SL}(m)_{q}$?

First try: What are the asvmntatic limits of finite tynes?
Idea 1: Chebyshev knows everything!
So where have we seen the magic formula

$\mathrm{X} \mathrm{U}_{m+1}(\mathrm{X})=\mathrm{U}_{m+2}(\mathrm{X})+\mathrm{U}_{m}(\mathrm{X})$ before?

Here:

$$
\begin{gathered}
{[2] \cdot[e+1]=[e+2]+[e]} \\
\mathrm{L}_{1} \otimes \mathrm{~L}_{e+1} \cong \mathrm{~L}_{e+2} \oplus \mathrm{~L}_{e}
\end{gathered}
$$

$-\mathrm{N} \mathrm{L}_{e}=e^{\text {th }}$ symmetric power of the vector representation of (quantum) $\mathfrak{s l}_{2}$.

- Nol
Idea 2: The dihedral type is
a quotient of affine type A_{1}.
Very vague philosophy I want to sell:

Whe Quantum Satake (Elias ~2013, Mackaay-Mazorchuk-Miemietz ~2018)

- rough version.
$\mathrm{SL}(m)_{q}$ is the semisimple version of a subquotient of Soergel bimodules for affine type A_{m-1}.

The KL basis correspond to the images of L_{e}.
Beware: Only the cases $m=2$ (dihedral) and $m=3$ (trihedral) are proven, as everything gets combinatorially more complicated.

- No luck in finite Weyl type: $\mathrm{v} \rightarrow 0$ is (almost always) $\mathcal{R e p}\left((\mathbb{Z} / 2 \mathbb{Z})^{k}\right)$.
- No luck in dihedral type: $\mathrm{v} \rightarrow 0$ is $\mathrm{SL}(2)_{q}\left(q^{2(n-2)}=1\right)$.
- No luck for the pentagon types H_{3} and
\triangleright Maybe generalize the dihedral case?

Whe Quantum Satake (Elias ~2013, Mackaay-Mazorchuk-Miemietz ~2018)

- rough version.
$\mathrm{SL}(m)_{q}$ is the semisimple version of a subquotient of Soergel bimodules for affine type A_{m-1}.

The KL basis correspond to the images of L_{e}.
Beware: Only the cases $m=2$ (dihedral) and $m=3$ (trihedral) are proven, as everything gets combinatorially more complicated.

Summary of Nhedral.

Most questions are still open, but nice patterns appear.
Leaves the realm of groups. (No associated Coxeter group; only a subquotient.)
Generalized zigzag algebras, Chebyshev polynomials and ADE diagrams appear.
ADE-type classification(?) of 2-representations.
Fusion: $\mathrm{SL}(m)_{q}$ appears.

Example ($e-2$). Simples associated to celle.

KI basis. ADE dagrams and ranks of transitive N-modules.

than one associzted gimple
geneal not cellulat in the sense of Giahami-Letver,)
뚀

Example ($e-2$)
The fision ring $K_{b}\left(S L[2)_{q}\right)$ for $q^{2 e}-1$ has simple objects $\left[L_{0}\right],\left[L_{L}\right],\left[L_{2}\right]$. The

Comparison of multipication tables.

The limit $\mathrm{v} \rightarrow 0$ is a bicolored verion of $\mathrm{K}_{\mathrm{o}}\left(\right.$ SL. $\left.(2)_{\mathrm{a}}\right)$.

N-modules via graphs
Construct a W - module AI associated to a biparite graph r
$\mathrm{M}-\mathrm{C}(1,2,3,4,5)$

$$
b_{\mathrm{s}} \cdots M_{\mathrm{a}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad b_{\mathrm{a}} \ldots M_{c}-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

We get a categorical action of W_{T}
b The category to act on is $Z\left(D_{s}\right)$ - P Mod.
We have endofunctors $\mathrm{B}_{2}-\oplus_{+} P_{i} \otimes_{i} P \Theta_{\text {_ }}$ and $\mathrm{B}_{2}-\oplus_{+} P_{i} \otimes_{j} P \Theta_{-}$
Lemma. The relations of b_{i} and b_{z} are satisfied by these functors
A coherent choice ef natural transformations an be made (Skipped tiday)

Back to graphs. Example ($0-2$).
$\left.\left.\begin{array}{l}a_{a} \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array} 0\right. \\ 0\end{array}\right) \quad \begin{array}{ll}0 & 0\end{array}\right)$

There is still much to do.

Example (e -2). Simples associated to cells.

KL basis. ADE dagrams and ranks of transitive N-modules.

The simples are ace
than one associated simple
For the coports This peant that the Hocie algetran with the KL basin 1 in
seneral not cellulat in the sense of Giahami-Letver,)
\cdots

Example ($e-2$)
The fision ring $K_{b}\left(S L[2)_{q}\right)$ for $q^{2 e}-1$ has simple objects $\left[L_{0}\right],\left[L_{L}\right],\left[L_{2}\right]$. The

Comparison of multiplication tables:

The limit $\mathrm{v} \rightarrow 0$ is a bicolored verion of $K_{0}\left(S \mathrm{SL}(2)_{a}\right)$:

N-modules via graphs
Construct a W - module AI associated to a biparite graph r
$\mathrm{M}-\mathrm{C}(1,2,3,4,5)$

$$
b_{s} \cdots M_{2}-\left(\begin{array}{lllll}
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad b_{3}-M_{c}-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 2 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

We get a categorical action of W_{T}
b The category to act on is $Z\left(D_{s}\right)$ - p Mod.
We have endofunctors $\mathrm{B}_{2}-\oplus_{+} P_{i} \otimes_{i} P Q_{-}$and $\mathrm{B}_{2}-\oplus_{4} P_{i} \otimes_{j} P_{8}$
Lemma. The relations of b_{A} and b_{z} are atisfied by these functors.
A coherent choice ef natural transformations an be made (Skipped tiday)

Back to graphs. Example ($0=2$)
$\left.\left.\begin{array}{l}a_{a} \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array} 0\right. \\ 0\end{array}\right) \quad \begin{array}{ll}0 & 0\end{array}\right)$

Thanks for your attention!

$$
\begin{array}{ll}
\mathrm{U}_{0}(\mathrm{X})=1, & \mathrm{U}_{1}(\mathrm{X})=\mathrm{X},
\end{array}, \mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
$$

Kronecker $\boldsymbol{\sim}$ 1857. Any complete set of conjugate algebraic integers in] $-2,2$ [is a subset of roots $\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by dimension: $1, \infty, 3,5,3,4,4,4,3,3,3,3,3, \ldots$

Examples.

Type $A_{3} \longleftrightarrow$ tetrahedron $\longleftrightarrow \rightsquigarrow$ symmetric group S_{4}.
Type $B_{3} \longleftrightarrow \rightsquigarrow$ cube/octahedron $\rightsquigarrow>$ Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{3} \ltimes S_{3}$.
Type $\mathrm{H}_{3} \longleftrightarrow$ dodecahedron/icosahedron $\leadsto \rightsquigarrow$ exceptional Coxeter group.
(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

The positivity on the KL basis is non-trivial.
Example (e=2). What happens for a different graph? For example,

$$
\boldsymbol{\Gamma}=\Longleftrightarrow, \quad A(\boldsymbol{\Gamma})=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) .
$$

$$
\begin{array}{cc}
b_{1} \rightsquigarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
b_{\mathrm{s}} \rightsquigarrow\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right), b_{\mathrm{ts}} \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & 2 & 5
\end{array}\right), b_{\mathrm{sts}} \rightsquigarrow\left(\begin{array}{ccc}
8 & 4 & 10 \\
4 & 2 & 5 \\
0 & 0 & 0
\end{array}\right), \\
b_{\mathrm{t}} \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 2
\end{array}\right), b_{\mathrm{st}} \rightsquigarrow\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
0 & 0 & 0
\end{array}\right), b_{\text {tst }} \rightsquigarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
10 & 5 & 10
\end{array}\right), \\
b_{\text {stst }} & \rightsquigarrow\left(\begin{array}{ccc}
20 & 10 & 20 \\
10 & 5 & 10 \\
0 & 0 & 0
\end{array}\right) \neq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
20 & 10 & 25
\end{array}\right) \sim b_{\text {tsts }} .
\end{array}
$$

The positivity on
Example ($e=2$)
KL basis.
$c_{1}=b_{1}, c_{\mathrm{s}}=b_{\mathrm{s}}, c_{\mathrm{t}}=b_{t}, c_{\mathrm{ts}}=b_{\mathrm{ts}}, c_{\mathrm{st}}=b_{\mathrm{st}}$,
but
$c_{\text {sts }}=b_{\mathrm{sts}}-b_{\mathrm{s}}$ and $c_{\text {tst }}=b_{\text {tst }}-b_{\mathrm{t}}$
and $c_{\text {stst }}=b_{\text {stst }}-2 b_{\mathrm{st}}$ and $c_{\text {tsts }}=b_{\text {tsts }}-2 b_{\mathrm{ts}}$.

$$
\begin{aligned}
& b_{1} \rightsquigarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& b_{\mathrm{s}} \rightsquigarrow\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right), b_{\mathrm{ts}} \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & 2 & 5
\end{array}\right), b_{\text {sts }} \rightsquigarrow\left(\begin{array}{ccc}
8 & 4 & 10 \\
4 & 2 & 5 \\
0 & 0 & 0
\end{array}\right), \\
& b_{\mathrm{t}} \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 2
\end{array}\right), b_{\text {st }} \rightsquigarrow\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
0 & 0 & 0
\end{array}\right), b_{\text {tst }} \rightsquigarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
10 & 5 & 10
\end{array}\right), \\
& b_{\text {stst }} \rightsquigarrow\left(\begin{array}{ccc}
20 & 10 & 20 \\
10 & 5 & 10 \\
0 & 0 & 0
\end{array}\right) \neq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
20 & 10 & 25
\end{array}\right) \leadsto b_{\text {tsts }} \text {. }
\end{aligned}
$$

The positivity on
Example ($e=2$)
KL basis.
$c_{1}=b_{1}, c_{\mathrm{s}}=b_{\mathrm{s}}, c_{\mathrm{t}}=b_{t}, c_{\mathrm{ts}}=b_{\mathrm{ts}}, c_{\mathrm{st}}=b_{\mathrm{st}}$,
but
$c_{\text {sts }}=b_{\mathrm{sts}}-b_{\mathrm{s}}$ and $c_{\text {tst }}=b_{\text {tst }}-b_{\mathrm{t}}$
and $c_{\text {stst }}=b_{\text {stst }}-2 b_{\mathrm{st}}$ and $c_{\text {tsts }}=b_{\text {tsts }}-2 b_{\mathrm{ts}}$.

The positivity on the KL basis is non-trivial.
Example (e=2). What happens for a different graph? For example,

$$
\Gamma=\Longleftrightarrow, ~ A(\boldsymbol{\Gamma})=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Theorem.

For the infinite dihedral group all except the ADE graphs work.
The only proof of this I know uses categorification.
This implies that the Chebyshev polynomials evaluated at non-ADE graphs stay positive for all e.
Note that this is much harder to prove than the vanishing of the Chebyshev polynomials.

$$
\begin{aligned}
c_{\mathrm{t}} & \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 1 & 2
\end{array}\right), c_{\mathrm{st}} \rightsquigarrow\left(\begin{array}{lll}
4 & 2 & 4 \\
2 & 1 & 2 \\
0 & 0 & 0
\end{array}\right), c_{\mathrm{tst}} \rightsquigarrow\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
8 & 4 & 8
\end{array}\right), \\
c_{\text {stst }} & \rightsquigarrow\left(\begin{array}{ccc}
12 & 6 & 12 \\
6 & 3 & 6 \\
0 & 0 & 0
\end{array}\right) \neq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
12 & 16 & 15
\end{array}\right) \rightsquigarrow c_{\mathrm{tsts}} .
\end{aligned}
$$

The type A family
$e=0$
∇
$e=1$

$e=3$

. .
\star

The type D family

$e=4$

$e=6$

The type E exceptions

The type A family

The type D family
$e=8$
$e=10$
$e=4$
$e=6$

Note: Almost none of these are simple since they grow in rank with growing e.
This is the opposite from the classical representations.

Example (e=2). Simples associated to cells.
Classical representation theory. The simples from before.

	$\mathrm{M}_{0,0}$	$\mathrm{M}_{2,0}$	$\mathrm{M}_{\sqrt{2}}$	$\mathrm{M}_{0,2}$	$\mathrm{M}_{2,2}$
atom	sign	trivial-sign	rotation	sign-trivial	trivial
rank	1	1	2	1	1
apex (KL)	1	S $-\bigcirc$	S $-\bigcirc$	S $-\bigcirc$	

KL basis. ADE diagrams and ranks of transitive \mathbb{N}-modules.

	bottom cell	\longrightarrow	$\star \longrightarrow$	top cell
atom	sign	$\mathrm{M}_{2,0} \oplus \mathrm{M}_{\sqrt{2}}$	$\mathrm{M}_{0,2} \oplus \mathrm{M}_{\sqrt{2}}$	trivial
rank	1	3	3	1
apex (KL)	(1)	S $-\bigcirc$	S $-\bigcirc$	W_{0}

The simples are arranged according to cells. However, a cell might have more than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in general not cellular in the sense of Graham-Lehrer.)

Example ($e=2$).

The fusion ring $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{1}\right],\left[L_{2}\right]$. The limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\mathrm{sts}}, a_{\mathrm{st}}, a_{\mathrm{t}}, a_{\mathrm{tst}}, a_{\mathrm{ts}}$.

Comparison of multiplication tables:

	$\left[L_{0}\right]$	$\left[L_{2}\right]$	$\left[L_{1}\right]$
$\left[L_{0}\right]$	$\left[L_{0}\right]$	$\left[L_{2}\right]$	$\left[L_{1}\right]$
$\left[L_{2}\right]$	$\left[L_{2}\right]$	$\left[L_{0}\right]$	$\left[L_{1}\right]$
$\left[L_{1}\right]$	$\left[L_{1}\right]$	$\left[L_{1}\right]$	$\left[L_{0}\right]+\left[L_{2}\right]$

	a_{s}	a_{sts}	a_{st}	a_{t}	a_{tst}	a_{ts}
a_{s}	a_{s}	a_{sts}	a_{st}			
a_{sts}	a_{sts}	a_{s}	a_{st}			
a_{ts}	a_{ts}	a_{ts}	$a_{\mathrm{t}}+a_{\mathrm{tst}}$			
a_{t}				a_{t}	a_{tst}	a_{ts}
a_{tst}				a_{tst}	a_{t}	a_{ts}
a_{st}				a_{st}	a_{st}	$a_{\mathrm{s}}+a_{\mathrm{sts}}$

The limit $\mathrm{v} \rightarrow 0$ is a bicolored version of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$:

$$
a_{\mathrm{s}} \& a_{\mathrm{t}} \nrightarrow\left[L_{0}\right], \quad a_{\mathrm{sts}} \& a_{\mathrm{tst}} \leftrightarrow m\left[\left[L_{2}\right], \quad a_{\mathrm{st}} \& a_{\mathrm{ts}} \leftrightarrow m>\left[L_{1}\right] .\right.
$$

Example ($e=2$).

 This is the slightly nicer statement.The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects [L_{0}], [L_{2}]. The \mathcal{H}-cell limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\text {sts }}$.

Comparison of multiplication tables:

	$\left[L_{0}\right]$	$\left[L_{2}\right]$
$\left[L_{0}\right]$	$\left[L_{0}\right]$	$\left[L_{2}\right]$
$\left[L_{2}\right]$	$\left[L_{2}\right]$	$\left[L_{0}\right]$

$\&$| | a_{s} | a_{sts} |
| :---: | :---: | :---: |
| a_{s} | a_{s} | a_{sts} |
| a_{sts} | a_{sts} | a_{s} |

The \mathcal{H}-cell limit $\mathrm{v} \rightarrow 0$ is $K_{0}\left(\mathrm{SO}(3)_{q}\right)$:

$$
a_{\mathrm{s}} \longleftrightarrow 4\left[L_{0}\right], \quad a_{\text {sts }} \leftrightarrow \leadsto\left[L_{2}\right] .
$$

Example ($e=2$). This is the slightly nicer statement.

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right]$, $\left[L_{2}\right]$. The \mathcal{H}-cell limit $\mathrm{v} \rightarrow 0$ has simple objects $a_{\mathrm{s}}, a_{\text {sts }}$.

Comparison of multiplication tables:

Example ($e=2$).

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{a}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{2}\right]$. The \mathcal{H}-cell The bicoloring is basically coming from slightly different fusion graphs e.g. for $e=6$:

The zigzag algebra $\mathrm{Z}(\boldsymbol{\Gamma})$

$$
\begin{gathered}
\stackrel{\rightharpoonup}{\stackrel{\mathrm{u}}{\rightleftarrows}} \star \stackrel{\mathrm{u}}{\stackrel{\mathrm{~d}}{\rightleftarrows}} \mathrm{v} \\
u u=0=d d, u d=d u
\end{gathered}
$$

Apply the usual philosophy:

- Take projectives $P_{\mathrm{s}}=\bigoplus_{\nabla} P_{i} \otimes_{i} P \otimes_{-}$and $P_{\mathrm{t}}=\bigoplus_{\star} P_{j} \otimes_{j} P \otimes_{-}$.
- Get endofunctors $\mathrm{B}_{\mathrm{s}}=\mathrm{P}_{\mathrm{s}} \otimes_{\mathrm{Z}(\mathbf{\Gamma})-}$ and $\mathrm{B}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}} \otimes_{\mathrm{Z}(\mathbf{\Gamma})-\text {. }}$
- Check: These decategorify to b_{s} and b_{t}. (Easy.)
- Check: These give a genuine 2-representation. (Bookkeeping.)
- Check: There are no graded deformations. (Bookkeeping.)

Difference to $\mathrm{SL}(2)_{q}$: There is an honest quiver as this is non-semisimple.

Example (type H_{4}).

cell	0	1	2	3	4	5	$6=6^{\prime}$	5^{\prime}	4^{\prime}	3^{\prime}	2^{\prime}	1^{\prime}	0^{\prime}
size	1	32	162	512	625	1296	9144	1296	625	512	162	32	1
\mathbf{a}	0	1	2	3	4	5	6	15	16	18	22	31	60
$\mathrm{v} \rightarrow 0$	\square	$2 \square$	$2 \square$	$2 \square$	\square	\square	big	\square	\square	$2 \square$	$2 \square$	$2 \square$	\square

The big cell : \quad| $14_{8,8}$ | $13_{10,8}$ | $14_{6,8}$ |
| :---: | :---: | :---: |
| $13_{8,10}$ | $18_{10,10}$ | $18_{6,10}$ |
| $14_{8,6}$ | $18_{10,6}$ | $24_{6,6}$ |

Example (Fusion graphs for level 3).

In the non-semisimple case one gets quiver algebras supported on these graphs. ("Trihedral zigzag algebras".)

