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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons ⊂ Aut(R2)

{ }

Idea (Coxeter ∼1934++).

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

This gives a
generator-relation presentation.

Idea (Tits ∼1961++).
The reflection representation.

These symmetry groups of the regular n-gons are the so-called dihedral groups
D2n = 〈s, t | s2 = t2 = 1, . . . tsts︸ ︷︷ ︸

n

= w0 = . . . stst︸ ︷︷ ︸
n

〉

which are the easiest examples of Coxeter groups.

Example n = 4; its Coxeter complex.
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Pioneers of representation theory

Let G be a finite group.

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful?

study of linear group actions

M : G −→ Aut(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Maschke ∼1899. All modules are built out of simples (“Jordan–Hölder”
filtration).

“M(g) = a matrix in Aut(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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(“Jordan–Hölder” filtration).

“M(g) = a matrix in Aut(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.

Daniel Tubbenhauer What is...finitary 2-representation theory? February 2019 4 / 12



Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the useful? study of algebra actions

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Noether, Schreier ∼1928. All modules are built out of simples
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collection (“category”) of modules ! the world

modules ! chemical compounds

simples ! elements

semisimple ! only trivial compounds

non-semisimple ! non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

Example.

Back to the dihedral group, an invariant of
the module is the character χ which only remembers the

traces of the acting matrices:

{(
1 0
0 1

)
,

(
−1 0
1 1

)
,

(
1 1
0 −1

)
,

(
0 1
−1 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
−1 0

)}

1 s t ts st sts=tst
w0

χ = 2 χ = 0 χ = 0 χ = −1 χ = −1 χ = 0

Fact.

Semisimple case:
the character determines the module

!
mass determines the chemical compound.

Example.

Z/2Z→ Aut(C2), 0 7→
(

1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvectors: (1, 1) and (1,−1) and base change gives

0 7→
(

1 0

0 1

)
& 1 7→

(
1 0

0 −1

)

and the module decomposes.

Example.

Z/2Z→ Aut(f2
2
), 0 7→

(
1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvector: (1, 1) and base change gives

0 7→
(

1 0
0 1

)
& 1 7→

(
1 1
0 1

)

and the module is non-simple, yet does not decompose.

Morally: representation theory over Z is never semisimple.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M-1,-1,M1,-1,M-1,1,M1,1 M-1,-1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).

The list of one- and two-dimensional D2n-modules
is a complete, irredundant list of simples.

I learned this construction from Mackaay in 2017.

Note that this requires complex parameters.
This does not work over Z.
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An algebra P with a fixed, finite basis BP with 1 ∈ BP is called a N-algebra if

xy ∈ NBP (x, y ∈ BP).

A P-module M with a fixed, finite basis BM is called a N-module if

xm ∈ NBM (x ∈ BP,m ∈ BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Example (semisimple world).

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module, which decomposes over C into simples,
but almost never over N. (I will come back to this in a second.)

Example (semisimple world).

Fusion algebras, e.g. K0(Repsesi
q (g)level n),

with the basis coming from indecomposable objects.

Example (non-semisimple world).

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.
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Clifford, Munn, Ponizovskĭı ∼1942++, Kazhdan–Lusztig ∼1979. x ≤L y if y
appears in zx with non-zero coefficient for z ∈ BP. x ∼L y if x ≤L y and y ≤L x.
∼L partitions P into left cells L. Similarly for right R, two-sided cells J or
N-modules.

A N-module M is transitive if all basis elements belong to the same ∼L

equivalence class.
Fact. N-modules have transitive Jordan–Hölder filtrations. (The “atoms”.)

Main goal of N-representation theory. Find the periodic table of transitives.

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.

Proposition ∼2016.

Fixing the KL basis, there is a one-to-one correspondence

{(non-trivial) N-transitive D2n-modules}/N-iso
1:1←→

{bicolored ADE Dynkin diagrams with Coxeter number n}.

Thus, its easy to write down a list .

Example (semisimple world).

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H ⊂ G subgroup/conjugacy.

Example (semisimple world).

Fusion algebras have only one cell.

The transitive N-modules are known in special cases, e.g. for g = SL2

and I “basically know” the classification more generally.

Example (non-semisimple world).

Hecke algebras with KL basis
have a very rich cell theory.

The transitive N-modules are only known in special cases .
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Categorification in a nutshell

set N

category Vect

The point.

The category Vect has the whole power of linear algebra at hand!

There is nothing comparable for N:
N is just a shadow of Vect.

Slogan. 2-representation theory is group theory in categories.

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?
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Pioneers of 2-representation theory.

Let C be a finitary 2-category.

Etingof–Ostrik, Chuang–Rouquier, many others ∼2000++. Higher
representation theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“weak 2-Jordan–Hölder filtration”).

Slogan (finitary).
Everything that could be finite is finite.

“M (F) = a functor in End(V)”

A main goal of 2-representation theory.
Classify 2-simples.

Example. C = VecG or Rep(G).
Features. Semisimple, classification of 2-simples well-understood.
Comments. I will (try to) discuss the classification “in real time”.

Example. C = Repsesi
q (g)level n.

Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl2, some guesses for general g .

Comments. The classification of 2-simples is related to Dynkin diagrams.

Example. C = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,

classification of 2-simples only known in special cases.
Comments. Hopefully, by the end of the year we have a classification

by reducing the problem to the above examples.
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An additive, k-linear, idempotent complete, Krull–Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category C with finitely many
objects is finitary if its hom-categories are finitary, ◦h-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of C is an additive, k-linear 2-functor

M : C →A f(= 2-cat of finitary cats),

such that there are no non-zero proper C -stable ideals.

There is also the notion of 2-equivalence.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. weak 2-Jordan–Hölder filtration),

but their decategorifications are transitive N-modules and usually not simple.

Example.

B-pMod (with B finite-dimensional) is a prototypical object of A f .

A 2-module usually is given by endofunctors on B-pMod.

Example (semisimple).

G can be (naively) categorified using G -graded vector spaces VecG ∈A f .

The 2-simples are indexed by (conjugacy classes of) subgroups H and φ ∈ H2(H,C∗).

Example (semisimple).

Fusion or modular categories are semisimple examples
of finitary 2-categories, e.g. Repsesi

q (g)n.
Their 2-modules play a prominent role in quantum algebra and topology.

Example (non-semisimple).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: “Indecomposable projective functors on O0.”)

Dihedral group: the 2-simples have an ADE classification.

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by

potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Philosophy to take away.

“Finitary 2-representation theory
⇔

representation theory of finite-dimensional algebras
for all primes p ≥ 0.”
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but their decategorifications are transitive N-modules and usually not simple.

Example.

B-pMod (with B finite-dimensional) is a prototypical object of A f .

A 2-module usually is given by endofunctors on B-pMod.

Example (semisimple).

G can be (naively) categorified using G -graded vector spaces VecG ∈A f .

The 2-simples are indexed by (conjugacy classes of) subgroups H and φ ∈ H2(H,C∗).

Example (semisimple).

Fusion or modular categories are semisimple examples
of finitary 2-categories, e.g. Repsesi

q (g)n.
Their 2-modules play a prominent role in quantum algebra and topology.

Example (non-semisimple).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: “Indecomposable projective functors on O0.”)

Dihedral group: the 2-simples have an ADE classification.

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by

potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Philosophy to take away.

“Finitary 2-representation theory
⇔

representation theory of finite-dimensional algebras
for all primes p ≥ 0.”
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons ⊂ Aut(R2)
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(
0 1
−1 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
−1 0

)}

1 s t ts st sts=tst
w0

Idea (Coxeter ∼1934++).

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

This gives a
generator-relation presentation.

Idea (Tits ∼1961++).
The reflection representation.

These symmetry groups of the regular n-gons are the so-called dihedral groups
D2n = 〈s, t | s2 = t2 = 1, . . . tsts︸ ︷︷ ︸

n

= w0 = . . . stst︸ ︷︷ ︸
n

〉

which are the easiest examples of Coxeter groups.

Example n = 4; its Coxeter complex.
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•

•

•

• •

• •
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the useful? study of algebra actions

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Noether, Schreier ∼1928. All modules are built out of simples
(“Jordan–Hölder” filtration).

“M(g) = a matrix in Aut(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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Figure: “Über Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first published character table.

Note the root of unity ρ!

Back

collection (“category”) of modules ! the world

modules ! chemical compounds

simples ! elements

semisimple ! only trivial compounds

non-semisimple ! non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

Example.

Back to the dihedral group, an invariant of
the module is the character χ which only remembers the

traces of the acting matrices:

{(
1 0
0 1

)
,

(
−1 0
1 1

)
,

(
1 1
0 −1

)
,

(
0 1
−1 −1

)
,

(
−1 −1
1 0

)
,

(
0 −1
−1 0

)}

1 s t ts st sts=tst
w0

χ = 2 χ = 0 χ = 0 χ = −1 χ = −1 χ = 0

Fact.

Semisimple case:
the character determines the module

!
mass determines the chemical compound.

Example.

Z/2Z→ Aut(C2), 0 7→
(

1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvectors: (1, 1) and (1,−1) and base change gives

0 7→
(

1 0

0 1

)
& 1 7→

(
1 0

0 −1

)

and the module decomposes.

Example.

Z/2Z→ Aut(f2
2
), 0 7→

(
1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvector: (1, 1) and base change gives

0 7→
(

1 0
0 1

)
& 1 7→

(
1 1
0 1

)

and the module is non-simple, yet does not decompose.

Morally: representation theory over Z is never semisimple.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M-1,-1,M1,-1,M-1,1,M1,1 M-1,-1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).

The list of one- and two-dimensional D2n-modules
is a complete, irredundant list of simples.

I learned this construction from Mackaay in 2017.

Note that this requires complex parameters.
This does not work over Z.

Daniel Tubbenhauer What is...finitary 2-representation theory? February 2019 6 / 12

The type A family
n = 2
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n = 3

H F

n = 4
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F H F
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H F H F

n = 6

H F H F H

F H F H F
. . .

The type D family
n = 6

H F
H

H

F H
F

F

n = 8

F H F
H

H

H F H
F

F

n = 10

H F H F
H

H

F H F H
F

F

n = 12

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
n = 12

H F H F H
F

F H F H F
H

n = 18

H F H F H F
F

F H F H F H
H

n = 30

H F H F H F H
F

F H F H F H F
H

Back

This is an unexpected ADE classification.

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.

The regular Z/3Z-module is

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
0 0 1
1 0 0
0 1 0

)
& 2!

(
0 1 0
0 0 1
1 0 0

)

Jordan decomposition over C with ζ3 = 1 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 0 0
0 ζ 0

0 0 ζ−1

)
& 2!

(
1 0 0
0 ζ−1 0
0 0 ζ

)

However, Jordan decomposition over f3 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 1 0
0 1 1
0 0 1

)
& 2!

(
1 1 0
0 1 1
0 0 1

)

and the regular module does not decompose.

Back

Fun fact.

Choose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!

Categorification in a nutshell

set N

category Vect

1

2

3

6

n

k

k
2

k
3

k
6

k
n

dim.

+

⊕

·

⊗

>

<

sur.

inj.

all n-dim.
vector spaces

V
f

W

A universe itself!

all rank 1
2−1-matrices

k
2

g
k

A universe itself!

The point.

The category Vect has the whole power of linear algebra at hand!

There is nothing comparable for N:
N is just a shadow of Vect.

Slogan. 2-representation theory is group theory in categories.

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?
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There is still much to do...

Thanks for your attention!
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the useful? study of algebra actions

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Noether, Schreier ∼1928. All modules are built out of simples
(“Jordan–Hölder” filtration).

“M(g) = a matrix in Aut(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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This is an unexpected ADE classification.

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.
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Fun fact.

Choose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!
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The point.

The category Vect has the whole power of linear algebra at hand!

There is nothing comparable for N:
N is just a shadow of Vect.

Slogan. 2-representation theory is group theory in categories.
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Problem involving
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Problem involving

a categorical
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the problem

into 2-simples
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new
insights?
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There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.
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Figure: “Über Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
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Note the root of unity ρ!
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This is an unexpected ADE classification.

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.
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F

F H F H F H
H

n = 30

H F H F H F H
F

F H F H F H F
H
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This is an unexpected ADE classification.

Fun, and of course related (quantum Satake):
Repsesi

q (SL2)n (semisimplified at level n)
has, up to forgetting bicoloring, the same classification of 2-simples.

There is a similar story for all types,
e.g. Repsesi

q (SL3)n (semisimplified at level n)
relates to some “trihedral algebra”.



The regular Z/3Z-module is

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
0 0 1
1 0 0
0 1 0

)
& 2!

(
0 1 0
0 0 1
1 0 0

)

Jordan decomposition over C with ζ3 = 1 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 0 0
0 ζ 0

0 0 ζ−1

)
& 2!

(
1 0 0
0 ζ−1 0
0 0 ζ

)

However, Jordan decomposition over f3 gives

0!
(

1 0 0
0 1 0
0 0 1

)
& 1!

(
1 1 0
0 1 1
0 0 1

)
& 2!

(
1 1 0
0 1 1
0 0 1

)

and the regular module does not decompose.

Back

Fun fact.

Choose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!
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Example (G = D8). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

M-1,-1 M1,-1 M√2 M-1,1 M1,1

atom sign rotation trivial
rank 1 1 2 1 1

Group element basis. Subgroups and ranks of N-modules.

subgroup 1 〈st〉 〈w0〉 〈w0, s〉 〈w0, sts〉 G
atom regular M1,1⊕M-1,-1 M√2⊕M√2 M1,1⊕M1,-1 M1,1⊕M-1,1 trivial
rank 8 2 4 2 2 1

KL basis. ADE diagrams and ranks of N-modules.

bottom cell H F H F H F top cell

atom sign M1,-1⊕M√2 M-1,1⊕M√2 trivial
rank 1 3 3 1

Back

Fun fact.

Choose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!

“Knowing the transitive N-modules
⇔

knowing the simples for all primes p ≥ 0.”
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Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells:

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

Back



Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

Z/2Z Z/2Z Z/2Z

1

In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

Back
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Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

Z/2Z Z/2Z Z/2Z

1

{+1,−1}

{e} {e} {e}

{e}
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.
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Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

Z/2Z Z/2Z Z/2Z

1

{+1,−1}

{e} {e} {e}

{e}

Vec+1
1 ,Vec−1

1

VecZ/2Z VecZ/2Z VecZ/2Z

VecG
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.
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Construct a D∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Back

Lemma. For certain values of n these are N-valued C[D2n]-modules.

Lemma. All N-valued C[D2n]-module arise in this way.

Lemma. All 2-modules decategorify to such N-valued C[D2n]-module.

Categorification.

Category  V = Z-Mod,
Z quiver algebra with underlying graph G .

Endofunctors  tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[D2n].

Theorem ∼2016.

Fixing the Hecke category, there is a one-to-one correspondence

{(non-trivial) 2-simples D2n-modules}/2-iso
1:1←→

{bicolored ADE Dynkin diagrams with Coxeter number n}.

Same as on the decategorified level.
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