A tale of dihedral groups, $SL(2)_q$, and beyond

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer

Joint work with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

February 2019

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bullet Chebyshev polynomial.

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{\begin{array}{c}1 & 3 & 2\\\bullet & \bullet & \bullet\end{array}}_{\bullet} \xrightarrow{A(A_{3})} = \begin{pmatrix}0 & 0 & 1\\0 & 0 & 1\\1 & 1 & 0\end{pmatrix} \xrightarrow{A(A_{3})} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \underbrace{1 \qquad 3 \qquad 2}_{\bullet} \longrightarrow A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$

$$D_{4} = \underbrace{1 \qquad 4}_{A_{3}} \longrightarrow A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

Let $A(\Gamma)$ be the adjacency matrix of a finite, connected, loopless graph Γ . Let $U_{e+1}(X)$ be the \bigcirc Chebyshev polynomial.

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$A_{3} = \frac{1}{2} \xrightarrow{3}{2} \xrightarrow{2}{} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6})) \qquad \checkmark \text{ for } e = 2$$

$$D_{4} = \underbrace{1}_{4} \xrightarrow{4}_{3} \xrightarrow{} A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$\checkmark \text{ for } e = 4$$

Dihedral representation theory

- The classical representation theory
- The \mathbb{N}_0 -representation theory
- Dihedral \mathbb{N}_0 -representation theory

2 Non-semisimple fusion rings

- The asymptotic limit
- Cell modules
- The dihedral example

3 Beyond

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the Coxeter complex is:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\dots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\dots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the Coxeter complex is:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the Coxeter complex is:

$$\begin{split} \mathcal{W}_{e+2} &= \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathbf{s}}_{e+2} = \underbrace{\ldots \mathbf{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathbf{tst}}_{e+2} = \overline{\mathbf{t}}_{e+2} \rangle, \\ &e.g. : \ \mathcal{W}_4 = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = 1, \ \mathbf{tsts} = w_0 = \mathbf{stst} \rangle \end{split}$$

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the Coxeter complex is:

Dihedral representation theory on one slide.

The Bott-Samelson (BS) generators $\theta_s = s + 1$, $\theta_t = t + 1$. There is also a Kazhdan-Lusztig (KL) bases. Explicit formulas do not matter today.

 $\text{One-dimensional modules. } \mathrm{M}_{\lambda_{\mathrm{s}},\lambda_{\mathrm{t}}},\lambda_{\mathrm{s}},\lambda_{\mathrm{t}}\in\mathbb{C}, \theta_{\mathrm{s}}\mapsto\lambda_{\mathrm{s}},\theta_{\mathrm{t}}\mapsto\lambda_{\mathrm{t}}.$

$e \equiv 0 \mod 2$	$e \not\equiv 0 \mod 2$
$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2}$	$M_{0,0}, M_{2,2}$

Two-dimensional modules. $M_z, z \in \mathbb{C}, \theta_s \mapsto \begin{pmatrix} 2 & z \\ 0 & 0 \end{pmatrix}, \theta_t \mapsto \begin{pmatrix} 0 & 0 \\ \overline{z} & 2 \end{pmatrix}$.

$e \equiv 0 \mod 2$	$e \not\equiv 0 \mod 2$
$\mathrm{M}_z, z \in \mathrm{V}_e^{\pm}{-}\{0\}$	$\mathbf{M}_{z}, z \in \mathbf{V}_{e}^{\pm}$

One-dimensional modules. $M_{\lambda_s,\lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$.

An algebra P with a fixed basis B^P is called a (multi) $\mathbb{N}_0\text{-algebra}$ if $xy\in\mathbb{N}_0B^P\quad(x,y\in B^P).$

A $\operatorname{P-module}\,M$ with a fixed basis B^M is called a $\mathbb{N}_0\text{-module}$ if

$$xm \in \mathbb{N}_0 B^M$$
 ($x \in B^P, m \in B^M$).

These are \mathbb{N}_0 -equivalent if there is a \mathbb{N}_0 -valued change of basis matrix.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are \mathbb{N}_0 -algebras.

The regular module is a \mathbb{N}_0 -module.

A $\operatorname{P-module}\,M$ with a fixed basis B^M is called a $\mathbb{N}_0\text{-module}$ if

$$xm \in \mathbb{N}_0 B^M$$
 ($x \in B^P, m \in B^M$).

These are \mathbb{N}_0 -equivalent if there is a \mathbb{N}_0 -valued change of basis matrix.

Example. \mathbb{N}_0 -algebras and \mathbb{N}_0 -modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence.

2-categories and 2-modules, and \mathbb{N}_0 -equivalence comes from 2-equivalence.

Clifford, Munn, Ponizovskiĩ ~1942++, Kazhdan–Lusztig ~1979. $x \leq_L y$ if y appears in zx with non-zero coefficient for $z \in B^P. x \sim_L y$ if $x \leq_L y$ and $y \leq_L x. \sim_L$ partitions P into left cells L. Similarly for right R, two-sided cells LR or \mathbb{N}_0 -modules.

A $\mathbb{N}_0\text{-module}\ \mathrm{M}$ is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_0 -module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}_0 -modules arise naturally as the decategorification of simple 2-modules.

Question (\mathbb{N}_0 -representation theory). Classify them!

Question (\mathbb{N}_0 -representation theory). Classify them!

Question (\mathbb{N}_0 -representation theory). Classify them!

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive \mathbb{N}_0 -modules are $\mathbb{C}[G/H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

A $\mathbb{N}_0\text{-module}\ M$ is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_0 -module has a unique apex.

Hence, one can study them cell-wise.

ap \sim \mathbb{N}

Example. Transitive \mathbb{N}_0 -modules arise naturally as the decategorification of simple 2-modules.

у

Clifford, Munn, Ponizovskii ~1942++, Kazhdan-Lusztig ~1979. $x \leq_L y$ if y appears in zx with non-zero coefficient for $z \in B^P$. $x \sim_L y$ if $x \leq_L y$ and $y \leq_L x$. \sim_L partitions P into left cells L. Similarly for right R, two-sided cells LR or \mathbb{N}_0 -modules.

A $\mathbb{N}_0\text{-module}\ M$ is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

\mathbb{N}_0 -modules via graphs.

Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\textbf{\Gamma}:$

 $\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\textbf{\Gamma}:$

Construct a $W_\infty\text{-module}\ M$ associated to a bipartite graph $\textbf{\Gamma}$:

Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\textbf{\Gamma}:$

Construct a $W_\infty\text{-module }M$ associated to a bipartite graph $\mbox{\boldmath$\Gamma$}:$

$$M = \mathbb{C}\langle 1, 2, 3, 4, 5 \rangle$$

A tale of dihedral groups, $SL(2)_{\alpha}$, and beyond

The Weyl group of type B_2 . Number of elements: 8. Number of cells: 3, named 0 (trivial) to 2 (top).

Cell order:

Size of the cells:

cell	0	1	2	
size	1	6	1	

Cell structure:

Let $H_v(W)$ be the Hecke algebra associated to W. The asymptotic limit $J_{\infty}(W)$ of $H_v(W)$ is defined as follows.

As a free \mathbb{Z} -module:

$$J_{\infty}(W) = \bigoplus_{\mathsf{LR}} \mathbb{Z}\{t_{w} \mid w \in \mathsf{LR}\}. \quad \text{Compare:} \quad \frac{\mathrm{H}_{\mathsf{v}}(W) = \mathbb{Z}[\mathsf{v}, \mathsf{v}^{-1}]\{\theta_{w} \mid W\}.$$

Multiplication.

$$t_x t_y = \sum_{z \in LR} \gamma_{x,y}^z t_z$$
. Compare: $\theta_x \theta_y = \sum_{z \in LR} h_{x,y}^z \theta_z$ + bigger friends.

where $\gamma_{x,y}^z \in \mathbb{N}_0$ is the leading coefficient of $h_{x,y}^z \in \mathbb{N}_0[\mathbf{v}, \mathbf{v}^{-1}]$.

Example ($e = 2$).												
The multiplication tables (empty entries are 0 and $[2] = x + x^{-1}$ in 1.												
	The multiplication tables (empty entries are 0 and $[2] = v + v$) in 1.) 111 1.				
				t.	tana	t						
			t _{sts}	t _{sts}	ts	t _{st}						
			tts	t _{ts}	t _{ts}	$t_{t} + t_{tst}$						
			tt				tt	t _{tst}	t _{ts}			
			t _{tst}				t_{tst}	tt	t _{ts}			
			tst				tst	tst	$t_{s} + t_{sts}$			
	$ heta_{ extsf{s}}$	$ heta_{ t sts}$			$ heta_{ t st}$		θ_{t}		$ heta_{ t tst}$		$ heta_{ts}$	
θ_{s}	[2] $\theta_{\rm s}$	[2	$[] heta_{sts}$		$[2]\theta_{st}$		$\theta_{\mathtt{st}}$		$\theta_{\texttt{st}} + \theta$	wo	$\theta_{\rm s} + \theta_{\rm sts}$	
$\theta_{\tt sts}$	$[2]\theta_{sts}$	[2] θ_{s} -	$+ [2]^2 \theta_{1}$	v ₀	$[2]\theta_{st}$	$+ [2] \theta_{w_0}$	$\theta_{s} +$	$\theta_{\tt sts}$	$\theta_s + [2]^2$	θ_{w_0}	$\theta_{\rm s} + \theta_{\rm sts} + [2] \theta_{w_0}$	
θ_{ts}	$[2]\theta_{ts}$	$[2]\theta_{ts}$	$+ [2]\theta$	v ₀	$[2]\theta_t$	$+ [2] \theta_{tst}$	$\theta_t +$	$\theta_{\tt tst}$	$\theta_{\tt t} + \theta_{\tt tst} +$	$[2]\theta_{w_0}$	$2\theta_{ts} + \theta_{w_0}$	
θ_{t}	$ heta_{ts}$	$ heta_{ts}$	$+ \theta_{w_0}$		$\theta_{t} + \theta_{tst}$		$[2]\theta_t$		$[2]\theta_{tst}$		$[2]\theta_{ts}$	
$\theta_{\tt tst}$	$\theta_{t} + \theta_{tst}$	θ_t +	$[2]^2 \theta_{w_0}$		$\theta_{\rm t} + \theta_{\rm t}$	$t + [2]\theta_{w_0}$	[2]6	tst	$[2]\theta_{t} + [2]^{2}\theta_{w_{0}}$		$[2]\theta_{\texttt{ts}} + [2]\theta_{\texttt{W}_0}$	
$ heta_{ t st}$	$\theta_{\rm s} + \theta_{\rm sts}$	$\theta_{s} + \theta_{sts} + [2]\theta_{w_0} = 2\theta_{st} + \theta_{w_0}$			$+ \theta_{w_0}$	[2]6) _{st}	$[2] heta_{st} + [2]$	$2]\theta_{w_0}$	$[2] heta_{s} + [2] heta_{sts}$		
(Note the "subalgebras".)												
The asymptotic algebra is much simpler!												
► Big example												

Multiplication.

$$t_x t_y = \sum_{z \in LR} \gamma_{x,y}^z t_z$$
. Compare: $\theta_x \theta_y = \sum_{z \in LR} h_{x,y}^z \theta_z$ + bigger friends.

where $\gamma_{x,y}^z \in \mathbb{N}_0$ is the leading coefficient of $h_{x,y}^z \in \mathbb{N}_0[\mathbf{v}, \mathbf{v}^{-1}]$.

where $\gamma_{x,v}^z \in \mathbb{N}_0$ is the leading coefficient of $h_{x,v}^z \in \mathbb{N}_0[v, v^{-1}]$.

"Induced" transitive $\mathbb{N}_0\text{-algebras}$ and -modules.

Fix a left cell L. Let $M(\geq_L)$, respectively $M(>_L)$, be the \mathbb{N}_0 -modules spanned by all $x \in B^P$ in the union $L' \geq_L L$, respectively $L' >_L L$. Similarly for right R, two-sided LR and diagonal $H = L \cap R$ cells.

Left cell module $C_L = M(\geq_L)/M(>_L)$. (Left \mathbb{N}_0 -module.)

Right cell module $C_R = M(\geq_R)/M(>_R)$. (Right \mathbb{N}_0 -module.)

Two-sided cell module $C_{LR} = M(\geq_{LR})/M(>_{LR})$. (\mathbb{N}_0 -bimodule.)

The diagonal cell $C_H = J^H_{\infty}(W) = (M(\geq_{LR})/M(>_{LR})) \cap \mathbb{K}B^P(H).$ (N₀-subalgebra.)

Big example

"Induced" transitive $\mathbb{N}_0\text{-algebras}$ and -modules.

Fix a left cell L. Let $M(\geq_L)$, respectively $M(>_L)$, be the \mathbb{N}_0 -modules spanned by all $x \in B^P$ in the union $L' \geq_L L$, respectively $L' >_L L$. Similarly for right R, two-sided LR and diagonal $H = L \cap R$ cells.

The diagonal cell $C_H = J^H_{\infty}(W) = (M(\geq_{\mathsf{LR}})/M(>_{\mathsf{LR}})) \cap \mathbb{K}B^P(H).$ (\mathbb{N}_0 -subalgebra.)

"Induced" transitive \mathbb{N}_{c} algebras and modules Example. Fix $\mathbb{C}[G]$ with the group element basis has only one cell module, the regular module. by all two Similarly for any fusion algebra.

Left cell module $\mathrm{C}_L = \mathrm{M}(\geq_L)/\mathrm{M}(>_L).$ (Left $\mathbb{N}_0\text{-module.})$

Right cell module $C_R = M(\geq_R)/M(>_R)$. (Right \mathbb{N}_0 -module.)

Two-sided cell module $C_{LR} = M(\geq_{LR})/M(>_{LR})$. (\mathbb{N}_0 -bimodule.)

The diagonal cell $C_H = J^H_{\infty}(W) = (M(\geq_{\mathsf{LR}})/M(>_{\mathsf{LR}})) \cap \mathbb{K}B^P(H).$ (\mathbb{N}_0 -subalgebra.)

"Ir	educod" transitivo N. algobras and modulos Example.	1
Fix	$\mathbb{C}[G]$ with the group element basis has only one cell module, the regular module.	by
all two	Similarly for any fusion algebra.	

Left cell module $C_{i} = M(>_{i})/M(>_{i})$ (Left \mathbb{N}_{2} -module) Example (Kazhdan-Lusztig ~1979 Lusztig ~1983++)				
Right	For Hecke algebras of the symmetric group with KL basis			
Two-	the cell modules are Lusztig's cell modules studied in connection with reductive groups in characteristic p .			

The diagonal cell $C_H = J^H_{\infty}(W) = (M(\geq_{\mathsf{LR}})/M(>_{\mathsf{LR}})) \cap \mathbb{K}B^P(H).$ (\mathbb{N}_0 -subalgebra.)

Big example

"Induced" transitive \mathbb{N}_{c} algebras and modules **Example**. Fix $\mathbb{C}[G]$ with the group element basis has only one cell module, the regular module. by all two Similarly for any fusion algebra.

Daniel Tubbenhauer

A tale of dihedral groups, $SL(2)_q$, and beyond

Example (e = 2).

The fusion ring $K_0(SL(2)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_1], [L_2]$. The fusion ring $J_{\infty}^{LR}(W)$ has simple objects $t_s, t_{sts}, t_{st}, t_t, t_{tst}, t_{ts}$.

Comparison of multiplication tables:

						ts	t _{sts}	tst	t _t	t _{tst}	t _{ts}
	0.01	[/]	[/1]		ts	ts	tsts	tst			
	[-0]	[=2]	[-1]		tsts	tsts	ts	t _{st}			
$[L_0]$	$[L_0]$	$[L_2]$	$[L_1]$	&	t.	t.	t.	$t_1 + t_{1}$			
$[L_2]$	$[L_2]$	$[L_0]$	$[L_1]$		-ts	•ts	۰ts	•t · •tst			
$[L_1]$	$[L_1]$	$[L_1]$	$[L_0] + [L_2]$		t _t				t _t	t _{tst}	t _{ts}
[-1]	[-1]	[-1]	[-0] [-2]		t _{tst}				t _{tst}	t _t	t _{ts}
					tst				tst	tst	$t_{\rm s} + t_{\rm sts}$

 $J_{\infty}^{LR}(W)$ is a bicolored version of $K_0(SL(2)_q)$:

 $t_{\mathrm{s}} \& t_{\mathrm{t}} \nleftrightarrow [L_0], \quad t_{\mathrm{sts}} \& t_{\mathrm{tst}} \nleftrightarrow [L_2], \quad t_{\mathrm{st}} \& t_{\mathrm{ts}} \nleftrightarrow [L_1].$

Example (e = 2).

The fusion ring $K_0(SO(3)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_2]$. The fusion ring $J_{\infty}^{H}(W)$ ($H = L_s \cap R_s$) has simple objects t_s, t_{sts} .

Comparison of multiplication tables:

 $\mathrm{J}^{\mathsf{H}}_{\infty}(\mathrm{W})$ is $\mathcal{K}_{0}(\mathrm{SO}(3)_{q})$:

$$t_{\rm s} \leftrightsquigarrow [L_0], \quad t_{\rm sts} \leftrightsquigarrow [L_2].$$

This is the slightly nicer statement.

Example $(e = 2)$	Fact.	
The fusion ring k ring $J^{H}_{\infty}(W)$ (H =	Both connections are always true (<i>i.e.</i> for any <i>e</i>).	$[L_2]$. The fusion

Comparison of multiplication tables:

 $\mathrm{J}^{H}_{\infty}(\mathrm{W})$ is $K_{0}(\mathrm{SO}(3)_{q})$:

 $t_{\rm s} \nleftrightarrow [L_0], \quad t_{\rm sts} \nleftrightarrow [L_2].$

Example (e = 2).

The fusion ring $K_0(SO(3)_q)$ for $q^{2e} = 1$ has simple objects $[L_0], [L_2]$. The fusion ring $J_{\infty}^{H}(W)$ (H = L_s \cap R_s) has simple objects t_s, t_{sts} .

Comparison of multiplication tables:

	Fact.
	With a bit more care (with the H-cell-theorem) all the above generalizes to any Coxeter group $\rm W.$
$\mathrm{J}^{H}_{\infty}(\mathrm{W})$ is $\mathit{K}_{0}(\mathrm{S})$	Thus, Hecke algebras are non-semisimple fusion rings.
	In general $J_{\infty}(W)$ is not understood, but for W being a finite Weyl group $J_{\infty}^{H}(W)$ is very ence.
Beyond?

- ► Categorification?
 - ▷ Non-semisimple: Replace Hecke algebra by Soergel bimodules. ✓
 - \triangleright Non-semisimple: Categorical $\mathbb{N}_0\text{-modules}$ for dihedral groups. \checkmark Zigzag algebras appear.
 - ▷ Fusion: Replace asymptotic Hecke algebra by asymptotic Soergel bimodules. 🗸
 - \triangleright Fusion: Categorical \mathbb{N}_0 -modules for $\mathrm{SL}(2)_q$. \checkmark Algebras are trivial.
 - \triangleright H: Asymptotic Soergel bimodules are very nice, just remove K_0 everywhere. \checkmark
 - ▷ H-cell-theorem ?. Work in progress! · Click
- ▶ $SL(n)_q$?
 - Non-semisimple: Nhedral; leaves the realm of groups.
 - ▷ Non-semisimple: Categorical N₀-modules for Nhedral algebras have a Ncolored ADE-type classification. ✓ Generalized zigzag algebras and Chebyshev polynomials appear.
 - ▷ Fusion: One gets $SL(N)_q$.
 - ▷ Fusion: Categorical \mathbb{N}_0 -modules of $SL(N)_q$ have an ADE-type classification. Algebras are trivial. Click

Resid Tabledown Andered Michael groups, 51-(1), and beyond

Dihedral representation theory on one slide.

One-dimension	Proposition (Luszt	(g7).								
	The list of one- and two-dimensional $W_{\alpha,2}$ -modules is a complete, irredundant list of simple modules.									
	$\rm M_{0,0}, \ M_{2,0}, \ M_{0,2}, \ M_{2,2}$	$M_{0,0}, M_{2,2}$								
	I learned this construction from R	Ackagy is 2017.								
Two-dimension	al modules. $M_x, x \in \mathbb{C}, \theta_x \mapsto ($	$\{ \xi \}, \theta_4 \mapsto (\frac{9}{2} \frac{0}{2}).$								
	$e \equiv 0 \mod 2$	e yi 0 mod 2								
	$\mathbf{M}_{\mathbf{r}}, x \in \mathbf{V}_{\mathbf{r}}^{\pm} - \{0\}$	$\mathbf{M}_{s}, x \in \mathbf{V}_{s}^{\pm}$								
$V_{\sigma} = roots(U_{\sigma},$	$_{1}(X)$ and V_{σ}^{\pm} the $\mathbb{Z}/2\mathbb{Z}$ -orbits i	and $z \mapsto -z$.								

Example (e = 2). Here we have three different notions of "atoms".

Classical representation theory. The simples from before.

	$M_{4.0}$	Maa	M.4	346.2	Max
alarm.	sign.		rolation		1444
Agenta.	1	- 1	2	1	
apm(FL)	۲	0.0	0.0	0-0	•

February 2010 5/14

Group element basis. Subgroups and ranks of transitive No-modules.

subgroup	1	(46)	(m)	(m, a)	(mp. sta)	6
alian	meda	Monthlor.	ALCOHOL:	Marphies.	Morphics	Erivial
rank	1	2		2	2	1
2984	- 6	6		6		- 6-

KL basis. ADE diagrams and ranks of tramitive Ne-modules

There is still much to do...

Fallowy 2010 62/18

(Note the "subalgebras".)

The asymptotic algebra is much simpler

Thanks for your attention!

$$\begin{array}{l} U_0(X) = 1, \ U_1(X) = X, \ X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \\ U_0(X) = 1, \ U_1(X) = 2X, \ 2X U_{e+1}(X) = U_{e+2}(X) + U_e(X) \end{array}$$

Kronecker ~1857. Any complete set of conjugate algebraic integers in]-2, 2[is a subset of $roots(U_{e+1}(X))$ for some *e*.

Figure: The roots of the Chebyshev polynomials (of the second kind).

In case you are wondering why this is supposed to be true, here is the main observation of $Smith \sim \!\! 1969\!\!:$

$$\mathsf{U}_{e+1}(\mathtt{X}, \mathtt{Y}) = \pm \det(\mathtt{X}\mathrm{Id} - A(\mathsf{A}_{e+1}))$$
 Chebyshev poly. = char. poly. of the type A_{e+1} graph and

$$XT_{n-1}(X) = \pm \det(XId - A(D_n)) \pm (-1)^{n \mod 4}$$

first kind Chebyshev poly. '=' char. poly. of the type D_n graph $(n = \frac{e+4}{2})$.

Example (SAGE). The Weyl group of type B_6 . Number of elements: 46080. Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

Size of the cells and *a*-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Size of the cells and *a*-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
а	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Example (e = 2). Here we have three different notions of "atoms".

Classical representation theory. The simples from before.

	M _{0,0}	M _{2,0}	$\mathcal{M}_{\sqrt{2}}$	M _{0,2}	M _{2,2}
atom	sign		rotation		trivial
rank	1	1	2	1	1
apex(KL)	1	<u>s</u> –	<mark>(5)</mark> – (<u>s</u> –	w

Group element basis. Subgroups and ranks of transitive \mathbb{N}_0 -modules.

subgroup	1	$\langle st \rangle$	$\langle w_0 \rangle$	$\langle w_0, s \rangle$	$\langle w_0, sts \rangle$	G
atom	regular	$\mathrm{M}_{0,0} \oplus \mathrm{M}_{2,2}$	$\mathcal{M}_{\sqrt{2}} \oplus \mathcal{M}_{\sqrt{2}}$	$\mathrm{M}_{2,0} \oplus \mathrm{M}_{2,2}$	$\mathrm{M}_{0,2} \oplus \mathrm{M}_{2,2}$	trivial
rank	8	2	4	2	2	1
apex	G	G	G	G	G	G

KL basis. ADE diagrams and ranks of transitive \mathbb{N}_0 -modules.

	bottom cell	▼ ★ ▼	* * *	top cell
atom	sign	$\mathrm{M}_{2,0} \oplus \mathcal{M}_{\sqrt{2}}$	$\mathrm{M}_{0,2} \oplus \mathcal{M}_{\sqrt{2}}$	trivial
rank	1	3	3	1
apex	1	<mark>(5)</mark> – (<u>s</u> –	wo
	•			

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$\begin{aligned} \theta_d \theta_d &= \\ (\mathbf{v}^7 + 5\mathbf{v}^5 + 12\mathbf{v}^3 + 18\mathbf{v} + 18\mathbf{v}^{-1} + 12\mathbf{v}^{-3} + 5\mathbf{v}^{-5} + \mathbf{v}^{-7})\theta_d \\ &+ (\mathbf{v}^5 + 4\mathbf{v}^3 + 7\mathbf{v} + 7\mathbf{v}^{-1} + 4\mathbf{v}^{-3} + \mathbf{v}^{-5})\theta_u \\ &+ (\mathbf{v}^6 + 5\mathbf{v}^4 + 11\mathbf{v}^2 + 14 + 11\mathbf{v}^{-2} + 5\mathbf{v}^{-4} + \mathbf{v}^{-6})\theta_{121232123565} \end{aligned}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$\begin{split} t_d t_d = \\ (v^7 + 5v^5 + 12v^3 + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_d \\ + (v^5 + 4v^3 + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_u \\ + (v^6 + 5v^4 + 11v^2 + 14 + 11v^{-2} + 5v^{-4} + v^{-6})\theta_{121232123565} \end{split}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$t_{d} t_{d} = (v^{7} + 5v^{5} + 12v^{3} + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_{d} + (v^{5} + 4v^{3} + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_{u} + (v^{6} + 5v^{4} + 11v^{2} + 14 + 11v^{-2} + 5v^{-4} + v^{-6})\theta_{121232123565}$$
Bigger friends.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$t_d t_d = (v^7 + 5v^5 + 12v^3 + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_d + (v^5 + 4v^3 + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_u$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

$$t_d t_d = (\mathbf{v}^7 + 5\mathbf{v}^5 + 12\mathbf{v}^3 + 18\mathbf{v} + 18\mathbf{v}^{-1} + 12\mathbf{v}^{-3} + 5\mathbf{v}^{-5} + \mathbf{v}^{-7})\theta_d + (\mathbf{v}^5 + 4\mathbf{v}^3 + 7\mathbf{v} + 7\mathbf{v}^{-1} + 4\mathbf{v}^{-3} + \mathbf{v}^{-5})\theta_u$$

Killed in the limit $v \to \infty$.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

 $t_d t_d = t_d$

Looks much simpler.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand $s_i = i$):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

Example (SAGE; Type B_6).

Up to \mathbb{N}_0 -equivalence: five left cell modules, five right cell modules, one two-sided cell bimodule, three H subalgebras:

	4 _{5,5}	1 _{5,5}	${\bf 1}_{5,20}$	2 _{5,25}	2 _{5,25}		4 _{5,5}	${f 1}_{5,5}$	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}
	$1_{5,5}$	4 _{5,5}	$1_{5,20}$	2 5,25	2 _{5,25}		$1_{5,5}$	4 _{5,5}	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}
L =	${\bf 1}_{20,5}$	1 _{20,5}	4 _{20,20}	2 _{20,25}	2 _{20,25}	R =	${f 1}_{20,5}$	${f 1}_{20,5}$	4 _{20,20}	2 _{20,25}	2 _{20,25}
	2 _{25,5}	2 _{25,5}	2 _{25,20}	4 _{25,25}	$1_{25,25}$		2 _{25,5}	2 _{25,5}	2 _{25,20}	4 _{25,25}	$1_{25,25}$
	2 _{25,5}	2 _{25,5}	2 _{25,20}	1 _{25,25}	4 _{25,25}		2 _{25,5}	2 _{25,5}	2 _{25,20}	1 _{25,25}	4 _{25,25}
	Δ	1	1	2	2	l I	Λ	1	1	2	2
	4 _{5,5}	1 _{5,5}	1 _{5,20}	2 _{5,25}	2 _{5,25}		4 _{5,5}	1 _{5,5}	1 _{5,20}	2 _{5,25}	2 _{5,25}
	4 _{5,5} 1 _{5,5}	1 _{5,5} 4 _{5,5}	1 _{5,20} 1 _{5,20}	2 _{5,25} 2 _{5,25}	2 _{5,25} 2 _{5,25}		4 _{5,5} 1 _{5,5}	1 _{5,5} 4 _{5,5}	1 _{5,20} 1 _{5,20}	2 _{5,25} 2 _{5,25}	2 _{5,25} 2 _{5,25}
LR =	$\begin{array}{c} {\bf 4}_{5,5} \\ {\bf 1}_{5,5} \\ {\bf 1}_{20,5} \end{array}$	$1_{5,5}$ $4_{5,5}$ $1_{20,5}$	$\begin{array}{c} {\bf 1}_{5,20} \\ {\bf 1}_{5,20} \\ {\bf 4}_{20,20} \end{array}$	2 _{5,25} 2 _{5,25} 2 _{20,25}	2 _{5,25} 2 _{5,25} 2 _{20,25}	H =	4 _{5,5} 1 _{5,5} 1 _{20,5}	1 _{5,5} 4 _{5,5} 1 _{20,5}	$\begin{array}{c} {\bf 1}_{5,20} \\ {\bf 1}_{5,20} \\ {\bf 4}_{20,20} \end{array}$	2 _{5,25} 2 _{5,25} 2 _{20,25}	2 _{5,25} 2 _{5,25} 2 _{20,25}
LR =	$\begin{array}{c} \textbf{4}_{5,5} \\ \textbf{1}_{5,5} \\ \textbf{1}_{20,5} \\ \textbf{2}_{25,5} \end{array}$	$\begin{array}{c} 1_{5,5} \\ 4_{5,5} \\ 1_{20,5} \\ 2_{25,5} \end{array}$	$\begin{array}{c} 1_{5,20} \\ 1_{5,20} \\ 4_{20,20} \\ 2_{25,20} \end{array}$	2 _{5,25} 2 _{5,25} 2 _{20,25} 4 _{25,25}	$\begin{array}{c} {\bf 2}_{5,25} \\ {\bf 2}_{5,25} \\ {\bf 2}_{20,25} \\ {\bf 1}_{25,25} \end{array}$	H =	4 _{5,5} 1 _{5,5} 1 _{20,5} 2 _{25,5}	$\begin{array}{c} {\bf 1}_{5,5} \\ {\bf 4}_{5,5} \\ {\bf 1}_{20,5} \\ {\bf 2}_{25,5} \end{array}$	$\begin{array}{c} 1_{5,20} \\ 1_{5,20} \\ 4_{20,20} \\ 2_{25,20} \end{array}$	2 _{5,25} 2 _{5,25} 2 _{20,25} 4 _{25,25}	$\begin{array}{c} 2_{5,25} \\ 2_{5,25} \\ 2_{20,25} \\ 1_{25,25} \end{array}$

Fact. The three \mathbb{N}_0 -algebras $J^H_\infty(W)$ are all "categorical Morita equivalent". (They have the same number of transitive \mathbb{N}_0 -modules.)

 $M = \mathbb{C}\langle 1, 2, 3 \rangle$ 1 3 2 $\theta_{s} \rightsquigarrow \begin{pmatrix} v + v^{-1} & 0 & 1 \\ 0 & v + v^{-1} & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $\theta_{t} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & v + v^{-1} \end{pmatrix}$ $\theta_{\rm sts} \sim \begin{pmatrix} 0 & v + v^{-1} & 1 \\ v + v^{-1} & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $\theta_{\texttt{tst}} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & v + v^{-1} \end{pmatrix}$ $heta_{ ext{ts}} \sim egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ ext{v} + ext{v}^{-1} & ext{v} + ext{v}^{-1} & 1 \end{pmatrix}$ $\theta_{\rm st} \rightsquigarrow \begin{pmatrix} 1 & 1 & {\rm v} + {\rm v}^{-1} \\ 1 & 1 & {\rm v} + {\rm v}^{-1} \\ 0 & 0 & 0 \end{pmatrix}$

$$\begin{split} \mathbf{M} &= \mathbb{C} \langle 1, 2, 3 \rangle \\ & \overbrace{1}^{\bullet} & \overbrace{3}^{\bullet} & \overbrace{2}^{\bullet} \\ \theta_{\mathrm{s}} &\leadsto \begin{pmatrix} \mathbf{v} + \mathbf{v}^{-1} & 0 & 1 \\ 0 & \mathbf{v} + \mathbf{v}^{-1} & 1 \\ 0 & 0 & 0 \end{pmatrix} & \theta_{\mathrm{t}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & \mathbf{v} + \mathbf{v}^{-1} \end{pmatrix} \\ \theta_{\mathrm{sts}} &\leadsto \begin{pmatrix} 0 & \mathbf{v} + \mathbf{v}^{-1} & 1 \\ \mathbf{v} + \mathbf{v}^{-1} & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} & \theta_{\mathrm{tst}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & \mathbf{v} + \mathbf{v}^{-1} \end{pmatrix} \\ \theta_{\mathrm{ts}} &\leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{v} + \mathbf{v}^{-1} & \mathbf{v} + \mathbf{v}^{-1} & 1 \end{pmatrix} & \theta_{\mathrm{st}} &\leadsto \begin{pmatrix} 1 & 1 & \mathbf{v} + \mathbf{v}^{-1} \\ 1 & 1 & \mathbf{v} + \mathbf{v}^{-1} \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

 $M = \mathbb{C}\langle 1, 2, 3 \rangle$ 3 2 $t_{\rm s} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $t_{t} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $t_{\rm sts} \rightsquigarrow \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $t_{\texttt{tst}} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $t_{\rm ts} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ $t_{\rm st} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Figure: The connected Coxeter diagrams of finite type. The finite Weyl groups are of type A, B = C, D, E, F and G.

Example: Hecke algebras as non-semisimple fusion rings (Lusztig \sim 1984).

type		А		B=C		D		E ₆	
worst ca	worst case $J_{\infty}^{H} \cong 1$ J		$J^{H}_{\infty}\cong$	$K_0(\mathcal{V}\mathrm{ec}_{(\mathbb{Z}/2\mathbb{Z})^d})$	J^{H}_∞ ($\cong K_0(\mathcal{V}ec_{(\mathbb{Z}/2\mathbb{Z})^d})$	$J^{H}_{\infty}\cong {\mathcal{K}}_0({\mathcal{R}}\mathrm{ep}(S_3))$		
type		E ₇		E ₈		F ₄		G_2	
worst case	J^{H}_{∞}	$\cong K_0(\mathcal{R}e)$	$p(S_3))$	$\mathrm{J}^{H}_{\infty}\cong \mathit{K}_{0}(\mathcal{R}\mathrm{ep}(% \mathbb{C}))$	(S ₅))	$\mathrm{J}^{H}_{\infty}\cong \mathit{K}_{0}(\mathcal{R}\mathrm{ep}(\mathcal{S}$	4))	$\mathrm{J}^{H}_{\infty}\cong \textit{K}_{0}(\mathcal{R}\mathrm{ep}(\textit{S}_{2}))$	

Back

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Example ($G = \mathbb{Z}/2 \times \mathbb{Z}/2$).

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

Example ($G = \mathbb{Z}/2 \times \mathbb{Z}/2$).

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

Example (
$$G = \mathbb{Z}/2 \times \mathbb{Z}/2$$
).

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

Example (SAGE; Type B_6).

Reducing from 46080 to 14500 to 4:

	4 _{5,5}	${f 1}_{5,5}$	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}			4 _{5,5}	${f 1}_{5,5}$	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}
	${\bf 1}_{5,5}$	4 _{5,5}	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}			$1_{5,5}$	4 _{5,5}	${f 1}_{5,20}$	2 _{5,25}	2 _{5,25}
LR =	${\bf 1}_{20,5}$	${\bf 1}_{20,5}$	4 _{20,20}	2 _{20,25}	2 _{20,25}	\sim	H =	${\bf 1}_{20,5}$	${\bf 1}_{20,5}$	4 _{20,20}	2 _{20,25}	2 _{20,25}
	2 _{25,5}	2 _{25,5}	2 _{25,20}	4 _{25,25}	$1_{25,25}$			2 _{25,5}	2 _{25,5}	2 _{25,20}	4 _{25,25}	1 _{25,25}
	2 _{25,5}	2 _{25,5}	2 _{25,20}	${\bf 1}_{25,25}$	4 _{25,25}]		2 _{25,5}	2 _{25,5}	2 _{25,20}	${\bf 1}_{25,25}$	4 _{25,25}

 $\mathscr{J}^{\mathsf{H}}_{\infty} = \mathcal{V} ec_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}},$

rank sequence: 1, 1, 2, 2, 2, 4.

In particular, there is one non-cell 2-simple: one 2 is missing.

Back

(Picture from "The classification of subgroups of quantum SU(N)", Ocneanu ~2000.)

◀ Back