2-representations of Soergel bimodules

Or: Mind your groups

Daniel Tubbenhauer

left cells

| 1 |
| :--- | :--- |

2	1
1	2

1
"left modules"

1
two-sided cells
1

2	1
1	2

1
"bimodules"
\mathcal{H}-cells
1

2	1
1	2

1

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang
September 2019

Clifford, Munn, Ponizovskiï, Green $\sim 1942+$. Finite semigroups or monoids.
Example. $\mathbb{N}, \operatorname{Aut}(\{1, \ldots, n\})=S_{n} \subset T_{n}=\operatorname{End}(\{1, \ldots, n\})$, groups, groupoids, categories, any • closed subsets of matrices, "everything" © cirek, etc.

The cell orders and equivalences:

$$
\begin{array}{cl}
x \leq_{L} y \Leftrightarrow \exists z: y=z x, & x \sim_{L} y \Leftrightarrow\left(x \leq_{L} y\right) \wedge\left(y \leq_{L} x\right), \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: y=x z^{\prime}, & x \sim_{R} y \Leftrightarrow\left(x \leq_{R} y\right) \wedge\left(y \leq_{R} x\right), \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: y=z x z^{\prime}, & x \sim_{L R} y \Leftrightarrow\left(x \leq_{L R} y\right) \wedge\left(y \leq_{L R} x\right) .
\end{array}
$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell - e.g. $1 \leq_{L} y$ because we can take $z=y$. Invertible elements g are always in the lowest cell - i.e. $g \leq_{L} y$ because we can take $z=y g^{-1}$.

Clifford, Munn, Ponizovskiĩ, Green $\sim 1942+$. Finite semigroups or monoids.
Example (the transformation semigroup T_{3}). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ (small rectangles).
$\mathcal{J}_{\text {lowest }}$
(123), (213), (132)
(231), (312), (321)

$(\mathbf{1 2 2) , (2 2 1)}$	$(\mathbf{1 3 3}),(331)$	$(233),(322)$	
$(\mathbf{1 2 1}),(212)$	$(313),(131)$	$(323),(232)$	
$(221),(112)$	$(\mathbf{1 1 3}),(311)$	$(\mathbf{2 2 3}),(332)$	$\mathcal{H} \cong S_{2}$
$(\mathbf{1 1 1})$	$(\mathbf{2 2 2})$	$(\mathbf{3 3 3})$	$\mathcal{H} \cong S_{1}$

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

Cute facts.

- Each \mathcal{H}

This is a general philosophy in representation theory.
contain Buzz words. Idempotent truncations, Kazhdan-Lusztig cells,

- Each \mathcal{H}, quasi-hereditary algebras, cellular algebras, etc.
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not kill it. (Apex.)

2-representation theory in a nutshell

categorical module

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \mathrm{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \operatorname{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.
2-module category functor \vdots nat. trafo

Examples of 2-representations.

Categorical modules, functorial actions,
(co)algebra objects, conformal embeddings of affine Lie algebras,
the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Examples of 2-categories.

Monoidal categories, module categories $\mathscr{R} \operatorname{ep}(G)$ of finite groups G, module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules \mathscr{S}, categorified quantum groups, categorified Heisenberg algebras.

Examples of 2-representations.

Categorical modules, functorial actions,
(co)algebra objects, conformal embeddings of affine Lie algebras,
the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.

2-representation theory in a nutshell

categorical module

1) Give an overview of the main ideas of 2-representation theory.
2) Discuss the group-like example $\mathscr{R} \operatorname{ep}(G)$.
3) Discuss the semigroup-like example \mathscr{S}. (Time flies: I will be brief.)

Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.
Frobenius $\sim 1895+$, Burnside $\sim 1900+$, Noether $\sim 1928+$.
Representation theory is the usetirl study of algebra actions

$$
\mathcal{M}: \mathrm{C} \longrightarrow \mathcal{E} \operatorname{nd}(\mathrm{v})
$$

with V being some vector space. (Called modules or representations.)

The "atoms" of such an action are called simple.
Maschke ~1899, Noether, Schreier $\boldsymbol{\sim}$ 1928. All modules are built out of simples ("Jordan-Hölder" filtration).

> Basic question: Find the periodic table of simples.

2-representation theory is group theory in categories

Let \mathscr{C} be a finitary 2-category.
Etingof-Ostrik, Chuang-Rouquier, Khovanov-Lauda, many others
$\sim 2000+$. 2-representation theory is the useful? study of actions of 2-categories:

$$
\mathscr{M}: \mathscr{C} \longrightarrow \mathscr{E} \operatorname{nd}(\mathcal{V}),
$$

with \mathcal{V} being some finitary category. (Called 2-modules or 2-representations.)

The "atoms" of such an action are called 2-simple ("simple transitive").
Mazorchuk-Miemietz ~2014. All 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

> Basic question: Find the periodic table of 2-simples.

2-representation theory is group theory in categories

Let \mathscr{C} be a finitary 2-category.
Etingof-Ostrik, Chuang-Rouquier, Khovanov-Lauda, many others
$\sim 2000++$. 2-representation theory is the useful? study of actions of 2-categories:

Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);
I will stick to this case for the rest of the talk,
but what I am going to explain works for 2-categories.
Mazorchuk-Miemietz ~2014. All 2-modules are built out of 2-simples ("weak 2-Jordan-Hölder filtration").

Basic question: Find the periodic table of 2-simples.

A category \mathcal{V} is called finitary if its equivalent to $\mathrm{C}-\mathrm{p} \mathcal{M o d}$. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional hom-spaces.
- Its Grothendieck group $[\mathcal{V}]=[\mathcal{V}]_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ is finite-dimensional.

A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a finite-dimensional algebra.
Its indecomposable objects C_{i} give a distinguished basis of $[\mathscr{C}]$.

A finitary 2 -representation of \mathscr{C} :

- A choice of a finitary category \mathcal{V}.
- (Nice) endofunctors $\mathscr{M}\left(\mathrm{C}_{i}\right)$ acting on \mathcal{V}.
- $\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indornmnncahlo nhiortc M. (यp to \cong).
- It has finite-dimension
- Its Grothendieck group A C module is called simple timensional.
if it has no C-stable ideals.
A finitary, monoidal category \mathscr{C} can thus be seen as a categorification of a finite-dimensional algebra The atoms (cat). Its indecomposable objec
A \mathscr{C} 2-module is called 2-simple

A finitary 2-representatio
if it has no \mathscr{C}-stable \otimes-ideals.

- A choice of a finitary category D.
- (Nice) endofunctors $\mathscr{M}\left(C_{i}\right)$ acting on \mathcal{V}.
- $\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional hom-spaces.

c||c|c|c|c| | Dictionary. |
| :--- |
| A finit |
| cat |
| finite-dinitary |
| decat |$|$ vector space

finitary+monoidal
algebra
fiat

self-injective functors | matrices |
| :--- |

Its indecomposable ohiects C. cive a distincuished hasis of [$[\mathscr{C}]$
Instead of studying C and its action via matrices,
A finitary 2-repres study C-pMod and its action via functors.

- A choice of a finitary category \mathcal{V}.
- (Nice) endofunctors $\mathscr{M}\left(\mathrm{C}_{i}\right)$ acting on \mathcal{V}.
- $\left[\mathscr{M}\left(\mathrm{C}_{i}\right)\right]$ give \mathbb{N}-matrices acting on $[\mathcal{V}]$.

A category \mathcal{V} is called finitary if its equivalent to C-pMod. In particular:

- It has finitely many indecomposable objects M_{j} (up to \cong).
- It has finite-dimensional_hom-snares
- Its Grothendie
Example (decat).
$\mathrm{C}=\mathbb{C}=1$ acts on any vector space via λ...

A finitary, monoida finite-dimensional atgetra.

It has only one simple $\mathrm{V}=\mathbb{C}$.
Its indecomposable objects C_{i} give a distinguished basis of $[\mathscr{C}$].
A finitary $2-\quad$ Example (cat).

- A choir $\mathscr{C}=\mathscr{V}$ ec $=\mathscr{R}$ ep (1) acts on any finitary category via $\mathbb{C} \otimes \mathbb{C}_{-}$
- (Nice)
- $\left[\mathscr{M}\left(C_{i}\right)\right.$ It has only one 2 -sim

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in $\mathscr{C}:$

Its (right) modules (M, δ) :

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.
Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ are discussed in a second.

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in \mathscr{C} :

Its (right) modules (M, δ):

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ are discussed in a second.

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in $\mathscr{C}:$

Theorem (spread over several papers).
Completeness. For every 2 -simple \mathscr{M} there exists a simple (in the abelianization) algebra object $\mathrm{A}_{\mathscr{M}}$ in (a quotient of) \mathscr{C} (fiat) such that $\mathscr{M} \cong \operatorname{Mod}_{\mathscr{C}}\left(\mathrm{A}_{\mathscr{M}}\right)$.

Non-redundancy. $\mathscr{M} \cong \mathscr{N}$ if and only if $\mathrm{A}_{\mathscr{M}}$ and $\mathrm{A}_{\mathscr{N}}$ are Morita-Takeuchi equivalent.

Example. Algebras in \mathscr{V} ec are algebras; modules are modules.

Example. Algebras in $\mathscr{R} \operatorname{ep}(G)$ are discussed in a second.

An algebra $\mathrm{A}=(\mathrm{A}, \mu, \iota)$ in $\mathscr{C}:$

Theorem (spread over several papers).
Completeness. For every 2 -simple \mathscr{M} there exists a simple (in the abelianization) algebra object $\mathrm{A}_{\mathscr{M}}$ in (a quotient of) \mathscr{C} (fiat) such that $\mathscr{M} \cong \operatorname{Mod}_{\mathscr{C}}\left(\mathrm{A}_{\mathscr{M}}\right)$.

Non-redundancy. $\mathscr{M} \cong \mathscr{N}$ if and only if $\mathrm{A}_{\mathscr{M}}$ and $\mathrm{A}_{\mathscr{N}}$ are Morita-Takeuchi equivalent.

| Example. |
| :---: | :---: |
| Simple algebra objects in \mathscr{V} ec are simple algebras. |
| Exap to Morita-Takeuchi equivalence these are just \mathbb{C}; and \mathcal{M} od $\mathscr{V}_{\mathrm{ec}}(\mathbb{C}) \cong \mathcal{V} \mathrm{ec}$. |
| The above theorem is a vast generalization of this. |

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $\mathscr{C}=\mathscr{R} \operatorname{ep}(G)$ (G a finite group).
- \mathscr{C} is monoidal and finitary (and fiat). For any $\mathrm{M}, \mathrm{N} \in \mathscr{C}$, we have $\mathrm{M} \otimes \mathrm{N} \in \mathscr{C}$:

$$
g(m \otimes n)=g m \otimes g n
$$

for all $g \in G, m \in \mathrm{M}, n \in \mathrm{~N}$. There is a trivial representation $\mathbb{1}$.

- The regular 2-representation $\mathscr{M}: \mathscr{C} \rightarrow \mathscr{E}$ nd (\mathscr{C}) :

- The decategorification is a \mathbb{N}-representation, the regular representation.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\mathbb{1} \in \mathscr{C}$.

Example ($\mathscr{R} \mathrm{ep}(G))$.

- Let $K \subset G$ be a subgroup.
- $\mathcal{R e p}(K)$ is a 2 -representation of $\mathscr{R} \operatorname{ep}(G)$, with action

$$
\mathcal{R e s}_{K}^{G} \otimes_{-}: \mathscr{R} \operatorname{ep}(G) \rightarrow \mathscr{E} \operatorname{nd}(\mathcal{R e p}(K))
$$

which is indeed a 2 -action because $\operatorname{Res}_{K}^{G}$ is a \otimes-functor.

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}=\operatorname{Ind}{ }_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$.

Example $(\mathscr{R} \operatorname{ep}(G))$.

- Let $\psi \in H^{2}\left(K, \mathbb{C}^{*}\right)$. Let $\mathcal{V}(K, \psi)$ be the category of projective K-modules with Schur multiplier ψ, i.e. vector spaces V with $\rho: K \rightarrow \mathcal{E}$ nd(V$)$ such that

$$
\rho(g) \rho(h)=\psi(g, h) \rho(g h), \text { for all } g, h \in K
$$

- Note that $\mathcal{V}(K, 1)=\mathcal{R e p}(K)$ and

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi) .
$$

- $\mathcal{V}(K, \psi)$ is also a 2-representation of $\mathscr{C}=\mathscr{R} \operatorname{ep}(G)$:

$$
\mathscr{R} \mathrm{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R e s}_{k}^{\epsilon} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $\mathrm{A}_{\mathscr{M}}^{\psi}=\operatorname{Ind}{ }_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\operatorname{Rep}(G))$.

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$

$$
\Leftrightarrow
$$

the subgroups are conjugate and $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi)
$$

- $\mathcal{V}(K, \psi)$ is also a 2-representation of $\mathscr{C}=\mathscr{R} \mathrm{ep}(G)$:

$$
\mathscr{R} \operatorname{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R} e s_{K}^{G} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations.
- The associated algebra object is $A_{\mathscr{M}}^{\psi}=\operatorname{Ind}{ }_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\mathscr{R e p}(G))$.

Theorem (folklore?).

Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$
\Leftrightarrow
the subgroups are conjugate and $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.

Note that $\mathscr{R} \operatorname{ep}(G)$ has only finitely many 2-simples.
$-\mathcal{V}(K, \psi)$ is This is no coincidence.

$$
\mathscr{R} \mathrm{ep}(G) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\mathcal{R e s}_{K}^{G} \boxtimes \mathrm{Id}} \mathcal{R e p}(K) \boxtimes \mathcal{V}(K, \psi) \xrightarrow{\otimes} \mathcal{V}(K, \psi) .
$$

- The decategorifications are \mathbb{N}-representations. - Example
- The associated algebra object is $A_{\mathscr{M}}^{\psi}=\operatorname{Ind}{ }_{K}^{G}\left(\mathbb{1}_{K}\right) \in \mathscr{C}$, but with ψ-twisted multiplication.

Example ($\mathscr{R} \mathrm{ep}(G))$.

Theorem (folklore?).
Completeness. All 2-simples of $\mathscr{R} \operatorname{ep}(G)$ are of the form $\mathcal{V}(K, \psi)$.
Non-redundancy. We have $\mathcal{V}(K, \psi) \cong \mathcal{V}\left(K^{\prime}, \psi^{\prime}\right)$
\Leftrightarrow
the subgroups are conjugate and $\psi^{\prime}=\psi^{g}$, where $\psi^{g}(k, l)=\psi\left(g k g^{-1}, g / g^{-1}\right)$.
tvole (Iral $V(N, 1)$ - NEP N) allu

$-\mathcal{V}(K, \psi)$ is | Note that $\mathscr{R} \operatorname{ep}(G)$ has only finitely many 2-simples. |
| :---: |
| This is no coincidence. |

Theorem (Etingof-Nikshych-Ostrik ~2004); the group-like case.
If \mathscr{C} is fusion (fiat and semisimple), then it has only finitely many 2 -simples.

This is false if one drops the semisimplicity.

Example ($\operatorname{Rep}(G))$.

$$
\otimes: \mathcal{V}(K, \phi) \boxtimes \mathcal{V}(K, \psi) \rightarrow \mathcal{V}(K, \phi \psi) .
$$

Semigroup-like; non-semisimple.
There are many interesting actions of semigroups on additive/abelian categories.

- Examples. Functors acting on categories, projective functors on category \mathcal{O},
- Soergel bimodules, categorified quantum groups and their Schur quotients etc. Fed multiplication.

Kazhdan-Lusztig ~1979, Mazorchuk-Miemietz ~2010, many others.

 Additive categories are like semigroups.Example. $\mathscr{B} \mathrm{im}_{\mathrm{A}}$ - the 2-category of projective bimodules over some finite-dimensional algebra. Take e.g. A with primitive idempotents $e_{1}+e_{2}+e_{3}=1$, then $\mathscr{B} \mathrm{im}_{A}$ has ten indecomposable 1-morphisms A and $\mathrm{Ae} e_{i} \otimes_{\mathbb{C}} e_{j} \mathrm{~A}$.

The cell orders and equivalences:

$$
\begin{array}{cl}
\mathrm{X} \leq_{L} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}: \mathrm{Y} \oplus \mathrm{ZX}, & \mathrm{X} \sim_{L} \mathrm{Y} \Leftrightarrow\left(\mathrm{X} \leq_{L} \mathrm{Y}\right) \wedge\left(\mathrm{Y} \leq_{L} \mathrm{X}\right) \\
\mathrm{X} \leq_{R} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}^{\prime}: \mathrm{Y} \oplus \mathrm{XZ}^{\prime}, & \mathrm{X} \sim_{R} \mathrm{Y} \Leftrightarrow\left(\mathrm{X} \leq_{R} \mathrm{Y}\right) \wedge\left(\mathrm{Y} \leq_{R} \mathrm{X}\right) \\
\mathrm{X} \leq_{L R} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}, \mathrm{Z}^{\prime}: \mathrm{Y} \oplus \mathrm{ZXZ}^{\prime}, & \mathrm{X} \sim_{L R} \mathrm{Y} \Leftrightarrow\left(\mathrm{X} \leq_{L R} \mathrm{Y}\right) \wedge\left(\mathrm{Y} \leq_{L R} \mathrm{X}\right) .
\end{array}
$$

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The monoidal unit $\mathbb{1}$ is always in the lowest cell - e.g. $\mathbb{1} \leq_{L} y$ because we can take $Z=Y$. Semisimple 1-morphisms G with dual are always in the lowest cell - i.e. $\mathrm{G} \leq_{L} \mathrm{Y}$ because we can take $\mathrm{Z}=\mathrm{YG}^{*}$.

Kazhdan-Lusztig ~1979, Mazorchuk-Miemietz ~2010, many others. Additive categories are like semigroups.

Example ($\mathscr{B} \mathrm{im}_{\mathrm{A}}$ for A as before). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ (small rectangles).

$\mathcal{J}_{\text {lowest }}$	A			$\mathcal{H} \cong \mathscr{V} \mathrm{ec}$
	$\mathrm{Ae}_{1} \otimes_{\mathbb{C}} e_{1} \mathrm{~A}$	$\mathrm{A} e_{1} \otimes_{\mathbb{C}} e_{2} \mathrm{~A}$	$\mathrm{Ae}_{1} \otimes_{\mathbb{C}} \mathrm{e}_{3} \mathrm{~A}$	
$\mathcal{J}_{\text {biggest }}$	$\mathrm{Ae}_{2} \otimes_{\mathbb{C}} e_{1} \mathrm{~A}$	$\mathrm{Ae}_{2} \otimes_{\mathrm{C}} e_{2} \mathrm{~A}$	$\mathrm{Ae}_{2} \otimes_{\mathbb{C}} e_{3} \mathrm{~A}$	$\mathcal{H} \cong \mathscr{V} \mathrm{ec}$
	$\mathrm{Ae}_{3} \otimes_{\mathbb{C}} e_{1} \mathrm{~A}$	$A e_{3} \otimes \mathbb{C} e_{2} A$	$\mathrm{Ae}_{3} \otimes \mathbb{C} \mathrm{e}_{3} \mathrm{~A}$	

If \mathscr{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apex.)

Kazhdan-Lusztio ~1979. Mazorchuk-Miemietz ~2010. manv others.

 Additive ca Theorem (Mackaay-Mazorchuk-Miemietz-Zhang ~2017).

[^0]
Kazhdan-Lusztio ~1979. Mazorchuk-Miemietz ~2010. manv others.

 Additive ca Theorem (Mackaay-Mazorchuk-Miemietz-Zhang ~2017).

If \mathscr{C} is finitary, | Example. $\left(\mathscr{B} \operatorname{im}_{\mathrm{A}}.\right)$ |
| :---: |
| $\mathcal{H}=\mathscr{V}$ ec twice gives $1+1=2$ associated 2-simples. |

Kazhdan-Lusztio ~1979. Mazorchuk-Miemietz ~2010. manv others.

 Additive ca Theorem (Mackaay-Mazorchuk-Miemietz-Zhang ~2017).

If \mathscr{C} is finitary, | Example. $\left(\mathscr{B} \mathrm{im}_{\mathrm{A}}.\right)$ |
| :---: |
| $\mathcal{H}=\mathscr{V}$ ec twice gives $1+1=2$ associated 2-simples. |

Problem.
$\mathscr{C}_{\mathcal{H}}$ is rarely semisimple,
left aside group-like.
Counterexample. Taft category.
We need to work harder.

Fusion categories, e.g. $\mathscr{R} \operatorname{ep}(G)$, have only one cell. $\mathscr{R} \operatorname{ep}(G)_{\mathcal{H}}$ is everything. Example ($\mathscr{B} \mathrm{im}_{\mathrm{A}}$ for A as before). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sided \mathcal{J} (big rectangles), $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$ (small rectangles).

If \mathscr{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apex.)

Fusion categories, e.g. $\mathscr{R} \operatorname{ep}(G)$, have only one cell. $\mathscr{R e p}(G)_{\mathcal{H}}$ is everything. Example ($\mathscr{B} \mathrm{im}_{\mathrm{A}}$ for A as before). Cells - left \mathcal{L} (columns), right \mathcal{R} (rows), two-sid Example (semigroup-like).

Let $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$ for \mathbb{K} being of prime characteristic.
The projectives form a two-sided cell. $\mathscr{R} \operatorname{ep}(G, \mathbb{K})_{\mathcal{H}}$ can be complicated.

$\mathcal{J}_{\text {biggest }}$	$A e_{2} \otimes_{\mathbb{C}} e_{1} \mathrm{~A}$	$\mathrm{~A} e_{2} \otimes_{\mathbb{C}} e_{2} \mathrm{~A}$	$\mathrm{Ae} e_{2} \otimes_{\mathbb{C}} e_{3} \mathrm{~A}$
	$\mathrm{~A} e_{3} \otimes_{\mathbb{C}} e_{1} \mathrm{~A}$	$\mathrm{~A} e_{3} \otimes_{\mathbb{C}} e_{2} \mathrm{~A}$	$\mathrm{Ae} e_{3} \otimes_{\mathbb{C}} e_{3} \mathrm{~A}$

If \mathscr{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apex.)

Example (Taft algebra T_{2}).

$\mathrm{T}_{2}-\mathcal{M o d}$ has two cells - the lowest cell containing the trivial representation; the biggest containing the projectives.

Categorify the \mathcal{H}-cell theorem - Part II

Theorem (Lusztig, Elias-Williamson ~2012).

Let \mathcal{H} be an \mathcal{H}-cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- (1) For every $w \in \mathcal{H}$, there exists a simple object A_{w}.
- (2) The A_{w}, for $w \in \mathcal{H}$, form a complete set of pairwise non-isomorphic simple objects.
- (3) The identity object is A_{d}, where d is the Duflo involution.
- (4) $\mathscr{A}_{\mathcal{H}}$ categorifies $\mathrm{A}_{\mathcal{H}}$ (think: the degree-zero part of $\mathrm{H}_{\mathcal{H}}$) with $\left[\mathrm{A}_{w}\right]=a_{w}$ and

$$
\mathrm{A}_{x} \mathrm{~A}_{y}=\bigoplus_{z \in \mathcal{J}} \gamma_{x, y}^{z} \mathrm{~A}_{z} . \text { vs. } \quad \mathrm{C}_{x} \mathrm{C}_{y}=\bigoplus_{z \in \mathcal{J}} v^{a(z)} h_{x, y}^{z} \mathrm{C}_{z}+\text { bigger friends. }
$$

Here the γ are the degree-zero coefficients of the $h_{x, y}^{z}$, i.e.
$\gamma_{x, y}^{z}=\left(v^{a(z)} h_{x, y}^{z}\right)(0)$.

Categorify the \mathcal{H}-cell theorem - Part II

Theorem (Lusztig, Elias-Williamson ~2012).

Let \mathcal{H} be an \mathcal{H}-cell of W. There exists a fusion category $\mathscr{A}_{\mathcal{H}}$ such that:

- (1) For every $w \in \mathcal{H}$, there exists a simple object A_{w}.
- (2) The A_{w}, for $w \in \mathcal{H}$, form a complete set of pairwise non-isomorphic simple objects.
Examples in type $A_{1} ;$ coinvariant algebra.
$\mathrm{C}_{1}=\mathbb{C}[x] /\left(x^{2}\right)$ and $\mathrm{C}_{s}=\mathbb{C}[x] /\left(x^{2}\right) \otimes \mathbb{C}[x] /\left(x^{2}\right)$. (Positively graded, but non-semisimple.)
$\mathrm{A}_{1}=\mathbb{C}$ and $\mathrm{A}_{s}=\mathbb{C} \otimes \mathbb{C}$. (Degree zero part.)

Here the γ are the degree-zero coefficients of the $h_{x, y}^{z}$, i.e.
$\gamma_{x, y}^{z}=\left(v^{a(z)} h_{x, y}^{z}\right)(0)$.

Categorify the \mathcal{H}-cell theorem - Part II

Theorem.

For any finite Coxeter group W and any $\mathcal{H} \subset \mathcal{J}$ of W, there is an injection
$\Theta:\left(\left\{2\right.\right.$-simples of $\left.\left.\mathscr{A}_{\mathcal{H}}\right\} / \cong\right) \hookrightarrow(\{$ graded 2 -simples of \mathscr{S} with apex $\mathcal{J}\} / \cong)$

- We conjecture Θ to be a bijection.
- We have proved (are about to prove) the conjecture for almost all \mathcal{H}, e.g. those containing the longest element of a parabolic subgroup of W.
- If true, the conjecture implies that there are finitely many equivalence classes of 2-simples of \mathscr{S}.
- For almost all W, we would get a complete classification of the 2 -simples.

Categorify the \mathcal{H}-cell theorem - Part II

Theorem.

For any finite Coxeter group W and any $\mathcal{H} \subset \mathcal{J}$ of W, there is an injection
$\Theta:(\{2$-simples of $\mathscr{A} \mathcal{H}\} / \cong) \hookrightarrow(\{$ graded 2 -simples of \mathscr{S} with apex $\mathcal{J}\} / \cong)$ Takeaway messages.
(1) Group-like categories are easy, but slightly boring.
(2) Semigroup-like categories are hard, but interesting.
(3) Try to reduce the semigroup-like case to the group-like case using Green's theory.
(4) This does not work in general \rightsquigarrow use a positive grading.

Clifford, Munn, Ponizovskiī, Green $\sim 1942+1$. Finite semigroups or monoids.
Example (the transformation semigroup T_{3}). Cells - left \mathcal{C} (oolumns), right \mathcal{R}
(rows), two sided \mathcal{J} (bis rectangscis), $H \rightarrow \mathcal{C} \cap \mathcal{R}$ (small rectangles].

$\mathcal{J}_{\text {matat }}$		123) , (313). (722) (234) (1312), (1921)	$H \approx S_{1}$
$J_{\text {nuas }}$	(122) (122)	(133), (mu) (201) (123)	$H_{\sim} S_{2}$
	(121) (212)		
	(212) (112)	(113)(311) (223), (132)	
$J_{\text {cospa }}$	(111)	[222) [333]	$H \approx 5$

Cute facts.

- Each \mathcal{H} contains precisely one idempotent e or none idempotent. Each e is
contained in some $\mathrm{H}(\mathrm{e})$. (Idempotent separation.)
- Each simple has a unique maximal $\mathcal{J}(\mathrm{e})$ mhosese $\mathcal{H}(o)$ do not bill it. (Apox)

An algetra $A=(\hat{A}, \mu, \Delta)$ in $\boldsymbol{\varepsilon}$:

Its (night) madules (m, d):

Example. Algebsas in $Y_{\text {ec }}$ are algebras modules are modules.
Example. Algestras in $\operatorname{Ficp}(G)$ are discussed in a second.

> Kazhddan-Lusztig ~ 1979, Mazocchuk -Miemietz ~ 2010, many others. Additive categries are like semigroups.
> Example (\boldsymbol{B} ims for A as before). Cells - left \mathcal{C} (columns), right R (rows). two-sided \mathcal{J} (big rectangles). $\mathcal{H}-\mathcal{C} \cap \mathcal{R}$ (small rectangles).

If \mathcal{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apec)

2-representation theory in a nutshell

$G-S_{1}$. SH and S. . \# of their subgroups (up to conjugacy). Schur multipliers H^{2} and ranks $2 k$ of their 2 -simples.

This is completedy different from their classical representation theory. But:
This is a numerical problem.


```
Categorify the }H\mathrm{ -cell theorem - Part II
Theorem.
Theorem
Samp tine coverer group W and anv HCYJ of W, there is an injection
```



```
(1) Group-ike cmogcriss xe easy, but slighty boring
(2) Serigropelae catugrise are hard, bun imerating
T)
    (4) This does not werk in gmenal - ute & postive grading.
```

There is still much to do...

Clifford, Munn, Ponizovskii, Green $\sim 1942++$. Finite semigroups or monoids.
Example (the transformation semigroup T_{3}). Cells - left \mathcal{C} (oolumns), right \mathcal{R}
(rows), two sided \mathcal{J} (bis rectangscis), $H \rightarrow \mathcal{C} \cap \mathcal{R}$ (small rectangles].

$\mathcal{J}_{\text {matat }}$		123) , (313). (722) (234) (1312), (1921)	$H \approx S_{1}$
$J_{\text {nuas }}$	(122) (122)	(133), (mu) (201) (123)	$H_{\sim} S_{2}$
	(121) (212)		
	(212) (112)	(113)(311) (223), (132)	
$J_{\text {cospa }}$	(111)	[222) [333]	$H \approx 5$

Cute facts.

- Each \mathcal{H} contains preciscly one idempotent e or none idempotent. Each e is contained in some $\mathrm{H}(\mathrm{e})$. (Idempotent separation.)
- Each simple has a unique masimal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ do not bill it. (Apox)

An algetra $A=(\hat{A}, \mu, \Delta)$ in $\boldsymbol{\varepsilon}$:

Its (night) madules (m, d):

Example. Algebras in y_{ec} are algebras modules are modules.
Example. Algestras in $\operatorname{Ficp}(G)$ are discussed in a second.

$$
\begin{aligned}
& \begin{array}{l}
\text { Kazhddan-Lusztig } \sim 1979 \text {, Mazocchuk-Miemietz } \sim 2010 \text {, many others. } \\
\text { Additive categroies are like semigroups. }
\end{array} \\
& \text { Additive categries are like semigroups. } \\
& \text { Example (} B \text { imins for } A \text { as before). Cells - left } \mathcal{C} \text { (columns), right } R \text { (rows). } \\
& \text { two-sided } \mathcal{J} \text { (big rectangles). } \mathcal{H}-\mathcal{C} \cap \mathcal{R} \text { (small rectangles). } \\
& J_{\text {bowe }} \quad A \quad A=V_{\mathrm{cc}}
\end{aligned}
$$

If \mathcal{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apec)

2-representation theory in a nutshell

$G-S_{1}, S_{4}$ and S_{3}. \# of their subgroups (up to conjugray), Schur multipliers H^{2} and ranks th of their 2 -simples.

This is completedy different from their classical representation theory. But:
This is a numerical problem.


```
Categorify the }H\mathrm{ -cell theorem - Part II
Thcorem.
*)
```



```
(1) Group-like cutogeries we easy, but slighty boring
(2) Sevigresp-like categcies are hard, bun imeretaing:
```



```
(4) This does not werk in gmenal - ute & postive grading.
```

Thanks for your attention!

Semigroupoid	Totality	Associativity	Identity	Invertibilit	mmutativity
	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small Category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Quasigroup	Required	Unneeded	Unneeded	Unneeded	Intreeded
	Required	Unim	mraded	Required	Unneeded
deop	Required	Unneeded	Required	Requirea	manded
Semigroup Inverse Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
	Required	Required	Unneeded	Required	Unneeded
Monoid Group	Required	Required	Required	Unneeded	Unneeded
	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

Picture from https://en.wikipedia.org/wiki/Semigroup.

- There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There are 5 groups of order 8.)
- Already the easiest of these are not semisimple - not even over \mathbb{C}.
- Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

V
ERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).

It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that
Nowadays representation theory is pervasive across mathematics, and beyond.
TERY considerable advances in the theory of groups of But this wasn't clear at all when Frobenius started it.
of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is

Figure: Quotes from "Theory of Groups of Finite Order" by Burnside. Top: first edition (1897); bottom: second edition (1911).
$G=S_{3}, S_{4}$ and S_{5}, \# of their subgroups (up to conjugacy), Schur multipliers H^{2} and ranks $r k$ of their 2-simples.

$\left(S_{3}\right)$ K 1 $\mathbb{Z} / 2 \mathbb{Z}$				
$\mathbb{Z} / 3 \mathbb{Z}$	S_{3}			
$\#$	1	1	1	1
H^{2}	1	1	1	1
$r k$	1	2	3	3

								$\left(S_{4}\right)$	
K	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	S_{3}	D_{4}	A_{4}	S_{4}
$\#$	1	2	1	1	2	1	1	1	1
H^{2}	1	1	1	1	$\mathbb{Z} / 2 \mathbb{Z}$	1	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$
$r k$	1	2	3	4	4,1	3	5,2	4,3	5,3

This is completely different from their classical representation theory. But:
This is a numerical problem.
$G=S_{3}, S_{4}$ and S_{5}, \# of their subgroups (up to conjugacy), Schur multipliers H^{2} and ranks $r k$ of their 2-simples.

This is completely different from their classical representation theory. But:
This is a numerical problem.
$G=S_{3}, S_{4}$ and S_{5}, \# of their subgroups (up to conjugacy), Schur multipliers H^{2} and ranks $r k$ of their 2-simples.

Example ($G=S_{3}, K=S_{3}$); the \mathbb{N}-matrices.

Example ($G=S_{3}, K=\mathbb{Z} / 2 \mathbb{Z}=S_{2}$); the \mathbb{N}-matrices.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right)
$$

$\mathrm{T}_{2}-p \mathcal{M}$ od is a non-semisimple fiat category.

$$
\text { simples : }\left\{S_{0}, S_{-1}\right\}\left\{\begin{array}{l}
g \cdot m= \pm m, \\
x \cdot m=0,
\end{array} \quad \text { indecomposables : }\left\{P_{0}, P_{-1}\right\} .\right.
$$

Tensoring with the projectives P_{0} or P_{-1} gives a 2-representation of $\mathrm{T}_{2}-p$ Mod which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

$$
\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right) \quad \text { and } \quad \mathbb{C}[1] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right)
$$

This gives a one-parameter family of non-equivalent 2 -simples of $\mathrm{T}_{2}-p \mathcal{M o d}$.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right)
$$

T_{2}-pMod is a non-semis

Classical result (decat).

C has only finitely many simples.
simples: $\left\{S_{0}, S_{-1}\right\}\left\{\begin{array}{l}g \cdot m= \pm m, \\ x \cdot m=0,\end{array} \quad\right.$ indecomposables: $\left\{P_{0}, P_{-1}\right\}$.

Wrong result (cat).

Tensoring with the proje \mathscr{C} has only finitely many 2 -simples. ntation of $T_{2}-p \mathcal{M o d}$ which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

$$
\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right) \quad \text { and } \quad \mathbb{C}[1] \otimes \mathbb{C}[x] /\left(x^{2}-\lambda\right)
$$

This gives a one-parameter family of non-equivalent 2 -simples of $\mathrm{T}_{2}-p \mathcal{M o d}$.

The Taft Hopf algebra:

$$
\mathrm{T}_{2}=\mathbb{C}\langle g, x\rangle /\left(g^{2}=1, x^{2}=0, g x=-x g\right)=\mathbb{C}[\mathbb{Z} / 2 \mathbb{Z}] \hat{\otimes} \mathbb{C}[x] /\left(x^{2}\right)
$$

T_{2}-pMod is a non-semis | Classical result (decat). |
| :---: |
| C has only finitely many simples. |

Tensoring with the proj \mathscr{C} has only finitely many 2 -simples. ntation of T_{2} - p Mod which however can be twisted by a scalar $\lambda \in \mathbb{C}$. The algebra objects are

All you need to know about Soergel bimodules for today. Let W be a Coxeter group and H the associated Hecke algebra.

Theorem (Soergel-Elias-Williamson $\sim 1990,2012$).
There exists a monoidal category \mathscr{S} such that:

- (1) For every $w \in W$, there exists an indecomposable object C_{w}.
- (2) The C_{w}, for $w \in W$, form a complete set of pairwise non-isomorphic indecomposable objects up to shifts.
- (3) The identity object is C_{1}, where 1 is the unit in W.
- (4) \mathscr{C} categorifies H with $\left[\mathrm{C}_{w}\right]=c_{w}$, with c_{w} being the Kazhdan-Lusztig basis of H .
- (5) Cell theory of \mathscr{S} is Kazhdan-Lusztig cell theory.
- (6) \mathscr{S} is positively graded with respect to the C_{w}.

Example. (Soergel bimodules of type A_{1}.) Let $\mathrm{R}=\mathbb{C}[x], \operatorname{deg}(x)=2$ and $W=S_{2}=\{1, s\}$. The geometric representation of W is given by $s \cdot x=-x$. The invariants are $\mathrm{R}^{W}=\mathbb{C}\left[x^{2}\right]$, the coinvariants are $\mathrm{R}_{W}=\mathbb{C}[x] /\left(x^{2}\right)$.
We have two R_{W}-bimodules $\mathrm{B}_{1}=\mathrm{R}_{W}$ and $\mathrm{B}_{s}=\mathrm{R}_{W} \otimes_{\mathrm{R}^{w}} \mathrm{R}_{W}$.
\mathscr{S} is the additive Karoubi closure of the full subcategory of $\mathscr{B} i_{R_{w}}$ generated by B_{1} and B_{s}. In this case $\mathrm{B}_{1}=\mathrm{C}_{1}$ and $\mathrm{B}_{s}=\mathrm{C}_{s}$, i.e. they are the indecomposable objects. They satisfy

	C_{1}	C_{s}
C_{1}	C_{1}	C_{s}
C_{s}	C_{s}	$\left(1+v^{2}\right) \mathrm{C}_{s}$

Here $\left(1+v^{2}\right)$ is the graded dimension of R_{W}. Thus:

$\mathcal{J}_{\text {lowest }}$
$\mathcal{J}_{\text {biggest }}$

C_{1}
C_{s}
$\mathcal{H} \cong \mathscr{V} \mathrm{ec}$
$\mathcal{H} \not \approx \mathscr{V}$ ec

	C_{1}	C_{s}
C_{1}	C_{1}	C_{s}
C_{s}	C_{s}	$\left(1+v^{2}\right) \mathrm{C}_{s}$

Here $\left(1+v^{2}\right)$ is the graded dimension of R_{W}. Thus:
$\mathcal{J}_{\text {lowest }}$
$\mathcal{J}_{\text {biggest }}$
C_{1}
C_{5}

$$
\begin{aligned}
& \mathcal{H} \cong \mathscr{V} \mathrm{ec} \\
& \mathcal{H} \not \approx \mathscr{V} \mathrm{ec}
\end{aligned}
$$

Here $\left(1+v^{2}\right)$ is the graded dimension of R_{W}. Thus:

$\mathcal{J}_{\text {lowest }}$
$\mathcal{J}_{\text {biggest }}$

C_{1}
C_{s}
$\mathcal{H} \cong \mathscr{V} \mathrm{ec}$
$\mathcal{H} \not \approx \mathscr{V}$ ec

[^0]: If \mathscr{C} is finitary, then each 2 -simple has a unique maximal \mathcal{J} not killing it. (Apex.)

