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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example. N, Aut({1, ..., n}) = Sn ⊂ Tn = End({1, ..., n}), groups, groupoids,
categories, any · closed subsets of matrices, “everything” click , etc.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : y = zx , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : y = xz ′, x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : y = zxz ′, x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell – e.g. 1 ≤L y
because we can take z = y . Invertible elements g are always in the lowest cell – i.e.
g ≤L y because we can take z = yg−1.

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3, S2, S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Daniel Tubbenhauer 2-representations of Soergel bimodules September 2019 2 / 10
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representations.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S . (Time flies: I will be brief.)
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Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.

Frobenius ∼1895++, Burnside ∼1900++, Noether ∼1928++.
Representation theory is the useful? study of algebra actions

M : C −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ∼1899, Noether, Schreier ∼1928. All modules are built out of
simples (“Jordan–Hölder” filtration).

Basic question: Find the periodic table of simples.

Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);

I will stick to this case for the rest of the talk,

but what I am going to explain works for 2-categories.
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2-representation theory is group theory in categories

Let C be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, Khovanov–Lauda, many others
∼2000++. 2-representation theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple (“simple transitive”).

Mazorchuk–Miemietz ∼2014. All 2-modules are built out of 2-simples (“weak
2-Jordan–Hölder filtration”).

Basic question: Find the periodic table of 2-simples.

Empirical fact.
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A category V is called finitary if its equivalent to C-pMod. In particular:

I It has finitely many indecomposable objects Mj (up to ∼=).

I It has finite-dimensional hom-spaces.

I Its Grothendieck group [V] = [V]Z ⊗Z C is finite-dimensional.

A finitary, monoidal category C can thus be seen as a categorification of a
finite-dimensional algebra.
Its indecomposable objects Ci give a distinguished basis of [C ].

A finitary 2-representation of C :

I A choice of a finitary category V.

I (Nice) endofunctorsM (Ci ) acting on V.

I [M (Ci )] give N-matrices acting on [V].

The atoms (decat).

A C module is called simple

if it has no C-stable ideals.

The atoms (cat).

A C 2-module is called 2-simple

if it has no C -stable ⊗-ideals.

Dictionary.

cat finitary finitary+monoidal fiat functors

decat vector space algebra self-injective matrices

Instead of studying C and its action via matrices,

study C-pMod and its action via functors.

Example (decat).

C = C = 1 acts on any vector space via λ · .

It has only one simple V = C.

Example (cat).

C = V ec = Rep(1) acts on any finitary category via C⊗C

It has only one 2-simple V = Vec.
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =

M

M A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) are discussed in a second.

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple (in the abelianization) algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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Example (Rep(G )).
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M //

f

��

M⊗
f⊗
��

N // N⊗

.
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⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Group-like; semisimple.

There are not many interesting actions
of groups on additive/abelian categories.

Examples. V ec, Rep(G), Rep(Uq(g))ss ,
fusion or modular categories etc.

Semigroup-like; non-semisimple.

There are many interesting actions
of semigroups on additive/abelian categories.

Examples. Functors acting on categories, projective functors on category O,
Soergel bimodules, categorified quantum groups and their Schur quotients etc.
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Kazhdan–Lusztig ∼1979, Mazorchuk–Miemietz ∼2010, many others.
Additive categories are like semigroups.

Example. B imA – the 2-category of projective bimodules over some
finite-dimensional algebra. Take e.g. A with primitive idempotents e1 + e2 + e3 = 1,
then B imA has ten indecomposable 1-morphisms A and Aei ⊗C ejA.

The cell orders and equivalences:

X ≤L Y⇔ ∃Z : Y ⊂⊕ ZX, X ∼L Y⇔ (X ≤L Y) ∧ (Y ≤L X),

X ≤R Y⇔ ∃Z′ : Y ⊂⊕ XZ′, X ∼R Y⇔ (X ≤R Y) ∧ (Y ≤R X),

X ≤LR Y⇔ ∃Z, Z′ : Y ⊂⊕ ZXZ′, X ∼LR Y⇔ (X ≤LR Y) ∧ (Y ≤LR X).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The monoidal unit 1 is always in the lowest cell – e.g.
1 ≤L y because we can take Z = Y. Semisimple 1-morphisms G with dual are
always in the lowest cell – i.e. G ≤L Y because we can take Z = YG∗.

Theorem (Mackaay–Mazorchuk–Miemietz–Zhang ∼2017).

If C is fiat, then there is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples of (any)

CH

}
.

CH is a certain 2-category supported on H.

Thus, the H-cells control
the whole 2-representation theory.

Example. (B imA.)

H = V ec twice gives 1 + 1 = 2 associated 2-simples.

Problem.

CH is rarely semisimple,
left aside group-like.

Counterexample. Taft category.

We need to work harder.

Example (group-like).

Fusion categories, e.g. Rep(G), have only one cell. Rep(G)H is everything.

Example (semigroup-like).

Let Rep(G ,K) for K being of prime characteristic.
The projectives form a two-sided cell. Rep(G ,K)H can be complicated.

Example (Kazhdan–Lusztig ∼1979, Soergel ∼1990).

Soergel bimodules S (Sn) for the symmetric group
have cells coming from the Robinson–Schensted correspondence.

SH has one indecomposable object, but is not fusion.

Example (Taft algebra T2).

T2-Mod has two cells – the lowest cell containing the
trivial representation; the biggest containing the projectives.
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SH has one indecomposable object, but is not fusion.

Example (Taft algebra T2).

T2-Mod has two cells – the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Kazhdan–Lusztig ∼1979, Mazorchuk–Miemietz ∼2010, many others.
Additive categories are like semigroups.
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If C is fiat, then there is a one-to-one correspondence
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2-simples with

apex J

}
one-to-one←−−−−→
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2-simples of (any)

CH

}
.

CH is a certain 2-category supported on H.

Thus, the H-cells control
the whole 2-representation theory.

Example. (B imA.)
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Categorify the H-cell theorem – Part II

Theorem (Lusztig, Elias–Williamson ∼2012).
Let H be an H-cell of W . There exists a fusion category AH such that:

I (1) For every w ∈ H, there exists a simple object Aw .

I (2) The Aw , for w ∈ H, form a complete set of pairwise non-isomorphic simple
objects.

I (3) The identity object is Ad , where d is the Duflo involution.

I (4) AH categorifies AH (think: the degree-zero part of HH) with [Aw ] = aw
and

AxAy =
⊕

z∈J γ
z
x,yAz . vs. CxCy =

⊕
z∈J v a(z)hzx,yCz + bigger friends.

Here the γ are the degree-zero coefficients of the hzx,y , i.e.

γzx,y = (v a(z)hzx,y )(0).

Examples in type A1; coinvariant algebra.

C1 = C[x ]/(x2) and Cs = C[x ]/(x2)⊗ C[x ]/(x2). (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Takeaway messages.

(1) Group-like categories are easy, but slightly boring.

(2) Semigroup-like categories are hard, but interesting.

(3) Try to reduce the semigroup-like case to the group-like case using Green’s theory.

(4) This does not work in general  use a positive grading.
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Categorify the H-cell theorem – Part II

Theorem.
For any finite Coxeter group W and any H ⊂ J of W , there is an injection

Θ:
(
{2-simples of AH} / ∼=

)
↪→
(
{graded 2-simples of S with apex J } / ∼=

)

I We conjecture Θ to be a bijection.

I We have proved (are about to prove) the conjecture for almost all H, e.g.
those containing the longest element of a parabolic subgroup of W .

I If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of S .

I For almost all W , we would get a complete classification of the 2-simples.

Examples in type A1; coinvariant algebra.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representations.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S . (Time flies: I will be brief.)
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =

M

M A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) are discussed in a second.

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple (in the abelianization) algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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G = S3, S4 and S5, # of their subgroups (up to conjugacy), Schur multipliers H2

and ranks rk of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory. But:

This is a numerical problem.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back

Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is A
ψ
M = IndG

K (1K ) ∈ C , but with ψ-twisted
multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Group-like; semisimple.

There are not many interesting actions
of groups on additive/abelian categories.

Examples. V ec, Rep(G), Rep(Uq(g))ss ,
fusion or modular categories etc.

Semigroup-like; non-semisimple.

There are many interesting actions
of semigroups on additive/abelian categories.

Examples. Functors acting on categories, projective functors on category O,
Soergel bimodules, categorified quantum groups and their Schur quotients etc.
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Kazhdan–Lusztig ∼1979, Mazorchuk–Miemietz ∼2010, many others.
Additive categories are like semigroups.

Example (B imA for A as before). Cells – left L (columns), right R (rows),
two-sided J (big rectangles), H = L ∩R (small rectangles).
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If C is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)

Theorem (Mackaay–Mazorchuk–Miemietz–Zhang ∼2017).

If C is fiat, then there is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples of (any)

CH

}
.

CH is a certain 2-category supported on H.

Thus, the H-cells control
the whole 2-representation theory.

Example. (B imA.)

H = V ec twice gives 1 + 1 = 2 associated 2-simples.

Problem.

CH is rarely semisimple,
left aside group-like.

Counterexample. Taft category.

We need to work harder.
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Fusion categories, e.g. Rep(G), have only one cell. Rep(G)H is everything.

Example (semigroup-like).

Let Rep(G ,K) for K being of prime characteristic.
The projectives form a two-sided cell. Rep(G ,K)H can be complicated.

Example (Kazhdan–Lusztig ∼1979, Soergel ∼1990).

Soergel bimodules S (Sn) for the symmetric group
have cells coming from the Robinson–Schensted correspondence.

SH has one indecomposable object, but is not fusion.

Example (Taft algebra T2).

T2-Mod has two cells – the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Categorify the H-cell theorem – Part II

Theorem.
For any finite Coxeter group W and any H ⊂ J of W , there is an injection

Θ:
(
{2-simples of AH} / ∼=

)
↪→
(
{graded 2-simples of S with apex J } / ∼=

)

I We conjecture Θ to be a bijection.

I We have proved (are about to prove) the conjecture for almost all H, e.g.
those containing the longest element of a parabolic subgroup of W .

I If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of S .

I For almost all W , we would get a complete classification of the 2-simples.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/(x2) and Cs = C[x ]/(x2)⊗ C[x ]/(x2). (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Takeaway messages.

(1) Group-like categories are easy, but slightly boring.

(2) Semigroup-like categories are hard, but interesting.

(3) Try to reduce the semigroup-like case to the group-like case using Green’s theory.

(4) This does not work in general  use a positive grading.
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There is still much to do...

Thanks for your attention!
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells – left L (columns), right R
(rows), two-sided J (big rectangles), H = L ∩R (small rectangles).

(123), (213), (132)

(231), (312), (321)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(111) (222) (333)

Jlowest

Jmiddle

Jbiggest

H ∼= S3

H ∼= S2

H ∼= S1

Cute facts.

I Each H contains precisely one idempotent e or none idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) do not kill it. (Apex.)

Theorem. (Mind your groups!)

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

Thus, the maximal subgroups H(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C).

Example. (T3.)

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples.

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories.

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representations.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Rep(G).

3) Discuss the semigroup-like example S . (Time flies: I will be brief.)
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An algebra A = (A, µ, ι) in C :

µ =

A

A A

, ι =

1

A

, = , = = .

Its (right) modules (M, δ):

δ =

M

M A

, = , = .

Example. Algebras in V ec are algebras; modules are modules.

Example. Algebras in Rep(G ) are discussed in a second.

The category of (right) A-modules ModC (AM )
is a left C 2-representation.

Theorem (spread over several papers).

Completeness. For every 2-simpleM there exists
a simple (in the abelianization) algebra object AM in (a quotient of) C (fiat)

such thatM ∼=ModC (AM ).

Non-redundancy. M ∼= N if and only if
AM and AN are Morita–Takeuchi equivalent.

Example.

Simple algebra objects in V ec are simple algebras.
Up to Morita–Takeuchi equivalence these are just C; and ModV ec(C) ∼= Vec.

The above theorem is a vast generalization of this.
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G = S3, S4 and S5, # of their subgroups (up to conjugacy), Schur multipliers H2

and ranks rk of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory. But:

This is a numerical problem.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back

Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I The decategorifications are N-representations. Example

I The associated algebra object is A
ψ
M = IndG

K (1K ) ∈ C , but with ψ-twisted
multiplication.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Theorem (Etingof–Nikshych–Ostrik ∼2004); the group-like case.

If C is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity. Example

Group-like; semisimple.

There are not many interesting actions
of groups on additive/abelian categories.

Examples. V ec, Rep(G), Rep(Uq(g))ss ,
fusion or modular categories etc.

Semigroup-like; non-semisimple.

There are many interesting actions
of semigroups on additive/abelian categories.

Examples. Functors acting on categories, projective functors on category O,
Soergel bimodules, categorified quantum groups and their Schur quotients etc.
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Kazhdan–Lusztig ∼1979, Mazorchuk–Miemietz ∼2010, many others.
Additive categories are like semigroups.

Example (B imA for A as before). Cells – left L (columns), right R (rows),
two-sided J (big rectangles), H = L ∩R (small rectangles).

A

Ae1 ⊗C e1A Ae1 ⊗C e2A Ae1 ⊗C e3A
Ae2 ⊗C e1A Ae2 ⊗C e2A Ae2 ⊗C e3A
Ae3 ⊗C e1A Ae3 ⊗C e2A Ae3 ⊗C e3A

Jlowest

Jbiggest

H ∼= V ec

H ∼= V ec

If C is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)

Theorem (Mackaay–Mazorchuk–Miemietz–Zhang ∼2017).

If C is fiat, then there is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples of (any)

CH

}
.

CH is a certain 2-category supported on H.

Thus, the H-cells control
the whole 2-representation theory.

Example. (B imA.)

H = V ec twice gives 1 + 1 = 2 associated 2-simples.

Problem.

CH is rarely semisimple,
left aside group-like.

Counterexample. Taft category.

We need to work harder.

Example (group-like).

Fusion categories, e.g. Rep(G), have only one cell. Rep(G)H is everything.

Example (semigroup-like).

Let Rep(G ,K) for K being of prime characteristic.
The projectives form a two-sided cell. Rep(G ,K)H can be complicated.

Example (Kazhdan–Lusztig ∼1979, Soergel ∼1990).

Soergel bimodules S (Sn) for the symmetric group
have cells coming from the Robinson–Schensted correspondence.

SH has one indecomposable object, but is not fusion.

Example (Taft algebra T2).

T2-Mod has two cells – the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Categorify the H-cell theorem – Part II

Theorem.
For any finite Coxeter group W and any H ⊂ J of W , there is an injection

Θ:
(
{2-simples of AH} / ∼=

)
↪→
(
{graded 2-simples of S with apex J } / ∼=

)

I We conjecture Θ to be a bijection.

I We have proved (are about to prove) the conjecture for almost all H, e.g.
those containing the longest element of a parabolic subgroup of W .

I If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of S .

I For almost all W , we would get a complete classification of the 2-simples.

Examples in type A1; coinvariant algebra.

C1 = C[x ]/(x2) and Cs = C[x ]/(x2)⊗ C[x ]/(x2). (Positively graded, but non-semisimple.)

A1 = C and As = C⊗ C. (Degree zero part.)

Takeaway messages.

(1) Group-like categories are easy, but slightly boring.

(2) Semigroup-like categories are hard, but interesting.

(3) Try to reduce the semigroup-like case to the group-like case using Green’s theory.

(4) This does not work in general  use a positive grading.
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There is still much to do...

Thanks for your attention!
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Picture from https://en.wikipedia.org/wiki/Semigroup.

I There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

I Already the easiest of these are not semisimple – not even over C.
I Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Green & co: No!

Back

https://en.wikipedia.org/wiki/Semigroup


Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.



G = S3, S4 and S5, # of their subgroups (up to conjugacy), Schur multipliers H2

and ranks rk of their 2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is completely different from their classical representation theory. But:

This is a numerical problem.

Example (G = S3,K = S3); the N-matrices.

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)
.

Example (G = S3,K = Z/2Z = S2); the N-matrices.

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 ).

Back
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The Taft Hopf algebra:

T2 = C〈g , x〉/(g2 = 1, x2 = 0, gx = −xg) = C[Z/2Z]⊗̂C[x ]/(x2).

T2-pMod is a non-semisimple fiat category.

simples : {S0,S−1}
{
g .m = ±m,
x .m = 0,

indecomposables : {P0,P−1}.

Tensoring with the projectives P0 or P−1 gives a 2-representation of T2-pMod
which however can be twisted by a scalar λ ∈ C. The algebra objects are

C[Z/2Z]⊗ C[x ]/(x2 − λ) and C[1]⊗ C[x ]/(x2 − λ).

This gives a one-parameter family of non-equivalent 2-simples of T2-pMod.

Back

Classical result (decat).

C has only finitely many simples.

Wrong result (cat).

C has only finitely many 2-simples.

One crucial problem.

There can be infinitely many categorifications.
The decategorifications [M λ

i ] are all the same.
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All you need to know about Soergel bimodules for today. Let W be a Coxeter
group and H the associated Hecke algebra.

Theorem (Soergel–Elias–Williamson ∼1990,2012).
There exists a monoidal category S such that:

I (1) For every w ∈W , there exists an indecomposable object Cw .

I (2) The Cw , for w ∈W , form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

I (3) The identity object is C1, where 1 is the unit in W .

I (4) C categorifies H with [Cw ] = cw , with cw being the Kazhdan–Lusztig basis
of H.

I (5) Cell theory of S is Kazhdan–Lusztig cell theory.

I (6) S is positively graded with respect to the Cw .

Back



Example. (Soergel bimodules of type A1.) Let R = C[x ], deg(x) = 2 and
W = S2 = {1, s}. The geometric representation of W is given by s � x = −x . The
invariants are RW = C[x2], the coinvariants are RW = C[x ]/(x2).
We have two RW -bimodules B1 = RW and Bs = RW ⊗RW RW .

S is the additive Karoubi closure of the full subcategory of B imRW
generated by

B1 and Bs . In this case B1 = C1 and Bs = Cs , i.e. they are the indecomposable
objects. They satisfy

C1 Cs

C1 C1 Cs
Cs Cs (1 + v2)Cs

Here (1 + v2) is the graded dimension of RW . Thus:

C1

Cs

Jlowest

Jbiggest

H ∼= V ec
H 6∼= V ec

Back

SH1
∼= V ec, but

SHs 6∼= V ec.

Why? Because you can not easily rescale quasi-idempotents.

Think. You can not rescale a · a = 2a over N.

Main observation.

The degree zero part of SHs is V ec.

Maybe we should categorify the following classical fact.

A positively graded algebra A and its degree-zero part A0

have the same associated simples.

Example. RW = C[x ]/(x2) has one simple; the same number as (RW )0 = C.
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