A tale of dihedral groups, $\mathrm{SL}(2)_{q}$, and beyond

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer

Joint work with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

February 2019

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsiser polymmill.

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{gathered}
\mathrm{U}_{3}(\mathrm{X})=\left(\mathrm{X}-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{x}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
\mathrm{A}_{3}=\stackrel{1}{\square} \quad \stackrel{2}{\sim} \sim A\left(\mathrm{~A}_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{\longrightarrow} S_{\mathrm{A}_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\}
\end{gathered}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& A_{3}=\stackrel{1}{2} \xrightarrow{3} \sim A\left(A_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=\stackrel{1}{\curvearrowleft} \rightarrow \int_{3}^{2} A\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let $\mathrm{U}_{e+1}(\mathrm{X})$ be the Chebsher polymial

Classification problem (CP). Classify all $\boldsymbol{\Gamma}$ such that $\mathrm{U}_{e+1}(A(\boldsymbol{\Gamma}))=0$.

$$
\begin{aligned}
& U_{3}(X)=\left(X-2 \cos \left(\frac{\pi}{4}\right)\right) \mathrm{X}\left(\mathrm{X}-2 \cos \left(\frac{3 \pi}{4}\right)\right) \\
& \left.\mathrm{A}_{3}=\stackrel{1}{\square} \longrightarrow \quad \begin{array}{lll}
3 & 2
\end{array} \mathrm{CA}_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{A_{3}}=\left\{2 \cos \left(\frac{\pi}{4}\right), 0,2 \cos \left(\frac{3 \pi}{4}\right)\right\} \\
& \mathrm{U}_{5}(\mathrm{x})=\left(\mathrm{x}-2 \cos \left(\frac{\pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{2 \pi}{6}\right)\right) \mathrm{x}\left(\mathrm{x}-2 \cos \left(\frac{4 \pi}{6}\right)\right)\left(\mathrm{x}-2 \cos \left(\frac{5 \pi}{6}\right)\right) \\
& D_{4}=1 \longrightarrow\left\{\begin{array}{ll}
2 \\
4
\end{array} \int_{3}^{2}\left(D_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \longrightarrow \quad S_{D_{4}}=\left\{2 \cos \left(\frac{\pi}{6}\right), 0^{2}, 2 \cos \left(\frac{5 \pi}{6}\right)\right\}\right. \\
& \text { for } e=4
\end{aligned}
$$

Let $A(\boldsymbol{\Gamma})$ be the adjacency matrix of a finite, connected, loopless graph $\boldsymbol{\Gamma}$. Let

(1) Dihedral representation theory

- The classical representation theory
- The \mathbb{N}_{0}-representation theory
- Dihedral \mathbb{N}_{0}-representation theory
(2) Non-semisimple fusion rings
- The asymptotic limit
- Cell modules
- The dihedral example
(3) Beyond

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\mathrm{stst}\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

$$
\begin{aligned}
& \text { I will sneak in the Hecke case, } \\
& \text { later on. }
\end{aligned}
$$

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \overline{\mathrm{~s}}_{e+2}=\underbrace{\ldots \mathrm{sts}}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. : } \left.W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

Lowest cell.

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

Lowest cell.
Biggest cell.

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

The dihedral groups are of Coxeter type $\mathrm{I}_{2}(e+2)$:

$$
\begin{gathered}
W_{e+2}=\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{2}=\mathrm{t}^{2}=1, \bar{s}_{e+2}=\underbrace{\ldots \text { sts }}_{e+2}=w_{0}=\underbrace{\ldots \mathrm{tst}}_{e+2}=\overline{\mathrm{t}}_{e+2}\rangle, \\
\text { e.g. } \left.: W_{4}=\langle\mathrm{s}, \mathrm{t}| \mathrm{s}^{2}=\mathrm{t}^{2}=1, \text { tsts }=w_{0}=\text { stst }\right\rangle
\end{gathered}
$$

Example. These are the symmetry groups of regular $e+2$-gons, e.g. for $e=2$ the Coxeter complex is:

Dihedral representation theory on one slide.
The Bott-Samelson (BS) generators $\theta_{\mathrm{s}}=\mathrm{s}+1, \theta_{\mathrm{t}}=\mathrm{t}+1$.
There is also a Kazhdan-Lusztig (KL) bases. Explicit formulas do not matter today.
One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

$e \equiv 0 \bmod 2$	$e \not \equiv 0 \bmod 2$
$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2}$	$M_{0,0}, M_{2,2}$

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), \theta_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ \bar{z} & 2\end{array}\right)$.

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide.

| One-dimensionProposition (Lusztig?).
 The list of one- and two-dimensional
 is a complete, irredundant list of simple modules. $\mathrm{M}_{0,0}, \mathrm{M}_{2,0}, \mathrm{M}_{0,2}, \mathrm{M}_{2,2}$ |
| ---: | $\mathrm{M}_{0,0}, \mathrm{M}_{2,2}$.

Two-dimensional modules. $\mathrm{M}_{z}, z \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto\left(\begin{array}{cc}2 & z \\ 0 & 0\end{array}\right), \theta_{\mathrm{t}} \mapsto\left(\begin{array}{cc}0 & 0 \\ z & 2\end{array}\right)$.

$e \equiv 0 \bmod 2$	$e \not \equiv 0 \bmod 2$
$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}$	$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide.

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

Example.

$\mathrm{M}_{0,0}$ is the sign representation and $\mathrm{M}_{2,2}$ is the trivial representation.
In case e is odd, $\mathrm{U}_{e+1}(\mathrm{X})$ has a constant term, so $\mathrm{M}_{2,0}, \mathrm{M}_{0,2}$ are not representations.

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}
$$

$$
\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}
$$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Dihedral representation theory on one slide.

One-dimensional modules. $\mathrm{M}_{\lambda_{\mathrm{s}}, \lambda_{\mathrm{t}}}, \lambda_{\mathrm{s}}, \lambda_{\mathrm{t}} \in \mathbb{C}, \theta_{\mathrm{s}} \mapsto \lambda_{\mathrm{s}}, \theta_{\mathrm{t}} \mapsto \lambda_{\mathrm{t}}$.

$$
e \equiv 0 \bmod 2 \quad e \not \equiv 0 \bmod 2
$$

Example.

M_{z} for z being a root of the Chebyshev polynomial is a representation because the braid relation in terms of BS generators
Two-dim involves the coefficients of the Chebyshev polynomial.

$e \equiv 0 \bmod 2$	$e \not \equiv 0 \bmod 2$
$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}-\{0\}$	$\mathrm{M}_{z}, z \in \mathrm{~V}_{e}^{ \pm}$

$\mathrm{V}_{e}=\operatorname{roots}\left(\mathrm{U}_{e+1}(\mathrm{x})\right)$ and $\mathrm{V}_{e}^{ \pm}$the $\mathbb{Z} / 2 \mathbb{Z}$-orbits under $z \mapsto-z$.

Example.

Dihed
These representations are indexed by $\mathbb{Z} / 2 \mathbb{Z}$-orbits of the Chebyshev roots:

An algebra P with a fixed basis B^{P} is called a (multi) \mathbb{N}_{0}-algebra if

$$
\mathrm{xy} \in \mathbb{N}_{0} \mathrm{~B}^{\mathrm{P}} \quad\left(\mathrm{x}, \mathrm{y} \in \mathrm{~B}^{\mathrm{P}}\right)
$$

A P-module M with a fixed basis B^{M} is called a \mathbb{N}_{0}-module if

$$
\mathrm{xm} \in \mathbb{N}_{0} \mathrm{~B}^{\mathrm{M}} \quad\left(\mathrm{x} \in \mathrm{~B}^{\mathrm{P}}, \mathrm{~m} \in \mathrm{~B}^{\mathrm{M}}\right) .
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.

A
Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.
The regular module is a \mathbb{N}_{0}-module.

A P-module M with a fixed basis B^{M} is called a \mathbb{N}_{0}-module if

$$
x m \in \mathbb{N}_{0} B^{M} \quad\left(x \in B^{P}, m \in B^{M}\right)
$$

These are \mathbb{N}_{0}-equivalent if there is a \mathbb{N}_{0}-valued change of basis matrix.

Example. \mathbb{N}_{0}-algebras and \mathbb{N}_{0}-modules arise naturally as the decategorification of 2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.

The regular module is a \mathbb{N}_{0}-module.
Example.
Key example: $K_{0}(\mathcal{R e p}(G))$ (easy \mathbb{N}_{0}-representation theory).
Key example: $K_{0}\left(\mathcal{R e p}_{q}^{s s}\left(\mathrm{U}_{q}(\mathfrak{g})\right)=\mathrm{G}_{q}\right)$ (intricate \mathbb{N}_{0}-representation theory).
Example. \mathbb{N}_{0}-algebras and $\mathbb{N}_{0}-\mathrm{modules}$ arise naturally as the decategorification of
2-categories and 2-modules, and \mathbb{N}_{0}-equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are \mathbb{N}_{0}-algebras.

The regular module is a \mathbb{N}_{0}-module.

A	Example		
	Fusion rings are with basis given by classes of simples elements are Key example: $K_{0}(\mathcal{R e p}(G))$ (easy \mathbb{N}_{0}-representation theor Key example: $K_{0}\left(\mathcal{R} \operatorname{ep}_{q}^{s s}\left(\mathrm{U}_{q}(\mathfrak{g})\right)=\mathrm{G}_{q}\right)$ (intricate \mathbb{N}_{0}-representation	\mathbb{N}_{0}-algebras). on theory).	
	Example. \mathbb{N}_{0}-aHecke algebras of (finite) Coxeter groups with their KL basis are \mathbb{N}_{0}-algebras.Their \mathbb{N}_{0}-representation theory is mostly widely open.	tegorificatio iivalence.	

Clifford, Munn, Ponizovskiĩ $\sim 1942+$, Kazhdan-Lusztig $\sim 1979 . \mathrm{x} \leq_{\mathrm{L}} \mathrm{y}$ if y appears in zx with non-zero coefficient for $\mathrm{z} \in \mathrm{B}^{\mathrm{P}} . \mathrm{x} \sim_{L} \mathrm{y}$ if $\mathrm{x} \leq_{L} \mathrm{y}$ and $\mathrm{y} \leq_{L} \mathrm{x}$. \sim_{L} partitions P into left cells L. Similarly for right R, two-sided cells $L R$ or \mathbb{N}_{0}-modules.

A \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.
Hence, one can study them cell-wise.
Example. Transitive \mathbb{N}_{0}-modules arise naturally as the decategorification of simple 2-modules.

Question (\mathbb{N}_{0}-representation theory). Classify them!

Question (\mathbb{N}_{0}-representation theory). Classify them!

Question (\mathbb{N}_{0}-representation theory). Classify them!

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.
A \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive \mathbb{N}_{0}-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive \mathbb{N}_{0}-modules arise naturally as the decategorification of simple 2-modules.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

A \mathbb{N}_{0}-module M is equivalence class.	Example.	z same \sim_{L} ot killing it.
Fact	since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$	apex.
Hence, one can stu	such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand.	

Examnle Transitive \mathbb{N}_{n}-modules arise naturallv as the decateonorification of

 $\operatorname{simp} \quad$ Example (Lusztig ≤ 2003).Hecke algebras for the dihedral group with KL basis have the following cells:

We will see the transitive \mathbb{N}_{0}-modules in a second.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

A \mathbb{N}_{0}-module M is equivalence class.	Example.	z same \sim_{L} ot killing it.
Fact	since each basis element $\left[V_{i}\right]$ has a dual $\left[V_{i}^{*}\right]$	apex.
Hence, one can stu	such that $\left[V_{i}\right]\left[V_{i}^{*}\right]$ contains 1 as a summand.	

Examole Transitive $\mathbb{N} n$-modules arise naturallv as the decateonrification of

 $\operatorname{simp} \quad$ Example (Lusztig ≤ 2003).Hecke algebras for the dihedral group with KL basis have the following cells:

We will see the transitive \mathbb{N}_{0}-modules in a second.

Example.

Group algebras with the group element basis have only one cell, G itself.
Transitive \mathbb{N}_{0}-modules are $\mathbb{C}[G / H]$ for $H \subset G$ subgroup/conjugacy. The apex is G.

Example Transitive \mathbb{N}-madules arise naturallv as the decateonerification of $\operatorname{simp} \quad$ Example (Lusztig ≤ 2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

We will see the $\begin{aligned} & \text { Two-sided cells. } \\ & \text { transitive } \mathbb{N}_{0} \text {-modules in a second. }\end{aligned}$

Clifford, Munn, Ponizovskiĩ $\sim 1942+$, Kazhdan-Lusztig $\sim 1979 . \mathrm{x} \leq_{L}$ y if y appears in zx with non-zero coefficient for $\mathrm{z} \in \mathrm{B}^{P} . \mathrm{x} \sim_{L} \mathrm{y}$ if $\mathrm{x} \leq_{L} \mathrm{y}$ and $\mathrm{y} \leq_{L} \mathrm{x}$. \sim_{L} partitions P into left cells L. Similarly for right R, two-sided cells $L R$ or \mathbb{N}_{0}-modules.

A \mathbb{N}_{0}-module M is transitive if all basis elements belong to the same \sim_{L} equivalence class. An apex of M is a maximal two-sided cell not killing it.

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{c|c|ccc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{cc|c|cc}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{ccc|c|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{llll|l}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{l|l|lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{ll|l|ll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lll|l|l}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

$$
\begin{aligned}
& \theta_{t} \xrightarrow{\text { action }} \\
& \theta_{s} \rightsquigarrow M_{s}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{t} \rightsquigarrow M_{t}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W W_-module M associated to a binartite oranh Г.
The adjacency matrix $A(\Gamma)$ of Γ is

$$
A(\boldsymbol{\Gamma})=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

These are W_{e+2}-modules for some e only if $A(\Gamma)$ is killed by the Chebyshev polynomial $U_{e+1}(\mathrm{x})$.

Morally speaking: These are constructed as the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev-braid-like relation can not hold otherwise.
$\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 2\end{array}\right)$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph Γ :

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Hence, by Smith's (CP) and Lusztig: We get a representation of W_{e+2} if Γ is a ADE Dynkin diagram for $e+2$ being the Coxeter number.

That these are \mathbb{N}_{0}-modules follows from categorification.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\right.
$$

\mathbb{N}_{0}-modules via graphs.

Construct a W_{∞}-module M associated to a bipartite graph $\boldsymbol{\Gamma}$:

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle
$$

Classification.

\sim Complete, irredundant of transitive \mathbb{N}_{0}-modules of $\mathrm{W}_{\mathrm{e}+2}$:

apex	(1) cell	(S) $-\bigcirc$ cell	\mathbb{N}_{0} cell
\mathbb{N}_{0}-reps.	$\mathrm{M}_{0,0}$	$\mathrm{M}_{\text {ADE }+ \text { bicolering }}$ for $e+2=$ Cox. num.	$\mathrm{M}_{2,2}$

I learned this from/with Kildetoft-Mackaay-Mazorchuk-Zimmermann ~2016.

$$
\theta_{\mathrm{s}} \rightsquigarrow \mathrm{M}_{\mathrm{s}}=\left(\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \theta_{\mathrm{t}} \rightsquigarrow \mathrm{M}_{\mathrm{t}}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

Example ($e=2$).

The Weyl group of type B_{2}. Number of elements: 8 . Number of cells: 3, named 0 (trivial) to 2 (top).

Cell order:

$$
0-1-2
$$

Size of the cells:

cell	0	1	2
size	1	6	1

Cell structure:

Example ($e=2$).

The	Example (SAGE).	
(trivia	$1 \cdot 1=\mathrm{v}^{0} 1 .$ (v is the Hecke parameter deforming the reflection equations $s^{2}=t^{2}=1$.)	
	$0-1-2$	

Size of the cells:

cell	0	1	2
size	1	6	1

Cell structure:

Example ($e=2$).

Example ($e=2$).

Example ($e=2$).
Fact (Lusztig ~1984++).

For any Coxeter group W there is a well-defined function
$a: W \rightarrow \mathbb{N}_{0}$
which is constant on two-sided cells.

Size of the cells:

- Big example

cell	0	1	2
size	1	6	1

Cell structure:

Example ($e=2$).

The Weyl group of type (trivial) to 2 (top).

Cell order:

Size of the cells:

Cell structure:

Fact (Lusztig ~1984++).
For any Coxeter group W there is a well-defined function

$$
a: W \rightarrow \mathbb{N}_{0}
$$

which is constant on two-sided cells.

- Big example

Idea (Lusztig ~1984).

Ignore everything except the leading coefficient a(two-sided cell).

Example ($e=2$).

The Weyl group of typ (trivial) to 2 (top).

Cell order:

Size of the cells:

Cell structure:
Ignore everything except the leading coefficient a(two-sided cell).

Why isn't that stupid?
Because a is also turns up as the leading coefficients of traces of standard generators acting on simple modules.

Upshot. One can associate an apex to simples, and the simples should be uniquely determent by the leading coefficients.

Let $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ be the Hecke algebra associated to W . The asymptotic limit $\mathrm{J}_{\infty}(\mathrm{W})$ of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ is defined as follows.

As a free \mathbb{Z}-module:

$$
\mathrm{J}_{\infty}(\mathrm{W})=\bigoplus_{\mathrm{LR}} \mathbb{Z}\left\{t_{w} \mid w \in \mathrm{LR}\right\} . \quad \text { Compare: } \mathrm{H}_{\mathrm{v}}(\mathrm{~W})=\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]\left\{\theta_{w} \mid \mathrm{W}\right\} .
$$

Multiplication.

$$
t_{x} t_{y}=\sum_{z \in \mathrm{LR}} \gamma_{x, y}^{z} t_{z} . \quad \text { Compare: } \theta_{x} \theta_{y}=\sum_{z \in \mathrm{LR}} h_{x, y}^{z} \theta_{z}+\text { bigger friends. }
$$

where $\gamma_{x, y}^{z} \in \mathbb{N}_{0}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}_{0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$.

Example $(e=2)$.

The multiplication tables (empty entries are 0 and $[2]=\mathrm{v}+\mathrm{v}^{-1}$) in 1:

	t_{s}	t_{sts}	t_{st}	t_{t}	t_{tst}	t_{ts}
t_{s}	t_{s}	t_{sts}	t_{st}			
t_{sts}	t_{sts}	t_{s}	t_{st}			
t_{ts}	t_{ts}	t_{ts}	$t_{\mathrm{t}}+t_{\mathrm{tst}}$			
t_{t}				t_{t}	t_{tst}	t_{ts}
t_{tst}				t_{tst}	t_{t}	t_{ts}
t_{st}				t_{st}	t_{st}	$t_{\mathrm{s}}+t_{\mathrm{sts}}$

	θ_{s}	θ_{sts}	θ_{st}	θ_{t}	θ_{tst}	θ_{ts}
θ_{s}	$[2] \theta_{\mathrm{s}}$	$[2] \theta_{\mathrm{sts}}$	$[2] \theta_{\mathrm{st}}$	θ_{st}	$\theta_{\mathrm{st}}+\theta_{w_{0}}$	$\theta_{\mathrm{s}}+\theta_{\mathrm{sts}}$
θ_{sts}	$[2] \theta_{\mathrm{sts}}$	$[2] \theta_{\mathrm{s}}+[2]^{2} \theta_{w_{0}}$	$[2] \theta_{\mathrm{st}}+[2] \theta_{w_{0}}$	$\theta_{\mathrm{s}}+\theta_{\mathrm{sts}}$	$\theta_{\mathrm{s}}+[2]^{2} \theta_{w_{0}}$	$\theta_{\mathrm{s}}+\theta_{\mathrm{sts}}+[2] \theta_{w_{0}}$
θ_{ts}	$[2] \theta_{\mathrm{ts}}$	$[2] \theta_{\mathrm{ts}}+[2] \theta_{w_{0}}$	$[2] \theta_{\mathrm{t}}+[2] \theta_{\mathrm{tst}}$	$\theta_{\mathrm{t}}+\theta_{\mathrm{tst}}$	$\theta_{\mathrm{t}}+\theta_{\mathrm{tst}}+[2] \theta_{w_{0}}$	$2 \theta_{\mathrm{ts}}+\theta_{w_{0}}$
θ_{t}	θ_{ts}	$\theta_{\mathrm{ts}}+\theta_{w_{0}}$	$\theta_{\mathrm{t}}+\theta_{\mathrm{tst}}$	$[2] \theta_{\mathrm{t}}$	$[2] \theta_{\mathrm{tst}}$	$[2] \theta_{\mathrm{ts}}$
θ_{tst}	$\theta_{\mathrm{t}}+\theta_{\mathrm{tst}}$	$\theta_{\mathrm{t}}+[2]^{2} \theta_{w_{0}}$	$\theta_{\mathrm{t}}+\theta_{\mathrm{tst}}+[2] \theta_{w_{0}}$	$[2] \theta_{\text {tst }}$	$[2] \theta_{\mathrm{t}}+[2]^{2} \theta_{w_{0}}$	$[2] \theta_{\mathrm{ts}}+[2] \theta_{w_{0}}$
θ_{stt}	$\theta_{\mathrm{s}}+\theta_{\mathrm{sts}}$	$\theta_{\mathrm{s}}+\theta_{\mathrm{sts}}+[2] \theta_{w_{0}}$	$2 \theta_{\mathrm{st}}+\theta_{w_{0}}$	$[2] \theta_{\mathrm{stt}}$	$[2] \theta_{\mathrm{st}}+[2] \theta_{w_{0}}$	$[2] \theta_{\mathrm{s}}+[2] \theta_{\mathrm{sts}}$

(Note the "subalgebras".)
The asymptotic algebra is much simpler!

Let $H_{v}(W \longdiv { \text { Fact (Lusztig } \sim 1 9 8 4 + +) . ~ }$
$\mathrm{J}_{\infty}(\mathrm{W})=\bigoplus_{\mathrm{LR}} \mathrm{J}_{\infty}^{\mathrm{LR}}(\mathrm{W})$ with the t_{w} basis and all its summands $\mathrm{J}_{\infty}^{\mathrm{LR}}(\mathrm{W})=\mathbb{Z}\left\{t_{w} \mid w \in \mathrm{LR}\right\}$ are multifusion algebras.

As a free $\left\{\right.$ (Meaning semisimple \mathbb{N}_{0}-algebras with a certain nice trace form.)

$$
\mathrm{J}_{\infty}(\mathrm{W})=\bigoplus_{\mathrm{LR}} \mathbb{Z}\left\{t_{w} \mid w \in \mathrm{LR}\right\} . \quad \text { Compare: } \mathrm{H}_{\mathrm{v}}(\mathrm{~W})=\mathbb{Z}\left[\mathrm{v}, \mathrm{v}^{-1}\right]\left\{\theta_{w} \mid \mathrm{W}\right\} .
$$

Multiplication.

$$
t_{x} t_{y}=\sum_{z \in \mathrm{LR}} \gamma_{x, y}^{z} t_{z} . \quad \text { Compare: } \quad \theta_{x} \theta_{y}=\sum_{z \in \mathrm{LR}} h_{x, y}^{z} \theta_{z}+\text { bigger friends. }
$$

where $\gamma_{x, y}^{z} \in \mathbb{N}_{0}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}_{0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$.

where $\gamma_{x, y}^{z} \in \mathbb{N}_{0}$ is the leading coefficient of $h_{x, y}^{z} \in \mathbb{N}_{0}\left[\mathrm{v}, \mathrm{v}^{-1}\right]$.

There is an explicit 1:1 correspondence $\left\{\right.$ simples of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ with apex LR $\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ simples of $\left.\mathrm{J}_{\mathrm{v}}^{\mathrm{LR}}(\mathrm{W})\right\}$.

"Induced" transitive \mathbb{N}_{0}-algebras and -modules.

Fix a left cell L . Let $\mathrm{M}\left(\geq_{\mathrm{L}}\right)$, respectively $\mathrm{M}\left(>_{\mathrm{L}}\right)$, be the \mathbb{N}_{0}-modules spanned by all $x \in B^{P}$ in the union $L^{\prime} \geq_{L} L$, respectively $L^{\prime}>_{L} L$. Similarly for right R, two-sided $L R$ and diagonal $H=L \cap R$ cells.

Left cell module $\mathrm{C}_{\mathrm{L}}=\mathrm{M}\left(\geq_{\mathrm{L}}\right) / \mathrm{M}\left(>_{\mathrm{L}}\right)$. (Left \mathbb{N}_{0}-module.)
Right cell module $\mathrm{C}_{\mathrm{R}}=\mathrm{M}\left(\geq_{\mathrm{R}}\right) / \mathrm{M}\left(>_{\mathrm{R}}\right)$. (Right \mathbb{N}_{0}-module.)
Two-sided cell module $\mathrm{C}_{\mathrm{LR}}=\mathrm{M}\left(\geq_{\mathrm{LR}}\right) / \mathrm{M}\left(\gg_{\mathrm{LR}}\right) .\left(\mathbb{N}_{0}\right.$-bimodule.)
The diagonal cell $\mathrm{C}_{\mathrm{H}}=\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})=\left(\mathrm{M}(\geq \mathrm{LR}) / \mathrm{M}\left(>_{\mathrm{LR}}\right)\right) \cap \mathbb{K} \mathrm{B}^{\mathrm{P}}(\mathrm{H})$.
(\mathbb{N}_{0}-subalgebra.)

"Induced" transitive \mathbb{N}_{0}-algebras and -modules.

Fix a left cell L . Let $\mathrm{M}\left(\geq_{\mathrm{L}}\right)$, respectively $\mathrm{M}\left(>_{\mathrm{L}}\right)$, be the \mathbb{N}_{0}-modules spanned by all $x \in B^{P}$ in the union $L^{\prime} \geq_{L} L$, respectively $L^{\prime}>_{L} L$. Similarly for right R, two-sided $L R$ and diagonal $H=L \cap R$ cells.

The diagonal cell $\mathrm{C}_{\mathrm{H}}=\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})=(\mathrm{M}(\geq \mathrm{LR}) / \mathrm{M}(>\mathrm{LR})) \cap \mathbb{K} \mathrm{B}^{\mathrm{P}}(\mathrm{H})$.
(\mathbb{N}_{0}-subalgebra.)
"Ipdunad" trancitive \mathbb{N}. Example.
Fix $\mathbb{C}[G]$ with the group element basis has only one cell module, the regular module. by
all
two \quad Similarly for any fusion algebra.

Left cell module $\mathrm{C}_{\mathrm{L}}=\mathrm{M}\left(\geq_{\mathrm{L}}\right) / \mathrm{M}\left(>_{\mathrm{L}}\right)$. (Left \mathbb{N}_{0}-module.)
Right cell module $C_{R}=M\left(\geq_{R}\right) / M\left(>_{R}\right)$. (Right \mathbb{N}_{0}-module.)
Two-sided cell module $\mathrm{C}_{\mathrm{LR}}=\mathrm{M}\left(\geq_{\mathrm{LR}}\right) / \mathrm{M}(>\operatorname{LR}) .\left(\mathbb{N}_{0}\right.$-bimodule.)
The diagonal cell $\mathrm{C}_{\mathrm{H}}=\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})=\left(\mathrm{M}(\geq \mathrm{LR}) / \mathrm{M}\left(>_{\mathrm{LR}}\right)\right) \cap \mathbb{K} \mathrm{B}^{\mathrm{P}}(\mathrm{H})$. (\mathbb{N}_{0}-subalgebra.)

Left coll module C. $=M\left(>_{1}\right) / M\left(>_{1}\right)$ (I oft \mathbb{N}_{0}-module)

$$
\text { Example (Kazhdan-Lusztig } \sim 1979, \text { Lusztig } \sim 1983++ \text {). }
$$

For Hecke algebras of the symmetric group with KL basis the cell modules are Lusztig's
Two-cell modules studied in connection with reductive groups in characteristic p.

The diagonal cell $\mathrm{C}_{\mathrm{H}}=\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})=\left(\mathrm{M}\left(\geq_{\mathrm{LR}}\right) / \mathrm{M}\left(>_{\mathrm{LR}}\right)\right) \cap \mathbb{K}^{\mathrm{P}}(\mathrm{H})$. (\mathbb{N}_{0}-subalgebra.)
"Indunad" trancitivn \mathbb{N}. Example.
Fix $\mathbb{C}[G]$ with the group element basis has only one cell module, the regular module. by
all
Swimilarly for any fusion algebra.

Left cell module $C_{1}=M(>,) / M(>1)$ (left \mathbb{N}_{0}-module)

$$
\text { Example (Kazhdan-Lusztig ~1979, Lusztig } \sim 1983++ \text {). }
$$

For Hecke algebras of the symmetric group with KL basis the cell modules are Lusztig's
Two-cell modules studied in connection with reductive groups in characteristic p.

Example (dihedral case).

Cells: | cell | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| | size | 1 | $2 n-2$ |
| | a | 0 | 1 |

1 for n even:

1 for n odd:

$\frac{n-1}{2}$	$\frac{n-1}{2}$
$\frac{n-1}{2}$	$\frac{n-1}{2}$

n even. Two left cell modules $\leadsto \rightsquigarrow$ Two bicolorings of the type A graph. n odd. One left cell module $\longleftrightarrow \nrightarrow$ One bicoloring of the type A graph.

Example ($e=2$).

The fusion ring $K_{0}\left(\mathrm{SL}(2)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{1}\right],\left[L_{2}\right]$. The fusion ring $\mathrm{J}_{\infty}^{\mathrm{LR}}(\mathrm{W})$ has simple objects $t_{\mathrm{s}}, t_{\mathrm{sts}}, t_{\mathrm{st}}, t_{\mathrm{t}}, t_{\mathrm{tst}}, t_{\mathrm{ts}}$.

Comparison of multiplication tables:

	$\left[L_{0}\right]$	$\left[L_{2}\right]$	$\left[L_{1}\right]$
$\left[L_{0}\right]$	$\left[L_{0}\right]$	$\left[L_{2}\right]$	$\left[L_{1}\right]$
$\left[L_{2}\right]$	$\left[L_{2}\right]$	$\left[L_{0}\right]$	$\left[L_{1}\right]$
$\left[L_{1}\right]$	$\left[L_{1}\right]$	$\left[L_{1}\right]$	$\left[L_{0}\right]+\left[L_{2}\right]$

	t_{s}	t_{sts}	t_{st}	t_{t}	t_{tst}	t_{ts}
t_{s}	t_{s}	t_{sts}	t_{st}			
t_{sts}	t_{sts}	t_{s}	t_{st}			
t_{ts}	t_{ts}	t_{ts}	$t_{\mathrm{t}}+t_{\mathrm{tst}}$			
t_{t}				t_{t}	t_{tst}	t_{ts}
t_{tst}				t_{tst}	t_{t}	t_{ts}
t_{st}				t_{st}	t_{st}	$t_{\mathrm{s}}+t_{\mathrm{sts}}$

$\mathrm{J}_{\infty}^{\mathrm{LR}}(\mathrm{W})$ is a bicolored version of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$:

Example ($e=2$).

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{2}\right]$. The fusion ring $J_{\infty}^{H}(W)\left(H=L_{s} \cap R_{s}\right)$ has simple objects t_{s}, $t_{\text {sts }}$.

Comparison of multiplication tables:

	$\left[L_{0}\right]$	$\left[L_{2}\right]$		
$\left[L_{0}\right]$	$\left[L_{0}\right]$	$\left[L_{2}\right]$		
$\left[L_{2}\right]$	$\left[L_{2}\right]$	$\left[L_{0}\right]$	$\quad \&$	
:---:				
t_{s}				

$\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})$ is $K_{0}\left(\mathrm{SO}(3)_{q}\right)$:

$$
t_{\mathrm{s}} \longleftrightarrow\left[L_{0}\right], \quad t_{\text {sts }} \leadsto\left[L_{2}\right] .
$$

This is the slightly nicer statement.

Example $(e=2)$
 The fusion ring K

Comparison of multiplication tables:

	$\left[L_{0}\right]$	$\left[L_{2}\right]$
$\left[L_{0}\right]$	$\left[L_{0}\right]$	$\left[L_{2}\right]$
$\left[L_{2}\right]$	$\left[L_{2}\right]$	$\left[L_{0}\right]$

\&

	t_{s}	t_{sts}
t_{s}	t_{s}	t_{sts}
t_{sts}	t_{sts}	t_{s}

$\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})$ is $K_{0}\left(\mathrm{SO}(3)_{q}\right)$:

$$
t_{\mathrm{s}} \longleftrightarrow \Longleftrightarrow\left[L_{0}\right], \quad t_{\mathrm{sts}} \longleftrightarrow \Longleftrightarrow\left[L_{2}\right] .
$$

Example ($e=2$)
The fusion ring K Both connections are always true (i.e. for any e). ring $J_{\infty}^{H}(W)\left(H \xlongequal\left[L_{s} \mid 1 N_{s}\right) ~ m a s ~ s i m p l e ~ o ण J e c t s ~\right]{L_{s}}$, $l_{\mathrm{s} t \mathrm{~s}}$.

H-cell-theorem. There are 1:1 correspondences $\left\{\right.$ transitives of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ with apex LR$\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.\mathrm{J}_{\mathrm{v}}^{\mathrm{LR}}(\mathrm{W})\right\} \stackrel{\text { 1:1 }}{\longleftrightarrow}\left\{\right.$ transitives of $\left.\mathrm{J}_{\mathrm{v}}^{\mathrm{H}}(\mathrm{W})\right\}$, \{transitives of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ with apex LR$\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.K_{0}\left(\mathrm{SL}(2)_{q}^{s, t}\right)\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.K_{0}\left(\mathrm{SO}(3)_{q}\right)\right\}$.

$$
t_{\mathrm{s}} \text { ans }\left[L_{0}\right], \quad t_{\mathrm{sts}} \text { shs }\left[L_{2}\right] .
$$

Example (e=2)
The fusion ring K Both connections are always true (i.e. for any e). [$\left.L_{2}\right]$. The fusion ring $J_{\infty}^{H}(W)\left(H \xlongequal\left[L_{s} \mid 1 \pi_{s}\right)\right.$ mas simple ovjects $l_{s}, l_{\text {sts }}$. $]{ }$
H-cell-theorem.
There are $1: 1$ correspondences
$\left\{\right.$ transitives of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ with apex LR$\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.J_{\mathrm{v}}^{\mathrm{LR}}(\mathrm{W})\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.\mathrm{J}_{\mathrm{v}}^{\mathrm{H}}(\mathrm{W})\right\}$,
$\left\{\right.$ transitives of $\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ with apex LR$\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.K_{0}\left(\mathrm{SL}(2)_{q}^{\mathrm{s}, \mathrm{t}}\right)\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\right.$ transitives of $\left.K_{0}\left(\mathrm{SO}(3)_{q}\right)\right\}$.
>Example

t_{s} ans $\left[L_{0}\right], \quad t_{\mathrm{sts}}$ s $n \rightarrow\left[L_{2}\right]$.

Upshot.

$\mathrm{H}_{\mathrm{v}}(\mathrm{W})$ is a non-semisimple version of $K_{0}\left(\mathrm{SL}(2)_{q}\right)$, $\mathrm{H}_{\mathrm{v}}^{\mathrm{H}}(\mathrm{W})$ is a non-semisimple version of $K_{0}\left(\mathrm{SO}(3)_{q}\right)$.

In particular, the Hecke algebras have a v parameter.

Example ($e=2$).

The fusion ring $K_{0}\left(\mathrm{SO}(3)_{q}\right)$ for $q^{2 e}=1$ has simple objects $\left[L_{0}\right],\left[L_{2}\right]$. The fusion ring $J_{\infty}^{H}(W)\left(H=L_{s} \cap R_{s}\right)$ has simple objects t_{s}, $t_{\text {sts }}$.

Comparison of multiplication tables:

Fact.

With a bit more care (with the H-cell-theorem) all the above generalizes to any Coxeter group W.
$\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})$ is $K_{0}(\mathrm{~S}$ Thus, Hecke algebras are non-semisimple fusion rings.
In general $\mathrm{J}_{\infty}(\mathrm{W})$ is not understood,
but for W being a finite Weyl group
$\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})$ is very

Beyond?

- Categorification?
\triangleright Non-semisimple: Replace Hecke algebra by Soergel bimodules.
\triangleright Non-semisimple: Categorical \mathbb{N}_{0}-modules for dihedral groups.
Zigzag algebras appear.
\triangleright Fusion: Replace asymptotic Hecke algebra by asymptotic Soergel bimodules.
\triangleright Fusion: Categorical \mathbb{N}_{0}-modules for $\mathrm{SL}(2)_{q} . ~$ Algebras are trivial.
$\triangleright \mathrm{H}$: Asymptotic Soergel bimodules are very nice, just remove K_{0} everywhere.
$\triangleright \mathrm{H}$-cell-theorem ? . Work in progress! © click
- $\operatorname{SL}(n)_{q}$?
\triangleright Non-semisimple: Nhedral; leaves the realm of groups.
\triangleright Non-semisimple: Categorical \mathbb{N}_{0}-modules for Nhedral algebras have a Ncolored ADE-type classification. Generalized zigzag algebras and Chebyshev polynomials appear.
\triangleright Fusion: One gets $\mathrm{SL}(N)_{q}$.
\triangleright Fusion: Categorical \mathbb{N}_{0}-modules of $\mathrm{SL}(N)_{q}$ have an ADE-type classification. Algebras are trivial.

N_{0}-modules wia graphs.

Construct a W_{∞}-module M associated to a bipartite graph \mathbf{r} :
$\mathrm{M}-\mathrm{C}(1,2,3,4,5)$

The dihedral groups are of Coxeter type $1_{2}(e+2)$:

$$
e_{\varepsilon} .: W_{4}-\left\{s, \pm\left|a^{2}-t^{2}-1, \operatorname{tatn}-w_{0}=\operatorname{atas}\right\rangle\right.
$$

Example. These are the symmetry groups of regulier $a+2$-gons, e.e. for e-2

Example ($e-2$).
The fision ring $K_{0}\left(S L[2)_{q}\right)$ for $q^{2 e}-1$ has simple objects $\left[L_{0}\right] \cdot\left[L_{1}\right] \cdot\left[L_{2}\right]$. The

Comprison of multipicicatian tables:

${ }^{2+1}(\mathrm{~W})$ is a bicolored version of $\mathrm{K}_{(}\left(\mathrm{SL}(2)_{q}\right)=$

Dihedral representation theory on one sldde

One-dimension	Proposition (Lusstig?).	
	The list of one- and two-dimensional W_{+2-2}-modules is a complete, iredundant list of simple medules.	
	$\mathrm{Map}_{\text {a }}, \mathrm{M}_{2, \mathrm{D},}, \mathrm{Ma}_{\mathrm{a} 2}, \mathrm{M}_{2,2}$	$\mathrm{Ma}_{0,0,1} \mathrm{M}_{2,2}$
	11.0 rned this cesstruction If	kayy in 2017 .
	$e=0 \bmod 2$	e $\neq 0 \mathrm{mod} 2$
	$M_{s, z} \in \mathrm{~N}_{t}^{t}-\{0\}$	$\mathrm{M}_{s, z \in \mathrm{~V}}$ \%

$\mathrm{V}_{\mathrm{t}}-\operatorname{root} \boldsymbol{\alpha}\left(\mathrm{U}_{\mathrm{e}+1}(\mathrm{x})\right)$ and V_{6}^{t} the $\mathrm{Z} / 2 Z$-arbits under $z \mapsto-z$.

Example ($e-2$). Here we have theee different notions of "atoms".
Classical representation theory. The simples from before
Group dement basis. Subgroups and ranks of transitive No-modies

KL. basis. ADE diagrams and ranks of transitive No-modules.

There is still much to do...

N_{0}-modules wia graphs.

Construct a W_{∞}-module M associated to a bipartite graph \mathbf{r} :
$\mathrm{M}-\mathrm{C}(1,2,3,4,5)$

The dihedral groups are of Coxeter type $1_{2}(e+2)$:

Example. These are the symmetry groups of regulare $e+2$-gons e. ε foo $e-2$
the Coxeter complex is
Twil esplain in a fow misotex what cills Nowe

Example ($e-2$).
The fision ring $K_{g}\left(S L[2)_{q}\right)$ for $q^{3 e}-1$ has simple objects $\left[L_{2}\right] \cdot\left[L_{2}\right] \cdot\left[L_{2}\right]$. The

Comprison of multiplication tables:

${ }^{2+1}(\mathrm{~W})$ is a bicolored version of $\mathrm{K}_{(}\left(\mathrm{SL}(2)_{q}\right)=$

Dihedral representation theory on one sldde

One-dimension	Proposition (Lusstig?).	
	The list of one- and two-dimensianal $\mathrm{W}_{\text {d }}$-modules is a complete, iredundant list of simple medules.	
		$\mathrm{M}_{0,0,1} \mathrm{M}_{2,2}$
	Hearmed dhis cosstruction In	chay in 2017
	$e=0 \mathrm{mod} 2$	e $\neq 0 \mathrm{mod} 2$
	$M_{s, z} \in \mathrm{~N}_{\mathrm{t}}^{\mathbf{t}}-(0)$	$\mathrm{M}_{s, z} \in \mathrm{~V}^{*}$

$\mathrm{V}_{\mathrm{t}}-\operatorname{root} \boldsymbol{\alpha}\left(\mathrm{U}_{\mathrm{e}+1}(\mathrm{x})\right)$ and V_{6}^{t} the $\mathrm{Z} / 2 Z$-arbits under $z \mapsto-z$.

Example ($e-2$). Here we have three different notions of "atoms"
Classical representation theory. The simples from before
Group dement basis. Subgroups and ranks of transitive No-modies

KL basis. ADE diagrams and ranks of transitive No-modules.

Thanks for your attention!

$$
\begin{array}{ll}
\mathrm{U}_{0}(\mathrm{X})=1, & \mathrm{U}_{1}(\mathrm{X})=\mathrm{X},
\end{array}, \mathrm{X} \mathrm{U}_{e+1}(\mathrm{X})=\mathrm{U}_{e+2}(\mathrm{X})+\mathrm{U}_{e}(\mathrm{X})
$$

Kronecker $\boldsymbol{\sim}$ 1857. Any complete set of conjugate algebraic integers in] $-2,2$ [is a subset of roots $\left(\mathrm{U}_{e+1}(\mathrm{X})\right)$ for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

In case you are wondering why this is supposed to be true, here is the main observation of Smith ~1969:

$$
\mathrm{U}_{e+1}(\mathrm{X}, \mathrm{Y})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{~A}_{e+1}\right)\right)
$$

Chebyshev poly. $=$ char. poly. of the type A_{e+1} graph and

$$
\mathrm{XT}_{n-1}(\mathrm{X})= \pm \operatorname{det}\left(\mathrm{XId}-A\left(\mathrm{D}_{n}\right)\right) \pm(-1)^{n \bmod 4}
$$

first kind Chebyshev poly. ' $=$ ' char. poly. of the type D_{n} graph ($n=\frac{e+4}{2}$).

The type A family
$e=0$
∇
$e=1$

$e=3$

. .
\star

The type D family

$e=4$

$e=6$

The type E exceptions

The type A family

The type D family
$e=8$
$e=10$
$e=4$
$e=6$

Note: Almost none of these are simple since they grow in rank with growing e.
This is the opposite from the classical representations.

Example (SAGE). The Weyl group of type B_{6}. Number of elements: 46080. Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Example (cell 12).

Example (SAGE). The Number of cells: 26, nam

Cell order:

Size of the cells and a-value:

cell	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
size	1	62	342	576	650	3150	350	1600	2432	3402	900	2025	14500	600	2025	900	3402	2432	1600	350	576	3150	650	342	62	1
a	0	1	2	3	3	4	4	5	5	6	6	6	7	9	10	10	10	15	11	16	17	12	15	25	25	36

Example ($e=2$). Here we have three different notions of "atoms".
Classical representation theory. The simples from before.

	$\mathrm{M}_{0,0}$	$\mathrm{M}_{2,0}$	$\mathcal{M}_{\sqrt{2}}$	$\mathrm{M}_{0,2}$	$\mathrm{M}_{2,2}$
atom	sign		rotation		trivial
rank	1	1	2	1	1
$\operatorname{apex}(\mathrm{KL})$	(1)	$\mathrm{S}-\bigcirc$	$\mathrm{S}-\bigcirc$	$\mathrm{S}-\bigcirc$	

Group element basis. Subgroups and ranks of transitive \mathbb{N}_{0}-modules.

subgroup	1	$\langle\mathrm{st}\rangle$	$\left\langle w_{0}\right\rangle$	$\left\langle w_{0}, \mathrm{~s}\right\rangle$	$\left\langle w_{0}\right.$, sts \rangle	G
atom	regular	$\mathrm{M}_{0,0} \oplus \mathrm{M}_{2,2}$	$\mathcal{M}_{\sqrt{2}} \oplus \mathcal{M}_{\sqrt{2}}$	$\mathrm{M}_{2,0} \oplus \mathrm{M}_{2,2}$	$\mathrm{M}_{0,2} \oplus \mathrm{M}_{2,2}$	trivial
rank	8	2	4	2	2	1
apex	G	G	G	G	G	G

$K L$ basis. ADE diagrams and ranks of transitive \mathbb{N}_{0}-modules.

	bottom cell	\longrightarrow	\rightarrow	top cell
atom	sign	$\mathrm{M}_{2,0} \oplus \mathcal{M}_{\sqrt{2}}$	$\mathrm{M}_{0,2} \oplus \mathcal{M}_{\sqrt{2}}$	trivial
rank	1	3	3	1
apex	(1)	S $-\bigcirc$	S $-\bigcirc$	W_{0}

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

Graph:

$$
1 \frac{4}{-} 2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
\theta_{d} \theta_{d}= \\
\left(\mathrm{v}^{7}+5 \mathrm{v}^{5}+12 \mathrm{v}^{3}+18 \mathrm{v}+18 \mathrm{v}^{-1}+12 \mathrm{v}^{-3}+5 \mathrm{v}^{-5}+\mathrm{v}^{-7}\right) \theta_{d} \\
+\left(\mathrm{v}^{5}+4 \mathrm{v}^{3}+7 \mathrm{v}+7 \mathrm{v}^{-1}+4 \mathrm{v}^{-3}+\mathrm{v}^{-5}\right) \theta_{u} \\
+\left(\mathrm{v}^{6}+5 \mathrm{v}^{4}+11 \mathrm{v}^{2}+14+11 \mathrm{v}^{-2}+5 \mathrm{v}^{-4}+\mathrm{v}^{-6}\right) \theta_{121232123565}
\end{gathered}
$$

Graph:

$$
1-2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
t_{d} t_{d}= \\
\left(\mathrm{v}^{7}+5 \mathrm{v}^{5}+12 \mathrm{v}^{3}+18 \mathrm{v}+18 \mathrm{v}^{-1}+12 \mathrm{v}^{-3}+5 \mathrm{v}^{-5}+\mathrm{v}^{-7}\right) \theta_{d} \\
+\left(\mathrm{v}^{5}+4 \mathrm{v}^{3}+7 \mathrm{v}+7 \mathrm{v}^{-1}+4 \mathrm{v}^{-3}+\mathrm{v}^{-5}\right) \theta_{u} \\
+\left(\mathrm{v}^{6}+5 \mathrm{v}^{4}+11 \mathrm{v}^{2}+14+11 \mathrm{v}^{-2}+5 \mathrm{v}^{-4}+\mathrm{v}^{-6}\right) \theta_{121232123565}
\end{gathered}
$$

Graph:

$$
1-2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
t_{d} t_{d}= \\
\left(\mathrm{v}^{7}+5 \mathrm{v}^{5}+12 \mathrm{v}^{3}+18 \mathrm{v}+18 \mathrm{v}^{-1}+12 \mathrm{v}^{-3}+5 \mathrm{v}^{-5}+\mathrm{v}^{-7}\right) \theta_{d} \\
+\left(\mathrm{v}^{5}+4 \mathrm{v}^{3}+7 \mathrm{v}+7 \mathrm{v}^{-1}+4 \mathrm{v}^{-3}+\mathrm{v}^{-5}\right) \theta_{u} \\
+\left(\mathrm{v}^{6}+5 \mathrm{v}^{4}+11 \mathrm{v}^{2}+14+11 \mathrm{v}^{-2}+5 \mathrm{v}^{-4}+\mathrm{v}^{-6}\right) \theta_{121232123565}
\end{gathered}
$$

Bigger friends.

Graph:

$$
1-2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
t_{d} t_{d}= \\
\left(\mathrm{v}^{7}+5 \mathrm{v}^{5}+12 \mathrm{v}^{3}+18 \mathrm{v}+18 \mathrm{v}^{-1}+12 \mathrm{v}^{-3}+5 \mathrm{v}^{-5}+\mathrm{v}^{-7}\right) \theta_{d} \\
+\left(\mathrm{v}^{5}+4 \mathrm{v}^{3}+7 \mathrm{v}+7 \mathrm{v}^{-1}+4 \mathrm{v}^{-3}+\mathrm{v}^{-5}\right) \theta_{u}
\end{gathered}
$$

Graph:

$$
1 \frac{4}{-} 2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
t_{d} t_{d}= \\
\left(\mathrm{v}^{7}+5 \mathrm{v}^{5}+12 \mathrm{v}^{3}+18 \mathrm{v}+18 \mathrm{v}^{-1}+12 \mathrm{v}^{-3}+5 \mathrm{v}^{-5}+\mathrm{v}^{-7}\right) \theta_{d} \\
+\left(\mathrm{v}^{5}+4 \mathrm{v}^{3}+7 \mathrm{v}+7 \mathrm{v}^{-1}+4 \mathrm{v}^{-3}+\mathrm{v}^{-5}\right) \theta_{u}
\end{gathered}
$$

$$
\text { Killed in the limit } \mathrm{v} \rightarrow \infty \text {. }
$$

Graph:

$$
1-\frac{4}{-3-4-5-6}
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565 .
$$

Example (SAGE). Here is a random calculation in the cell 12 for type B_{6}.

$$
\begin{gathered}
t_{d} t_{d}= \\
t_{d}
\end{gathered}
$$

Looks much simpler.

Graph:

$$
1-2-3-4-5-6
$$

Elements (shorthand $s_{i}=\mathrm{i}$):

$$
d=d^{-1}=132123565, u=u^{-1}=12132123565
$$

Example (SAGE; Type B_{6}).

Up to \mathbb{N}_{0}-equivalence: five left cell modules, five right cell modules, one two-sided cell bimodule, three H subalgebras:

$\mathrm{L}=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |
| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

$R=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

$\mathbf{H}=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

Fact. The three \mathbb{N}_{0}-algebras $\mathrm{J}_{\infty}^{\mathrm{H}}(\mathrm{W})$ are all "categorical Morita equivalent". (They have the same number of transitive \mathbb{N}_{0}-modules.)

Example ($e=2$).

$$
\begin{array}{cc}
\mathrm{M}=\mathbb{C}\langle 1,2,3\rangle \\
\theta_{\mathrm{s}} \leadsto\left(\begin{array}{ccc}
\mathrm{v}+\mathrm{v}^{-1} & 0 & 1 \\
0 & \mathrm{v}+\mathrm{v}^{-1} & 1 \\
0 & 0 & 0
\end{array}\right) & \theta_{\mathrm{t}} \leadsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & \mathrm{v}+\mathrm{v}^{-1}
\end{array}\right) \\
\theta_{\mathrm{sts}} & \leadsto\left(\begin{array}{ccc}
0 & \mathrm{v}+\mathrm{v}^{-1} & 1 \\
\mathrm{v}+\mathrm{v}^{-1} & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
\theta_{\mathrm{ts}} & \leadsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathrm{v}+\mathrm{v}^{-1} & \mathrm{v}+\mathrm{v}^{-1} & 1
\end{array}\right)
\end{array}
$$

Example ($e=2$).

$$
\begin{aligned}
& \mathrm{M}=\mathbb{C}\langle 1,2,3\rangle \\
& \begin{array}{lll}
& & \\
& \\
1 & 3 & 2 \\
1 & 3 & 2
\end{array} \\
& \theta_{\mathrm{s}} \leadsto\left(\begin{array}{ccc}
\mathrm{v}+\mathrm{v}^{-1} & 0 & 1 \\
0 & \mathrm{v}+\mathrm{v}^{-1} & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \theta_{\mathrm{sts}} \leadsto\left(\begin{array}{ccc}
0 & \mathrm{v}+\mathrm{v}^{-1} & 1 \\
\mathrm{v}+\mathrm{v}^{-1} & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \theta_{\mathrm{ts}} \leadsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\mathrm{v}+\mathrm{v}^{-1} & \mathrm{v}+\mathrm{v}^{-1} & 1
\end{array}\right) \\
& \theta_{\mathrm{t}} \leadsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & \mathrm{v}+\mathrm{v}^{-1}
\end{array}\right) \\
& \theta_{\text {tst }} \leadsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & \mathrm{v}+\mathrm{v}^{-1}
\end{array}\right) \\
& \theta_{\mathrm{st}} \leadsto\left(\begin{array}{ccc}
1 & 1 & \mathrm{v}+\mathrm{v}^{-1} \\
1 & 1 & \mathrm{v}+\mathrm{v}^{-1} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example $(e=2)$.

$$
\begin{gathered}
\mathrm{M}=\mathbb{C}\langle 1,2,3\rangle \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
t_{\mathrm{s}} & \leadsto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
t_{\mathrm{sts}} & \leadsto\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
t_{\mathrm{ts}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
t_{\mathrm{t}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
t_{\mathrm{tst}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
t_{\mathrm{st}} & \leadsto\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example ($e=2$).

$$
\mathrm{M}=\mathbb{C}\langle 1,2,3\rangle
$$

Example.

$$
\left.\left.\begin{array}{c}
t_{\text {st }} t_{\text {ts }}=t_{\text {s }}+t_{\text {sts }} \\
{\left[L_{1}\right]\left[L_{1}\right]=\left[L_{0}\right]+\left[L_{2}\right]}
\end{array}\right]=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .\right]\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), ~\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Example ($e=2$).

$\left.\begin{array}{l}\text { This works in general and recovers the transitive } \mathbb{N}_{0} \text {-modules } \\ \text { of } K_{0}\left(\mathrm{SL}(2)_{q}\right) \text { found by } \\ \text { Etingof-Khovanov } \sim 1995 \text { and Kirillov-Ostrik } \sim 2001, \\ \text { which are also ADE classified. } \\ \text { (For the experts: the bicoloring kills the tadpole solutions.) }\end{array}\right)$
$t_{\text {ts }} \leadsto\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$

Figure: The connected Coxeter diagrams of finite type. The finite Weyl groups are of type A, B $=$ C, D, E, F and G.

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ~1984).

type	A	$\mathrm{B}=\mathrm{C}$	D	E_{6}
worst case	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong 1$	$\mathrm{~J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{V e c}_{(\mathbb{Z} / 2 \mathbb{Z})^{d}}\right)$	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{V e c}_{\left.(\mathbb{Z} / 2 \mathbb{Z})^{d}\right)}\right)$	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{R e p}\left(S_{3}\right)\right)$
type	E_{7}	E_{8}		$\mathrm{~F}_{4}$
worst case	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{R e p}\left(S_{3}\right)\right)$	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{R e p}\left(S_{5}\right)\right)$	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{R e p}\left(S_{4}\right)\right)$	$\mathrm{J}_{\infty}^{\mathrm{H}} \cong K_{0}\left(\mathcal{R e p}\left(S_{2}\right)\right)$

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 \text {. }
$$

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 \text {. }
$$

Example $(G=\mathbb{Z} / 2 \times \mathbb{Z} / 2)$.

Subgroups, Schur multipliers and 2-simples.

In particular, there are two categorifications of the trivial module, and the rank sequences read

$$
\text { decat: } 1,2,2,2,4, \quad \text { cat: } 1,1,2,2,2,4 \text {. }
$$

Example (SAGE; Type B_{6}).

Reducing from 46080 to 14500 to 4 :

$L R=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |$\leadsto \mathbf{H}=$| $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}_{5,5}$ | $\mathbf{4}_{5,5}$ | $\mathbf{1}_{5,20}$ | $\mathbf{2}_{5,25}$ | $\mathbf{2}_{5,25}$ |
| $\mathbf{1}_{20,5}$ | $\mathbf{1}_{20,5}$ | $\mathbf{4}_{20,20}$ | $\mathbf{2}_{20,25}$ | $\mathbf{2}_{20,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{4}_{25,25}$ | $\mathbf{1}_{25,25}$ |
| $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,5}$ | $\mathbf{2}_{25,20}$ | $\mathbf{1}_{25,25}$ | $\mathbf{4}_{25,25}$ |

$$
\mathscr{J}_{\infty}^{\mathrm{H}}=\mathcal{V}^{\mathrm{ec} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}, \quad \text { rank sequence: } 1,1,2,2,2,4 .
$$

In particular, there is one non-cell 2 -simple: one 2 is missing.

SU(3)k

Orbifold series

Exceptionals

Figure: "Subgroups" of $\mathrm{SU}(3)_{q}$.
(Picture from "The classification of subgroups of quantum $\operatorname{SU}(N)$ ", Ocneanu $\sim \mathbf{2 0 0 0}$.)

