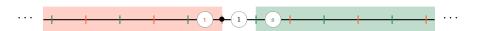
# A tale of dihedral groups, $SL(2)_q$ , and beyond

Or: Who colored my Dynkin diagrams?

Daniel Tubbenhauer



Joint work with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

March 2019

$$U_3(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

$$U_{3}(X) = (X - 2\cos(\frac{\pi}{4}))X(X - 2\cos(\frac{3\pi}{4}))$$

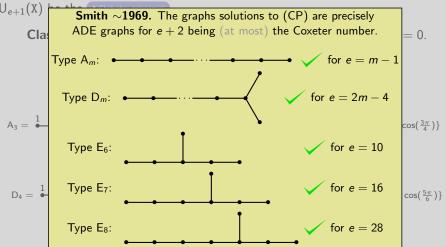
$$A_{3} = \frac{1}{4} \xrightarrow{3} \frac{2}{4} \xrightarrow{4} A(A_{3}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{A_{3}} = \{2\cos(\frac{\pi}{4}), 0, 2\cos(\frac{3\pi}{4})\}$$

$$U_{5}(X) = (X - 2\cos(\frac{\pi}{6}))(X - 2\cos(\frac{2\pi}{6}))X(X - 2\cos(\frac{4\pi}{6}))(X - 2\cos(\frac{5\pi}{6}))$$

$$D_{4} = \frac{1}{4} \xrightarrow{} A(D_{4}) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{} S_{D_{4}} = \{2\cos(\frac{\pi}{6}), 0^{2}, 2\cos(\frac{5\pi}{6})\}$$

$$for e = 4$$

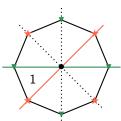
Let  $A(\Gamma)$  be the adjacency matrix of a finite, connected, loopless graph  $\Gamma$ . Let



- Dihedral representation theory
  - Classical representation theory
  - N-representation theory
  - Dihedral N-representation theory
- Non-semisimple fusion rings
  - The asymptotic limit
  - Cell modules
  - The dihedral example
- Beyond

$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathtt{s}}_{e+2} = \underbrace{\ldots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \ : \ W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$

**Example.** These are the symmetry groups of regular e+2-gons, e.g. for e=2 the Coxeter complex is:

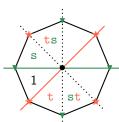


I will sneak in the Hecke case (a.k.a. quantum case) later on.

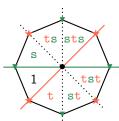
$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \; : \; W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$



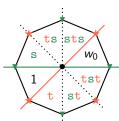
$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \; &: \; W_4 = \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$



$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \; &: \; W_4 = \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$



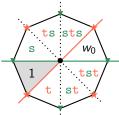
$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \; &: \; W_4 = \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \; \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$



$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathtt{s}}_{e+2} = \underbrace{\ldots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\ldots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \ : \ W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$

**Example.** These are the symmetry groups of regular e+2-gons, e.g. for e=2 the Coxeter complex is:

I will explain in a few minutes what cells are. For the moment: Never mind!

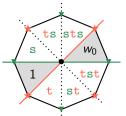


Lowest cell.

$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \ : \ W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$

**Example.** These are the symmetry groups of regular e+2-gons, e.g. for e=2 the Coxeter complex is:

I will explain in a few minutes what cells are. For the moment: Never mind!



Biggest cell.

$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \ : \ W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$

**Example.** These are the symmetry groups of regular e+2-gons, e.g. for e=2 the Coxeter complex is:



Lowest cell.

Biggest cell.

s-cell.

$$\begin{split} W_{e+2} &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \overline{\mathtt{s}}_{e+2} = \underbrace{\dots \mathtt{sts}}_{e+2} = w_0 = \underbrace{\dots \mathtt{tst}}_{e+2} = \overline{\mathtt{t}}_{e+2} \rangle, \\ e.g. \ : \ W_4 &= \langle \mathtt{s}, \mathbf{t} \mid \mathtt{s}^2 = \mathbf{t}^2 = 1, \ \mathtt{tsts} = w_0 = \mathtt{stst} \rangle \end{split}$$

**Example.** These are the symmetry groups of regular e+2-gons, e.g. for e=2 the Coxeter complex is:

I will explain in a few minutes what cells are.

For the moment: Never mind!

Lowest cell.

Biggest cell.

s-cell.

t-cell.

The Bott–Samelson (BS) generators  $\theta_s = s + 1, \theta_t = t + 1$ .

There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

One-dimensional modules.  $M_{\lambda_s, \lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$ .

$$e \equiv 0 \bmod 2 \qquad \qquad e \not \equiv 0 \bmod 2$$
 
$$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2} \qquad \qquad M_{0,0}, M_{2,2}$$

Two-dimensional modules.  $M_z, z \in \mathbb{C}, \theta_s \mapsto \left( \begin{smallmatrix} 2 & z \\ 0 & 0 \end{smallmatrix} \right), \theta_t \mapsto \left( \begin{smallmatrix} 0 & 0 \\ \overline{z} & 2 \end{smallmatrix} \right).$ 

$$e\equiv 0 \bmod 2$$
  $e\not\equiv 0 \bmod 2$   $M_z,z\in \mathrm{V}_e^\pm-\{0\}$   $M_z,z\in \mathrm{V}_e^\pm$ 

 $V_e = \text{roots}(U_{e+1}(X))$  and  $V_e^{\pm}$  the  $\mathbb{Z}/2\mathbb{Z}$ -orbits under  $z \mapsto -z$ .

#### **One-dimension**

# Proposition (Lusztig?).

The list of one- and two-dimensional  $W_{e+2}$ -modules is a complete, irredundant list of simple modules.

$$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2}$$

 $M_{0,0}, M_{2,2}$ 

Two-dimension ...

I learned this construction from Mackaay in 2017.

$$e \equiv 0 \bmod 2 \qquad \qquad e \not\equiv 0 \bmod 2$$
 
$$M_z, z \in V_e^{\pm} - \{0\} \qquad \qquad M_z, z \in V_e^{\pm}$$

 ${
m V}_e={
m roots}({
m U}_{e+1}({
m X}))$  and  ${
m V}_e^\pm$  the  ${\mathbb Z}/2{\mathbb Z}$ -orbits under  $z\mapsto -z$ .

One-dimensional modules.  $M_{\lambda_s,\lambda_t},\lambda_s,\lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$ .

$$e \equiv 0 \bmod 2 \qquad \qquad e \not\equiv 0 \bmod 2$$
 
$$M_{0,0}, M_{2,0}, M_{0,2}, M_{2,2} \qquad \qquad M_{0,0}, M_{2,2}$$

# Example.

 $\mathrm{M}_{0,0}$  is the sign representation and  $\mathrm{M}_{2,2}$  is the trivial representation.

In case e is odd,  $U_{e+1}(X)$  has a constant term, so  $M_{2,0},\ M_{0,2}$  are not representations.

$$\mathbf{M}_z, z \in \mathbf{V}_e^{\pm} - \{0\}$$
  $\mathbf{M}_z, z \in \mathbf{V}_e^{\pm}$ 

 $V_e = \text{roots}(U_{e+1}(X))$  and  $V_e^{\pm}$  the  $\mathbb{Z}/2\mathbb{Z}$ -orbits under  $z \mapsto -z$ .

One-dimensional modules.  $M_{\lambda_s,\lambda_t}, \lambda_s, \lambda_t \in \mathbb{C}, \theta_s \mapsto \lambda_s, \theta_t \mapsto \lambda_t$ .

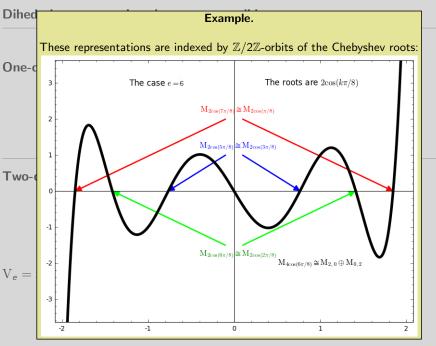
$$e \equiv 0 \mod 2$$
  $e \not\equiv 0 \mod 2$ 

### Example.

 $M_z$  for z being a root of the Chebyshev polynomial is a representation because the braid relation in terms of BS generators involves the coefficients of the Chebyshev polynomial.

| $e \equiv 0 \mod 2$                       | $e \not\equiv 0 \bmod 2$            |
|-------------------------------------------|-------------------------------------|
| $\mathrm{M}_z,z\in\mathrm{V}_e^\pm-\{0\}$ | $\mathrm{M}_z,z\in\mathrm{V}_e^\pm$ |

 $\mathrm{V}_e = \mathrm{roots}(\mathsf{U}_{e+1}(\mathsf{X})) \text{ and } \mathrm{V}_e^\pm \text{ the } \mathbb{Z}/2\mathbb{Z}\text{-orbits under } z \mapsto -z.$ 



An algebra P with a fixed basis  $B^P$  is called a (multi)  $\mathbb{N}\text{-algebra}$  if

$$xy \in \mathbb{N}B^{P} \quad (x, y \in B^{P}).$$

A P-module M with a fixed basis  $B^M$  is called a N-module if

$$xm \in \mathbb{N}B^{M} \quad (x \in B^{P}, m \in B^{M}).$$

These are  $\mathbb{N}$ -equivalent if there is a  $\mathbb{N}$ -valued change of basis matrix.

**Example.**  $\mathbb{N}$ -algebras and  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-categories and 2-modules, and  $\mathbb{N}$ -equivalence comes from 2-equivalence.

#### Example.

Αı

Group algebras of finite groups with basis given by group elements are  $\mathbb{N}$ -algebras.

The regular module is a  $\mathbb{N}$ -module.

A P-module M with a fixed basis  $B^{\mathrm{M}}$  is called a  $\mathbb{N}\text{-module}$  if

$$xm \in \mathbb{N}B^M \quad \text{($x \in B^P, m \in B^M$)}.$$

These are  $\mathbb{N}$ -equivalent if there is a  $\mathbb{N}$ -valued change of basis matrix.

**Example.**  $\mathbb{N}$ -algebras and  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-categories and 2-modules, and  $\mathbb{N}$ -equivalence comes from 2-equivalence.

#### Example.

Group algebras of finite groups with basis given by group elements are  $\mathbb{N}$ -algebras.

The regular module is a  $\mathbb{N}$ -module.

Example.

Fusion rings are with basis given by classes of simples elements are  $\mathbb{N}$ -algebras.

Key example:  $K_0(\mathcal{R}ep(G))$  (easy  $\mathbb{N}$ -representation theory).

Key example:  $K_0(\mathcal{R}\mathrm{ep}_g^{\mathrm{ss}}(\mathrm{U}_q(\mathfrak{g}))=\mathrm{G}_q)$  (intricate  $\mathbb{N}$ -representation theory).

**Example.**  $\mathbb{N}$ -algebras and  $\mathbb{N}$ -modules arise naturally as the decategorification of 2-categories and 2-modules, and  $\mathbb{N}$ -equivalence comes from 2-equivalence.

ΑP

The

#### Example.

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module.

Example.

Fusion rings are with basis given by classes of simples elements are N-algebras.

Key example:  $K_0(\mathcal{R}ep(G))$  (easy N-representation theory).

Key example:  $K_0(\mathcal{R}ep_q^{ss}(U_q(\mathfrak{g})) = G_q)$  (intricate  $\mathbb{N}$ -representation theory).

Example.

Hecke algebras of (finite) Coxeter groups with their KL basis are N-algebras.

Their  $\mathbb{N}$ -representation theory is mostly widely open.

**Example.** N-alg

2-categories and

ΑP

The

Daniel Tubbenhauer

egorification of

ivalence.

Clifford, Munn, Ponizovskiı ~1942++, Kazhdan–Lusztig ~1979.  $x \leq_L y$  if x appears in zy with non-zero coefficient for  $z \in B^P$ .  $x \sim_L y$  if  $x \leq_L y$  and  $y \leq_L x$ .  $\sim_L$  partitions P into left cells L. Similarly for right R, two-sided cells LR or  $\mathbb{N}$ -modules.

A  $\mathbb{N}$ -module M is transitive if all basis elements belong to the same  $\sim_{\mathsf{L}}$  equivalence class. An apex of M is a maximal two-sided cell not killing it.

**Fact.** Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

**Example.** Transitive  $\mathbb{N}$ -modules arise naturally as the decategorification of simple 2-modules.

Clifford, Muni appears in zy w

Philosophy.

**79.**  $x \leq_L y$  if x y and  $y \leq_L x$ .

N-modules.

 $\sim_L$  partitions  $\prod$  Imagine a graph whose vertices are the x's or the m's. Ils LR or  $v_1 \rightarrow v_2$  if  $v_1$  appears in  $zv_2$ .

 $m_2$ 

 $m_3$ 

 $m_4$ 

 $m_1$ 

A N-module M equivalence clas

Hence, one can

**Example.** Tran 2-modules.



cells = connected components transitive = one connected component

"The atoms of  $\mathbb{N}$ -representation theory".

cation of simple

Question (N-representation theory). Classify them!

Clifford, Muni appears in zy w

Philosophy.

**79.**  $x \leq_L y$  if x y and  $y \leq_L x$ .

N-modules.

 $\sim_L$  partitions  $\prod$  Imagine a graph whose vertices are the x's or the m's. Ils LR or  $v_1 \rightarrow v_2$  if  $v_1$  appears in  $zv_2$ .

 $m_2$ 

 $m_3$ 

 $m_4$ 

 $m_1$ 

A N-module M equivalence clas

Hence, one can

**Example.** Tran 2-modules.



cells = connected components transitive = one connected component

"The atoms of  $\mathbb{N}$ -representation theory".

cation of simple

Question (N-representation theory). Classify them!

Clifford, Muni appears in zy w

Philosophy.

**79.**  $x \leq_L y$  if x y and  $y \leq_L x$ .

N-modules.

 $\sim_L$  partitions  $\prod$  Imagine a graph whose vertices are the x's or the m's. Ils LR or  $v_1 \rightarrow v_2$  if  $v_1$  appears in  $zv_2$ .

A N-module M equivalence clas

Hence, one can

**Example.** Tran 2-modules.





cells = connected components transitive = one connected component

"The atoms of  $\mathbb{N}$ -representation theory".

cation of simple

Question (N-representation theory). Classify them!

**Example.**Group algebras with the group element basis have only one cell, G itself.

A  $\mathbb N\text{-module }M$  is transitive if all basis elements belong to the same  $\sim_\mathsf{L}$  equivalence class. An apex of M is a maximal two-sided cell not killing it.

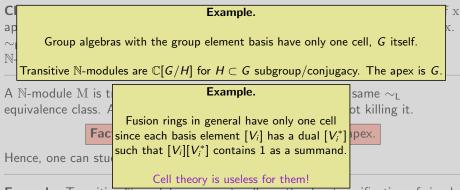
**Fact.** Each transitive  $\mathbb{N}$ -module has a unique apex.

Transitive  $\mathbb{N}$ -modules are  $\mathbb{C}[G/H]$  for  $H \subset G$  subgroup/conjugacy. The apex is G.

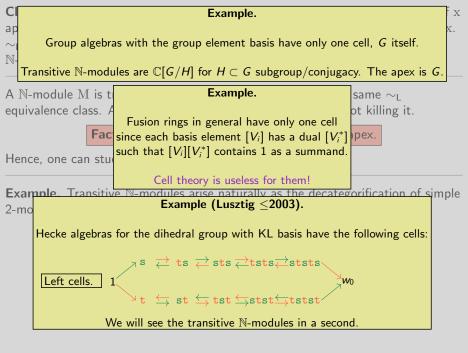
Hence, one can study them cell-wise.

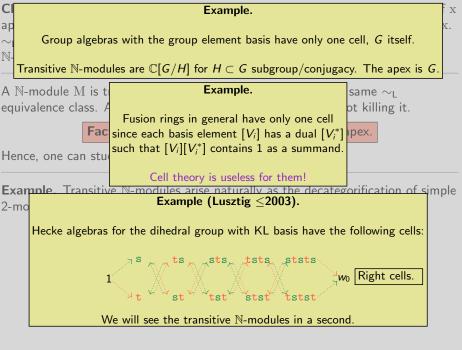
ap ∼ı N-

**Example.** Transitive  $\mathbb{N}$ -modules arise naturally as the decategorification of simple 2-modules.



**Example.** Transitive N-modules arise naturally as the decategorification of simple 2-modules.





Example. ap Group algebras with the group element basis have only one cell, G itself. N Transitive  $\mathbb{N}$ -modules are  $\mathbb{C}[G/H]$  for  $H \subset G$  subgroup/conjugacy. The apex is G. A N-module M is t Example. same  $\sim_{\mathsf{L}}$ equivalence class. ot killing it. Fusion rings in general have only one cell Fac since each basis element  $[V_i]$  has a dual  $[V_i^*]$  pex. such that  $[V_i][V_i^*]$  contains 1 as a summand. Hence, one can stu Cell theory is useless for them! **Example.** Transitive N-modules arise naturally as the decategorification of simple Example (Lusztig <2003). 2-mo Hecke algebras for the dihedral group with KL basis have the following cells:  $W_0$ stst-Two-sided cells. We will see the transitive N-modules in a second.

Clifford, Munn, Ponizovskiı̃  $\sim$ 1942++, Kazhdan-Lusztig  $\sim$ 1979.  $x \leq_L y$  if x appears in zy with non-zero coefficient for  $z \in B^P$ .  $x \sim_L y$  if  $x \leq_L y$  and  $y \leq_L x$ .  $\sim_L$  partitions P into left cells L. Similarly for right R, two-sided cells LR or  $\mathbb{N}$ -modules.

A  $\mathbb{N}\text{-module }M$  is transitive if all basis elements belong to the same  $\sim_{\mathsf{L}}$  equivalence class. An apex of M is a maximal two-sided cell not killing it.

Hence, one ca

The further away an N-algebra is from being semisimple, the more useful and interesting is its cell structure.

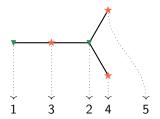
2-modules.

Daniel Tubbenhauer

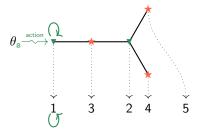
# N-modules via graphs.

### Construct a $W_{\infty}$ -module M associated to a bipartite graph $\Gamma$ :

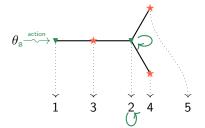
$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



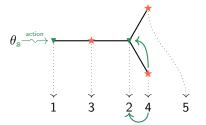
$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



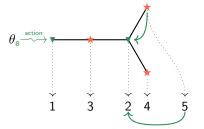
$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



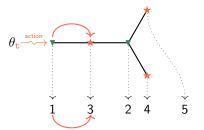
$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$

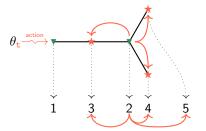


$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



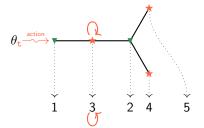
$$heta_{\mathtt{t}} \leadsto \mathrm{M}_{\mathtt{t}} = \left( egin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 1 & 1 & 2 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 1 & 0 & 0 & 2 \end{array} 
ight)$$

$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$

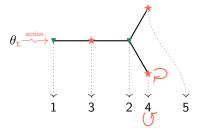


$$heta_{ exttt{t}} 
ightarrow ext{M}_{ ext{t}} = \left( egin{array}{cccc} 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 1 & 1 & 2 & 0 & 0 \ 0 & 1 & 0 & 2 & 0 \ 0 & 1 & 0 & 0 & 2 \end{array} 
ight)$$

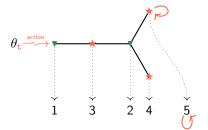
$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



$$\mathrm{M}=\mathbb{C}\langle 1,2,3,4,5\rangle$$



Construct a Was-module M associated to a bipartite graph  $\Gamma$ .

The adjacency matrix  $A(\Gamma)$  of  $\Gamma$  is

$$A(\Gamma) = \begin{pmatrix} 0 & 0 & \boxed{1 & 0 & 0} \\ 0 & 0 & \boxed{1 & 1 & 1} \\ \boxed{1 & 1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

These are  $W_{e+2}$ -modules for some e only if  $A(\Gamma)$  is killed by the Chebyshev polynomial  $U_{e+1}(X)$ .

Morally speaking: These are constructed as the simples but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev-braid-like relation can not hold otherwise.

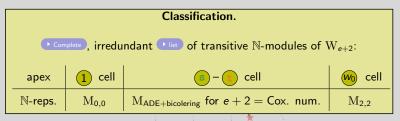
### Construct a $W_{\infty}$ -module M associated to a bipartite graph $\Gamma$ :

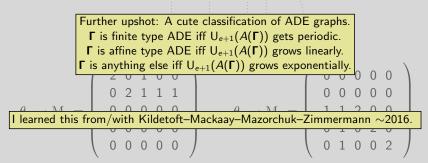
$$M = \mathbb{C}\langle 1, 2, 3, 4, 5 \rangle$$



Hence, by Smith's (CP) and Lusztig: We get a representation of  $W_{e+2}$  if  $\Gamma$  is a ADE Dynkin diagram for e+2 being the Coxeter number.

That these are N-modules follows from categorification.





The Weyl group of type  $B_2$ . Number of elements: 8. Number of cells: 3, named 0 (trivial) to 2 (top).

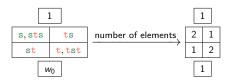
Cell order:

$$0 - 1 - 2$$

Size of the cells:

| cell | 0 | 1 | 2 |
|------|---|---|---|
| size | 1 | 6 | 1 |

Cell structure:



$$1 \cdot 1 = v^0 1$$

0 - 1 - 2

The V (trivia 
$$1\cdot 1=v^01.$$
 Cell o (v is the Hecke parameter deforming the reflection equations  $s^2=t^2=1.$ )

Size of the cells:

| cell | 0 | 1 | 2 |
|------|---|---|---|
| size | 1 | 6 | 1 |

Cell structure:



med 0

# Example (SAGE).

 $1 \cdot 1 = v^0 1$ 

(v is the Hecke parameter deforming the reflection equations  $s^2 = t^2 = 1$ .)

Size of the cell

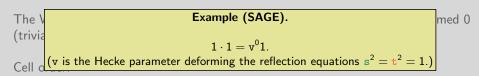
$$\begin{array}{l} \theta_{\rm s} \cdot \theta_{\rm s} = ({\rm v}^1 + {\rm lower~powers})\theta_{\rm s}. \\ \theta_{\rm sts} \cdot \theta_{\rm s} = ({\rm v}^1 + {\rm lower~powers})\theta_{\rm sts}. \end{array}$$

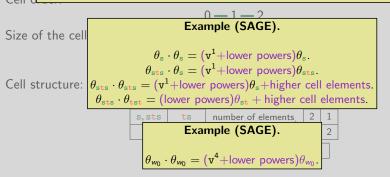
Cell structure:  $\theta_{\text{sts}} \cdot \theta_{\text{sts}} = (v^1 + \text{lower powers})\theta_{\text{s}} + \text{higher cell elements}.$  $\theta_{\text{sts}} \cdot \theta_{\text{tst}} = (\text{lower powers})\theta_{\text{st}} + \text{higher cell elements}.$ 

number of elements

W<sub>0</sub>

med 0





Fact (Lusztig  $\sim$ 1984++).

For any Coxeter group  $\boldsymbol{W}$  there is a well-defined function

ber of cells: 3, named 0

The Weyl group of type (trivial) to 2 (top).

Cell order:

Size of the cells:

 $a \colon \mathrm{W} o \mathbb{N}$ 

which is constant on two-sided cells.

▶ Big example

| cell | 0 | 1 | 2 |  |
|------|---|---|---|--|
| size | 1 | 6 | 1 |  |

Cell structure:



(trivial) to 2 (top).

Fact (Lusztig  $\sim$ 1984++).

The Weyl group of type

For any Coxeter group W there is a well-defined function

 $a \colon W \to \mathbb{N}$ 

which is constant on two-sided cells.

ber of cells: 3, named 0

Cell order:

Size of the cells:

Idea (Lusztig  $\sim$ 1984).

Cell structure:

Ignore everything except the leading coefficient a(two-sided cell).

| s, sts | ts             | number of elements | 2 | 1 |  |
|--------|----------------|--------------------|---|---|--|
| st     | t,tst          |                    | 1 | 2 |  |
| ı      | v <sub>0</sub> |                    | 1 |   |  |

Fact (Lusztig  $\sim$ 1984++).

The Weyl group of type (trivial) to 2 (top).

For any Coxeter group  $\boldsymbol{W}$  there is a well-defined function

 $a \colon \mathbf{W} \to \mathbb{N}$ 

which is constant on two-sided cells.

ber of cells: 3, named 0

Cell order:

Size of the cells:

Idea (Lusztig ~1984).

Cell structure:

Ignore everything except the leading coefficient a(two-sided cell).

Why isn't that stupid?

Because a is also turns up as the leading coefficients of traces of standard generators acting on simple modules.

**Upshot.** One can associate an to simples, and the simples should be uniquely determent by the leading coefficients.

Let  $H_v(W)$  be the Hecke algebra associated to W. The asymptotic limit  $J_\infty(W)$  of  $H_v(W)$  is defined as follows.

As a free  $\mathbb{Z}$ -module:

$$J_{\infty}(W) = \bigoplus_{\mathsf{LR}} \mathbb{Z}\{t_w \mid w \in \mathsf{LR}\}. \quad \mathsf{Compare:} \quad \frac{H_{\mathtt{v}}(W) = \mathbb{Z}[\mathtt{v},\mathtt{v}^{-1}]\{\theta_w \mid W\}.}{\mathsf{End}(W)}$$

Multiplication.

$$t_x t_y = \sum_{z \in \mathsf{LR}} \gamma_{x,y}^z t_z$$
. Compare:  $\theta_x \theta_y = \sum_{z \in \mathsf{LR}} h_{x,y}^z \theta_z + \mathsf{bigger}$  friends.

where  $\gamma_{\mathsf{x},\mathsf{y}}^{\mathsf{z}} \in \mathbb{N}$  is the leading coefficient of  $h_{\mathsf{x},\mathsf{y}}^{\mathsf{z}} \in \mathbb{N}[\mathsf{v},\mathsf{v}^{-1}]$ .

The multiplication tables (empty entries are 0 and  $[2] = v + v^{-1}$ ) in 1:

|      | ts             | tsts            | tst                       | tt   | tttst            | t <sub>ts</sub>   |
|------|----------------|-----------------|---------------------------|------|------------------|-------------------|
| ts   | t <sub>s</sub> | tsts            | tst                       |      |                  |                   |
| tsts | tsts           | ts              | tst                       |      |                  |                   |
| ttts | ttts           | t <sub>ts</sub> | $t_{\rm t} + t_{\rm tst}$ |      |                  |                   |
| tt   |                |                 |                           | tt   | t <sub>tst</sub> | t <sub>ts</sub>   |
| ttst |                |                 |                           | ttst | t <sub>t</sub>   | t <sub>ts</sub>   |
| tst  |                |                 |                           | tst  | tst              | $t_{s} + t_{sts}$ |

| ı |                       | θs                                  | θ <sub>sts</sub>                                          | θ <sub>st</sub>                               | $\theta_{t}$                       | $	heta_{	t tst}$                              | 0 <sub>ts</sub>                                           |
|---|-----------------------|-------------------------------------|-----------------------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------|-----------------------------------------------------------|
| l | $\theta_{\mathtt{s}}$ | $[2]\theta_s$                       | $[2]\theta_{	exttt{sts}}$                                 | $[2]\theta_{	t st}$                           | $	heta_{	t st}$                    | $	heta_{	t st} + 	heta_{	t w_0}$              | $\theta_{	exttt{s}} + \theta_{	exttt{sts}}$               |
| ۱ | $	heta_{	t sts}$      | $[2]\theta_{sts}$                   | $[2]\theta_s + [2]^2\theta_{w_0}$                         | $[2]\theta_{\tt st} + [2]\theta_{w_0}$        | $\theta_{	t s} + \theta_{	t st s}$ | $\theta_s + [2]^2 \theta_{w_0}$               | $\theta_{\rm s} + \theta_{\rm sts} + [2]\theta_{\rm w_0}$ |
| l | $	heta_{	t ts}$       |                                     | $[2]\theta_{\tt ts} + [2]\theta_{w_0}$                    | $[2]\theta_{t} + [2]\theta_{tst}$             | $\theta_{	t t} + \theta_{	t tst}$  | $\theta_{t} + \theta_{tst} + [2]\theta_{w_0}$ | $2\theta_{ts} + \theta_{w_0}$                             |
| l | $\theta_{	t t}$       | $	heta_{	t ts}$                     | $	heta_{	t ts} + 	heta_{	t w_0}$                          | $\theta_{	t t} + \theta_{	t tst}$             | $[2]\theta_t$                      | $[2]\theta_{	t tst}$                          | $[2]\theta_{	t ts}$                                       |
| l |                       | $\theta_{	t t} + \theta_{	t tst}$   | $\theta_{t} + [2]^{2}\theta_{w_0}$                        | $\theta_{t} + \theta_{tst} + [2]\theta_{w_0}$ | $[2]\theta_{	text{tst}}$           | $[2]\theta_{t} + [2]^2\theta_{w_0}$           | $[2]\theta_{\tt ts} + [2]\theta_{\tt w_0}$                |
| ١ | $	heta_{	t st}$       | $\theta_{\rm s} + \theta_{\rm sts}$ | $\theta_{\rm s} + \theta_{\rm sts} + [2]\theta_{\rm w_0}$ | $2\theta_{\rm st} + \theta_{\rm w_0}$         | $[2]\theta_{st}$                   | $[2]\theta_{st} + [2]\theta_{w_0}$            | $[2]\theta_s + [2]\theta_{sts}$                           |

(Note the "subalgebras".)

The asymptotic algebra is much simpler!



Fact (Lusztig 
$$\sim$$
1984++).

$$\mathrm{J}_\infty(\mathrm{W}) = \bigoplus_{\mathsf{LR}} \mathrm{J}^{\mathsf{LR}}_\infty(\mathrm{W})$$
 with the  $t_w$  basis and all its summands  $\mathrm{J}^{\mathsf{LR}}_\infty(\mathrm{W}) = \mathbb{Z}\{t_w \mid w \in \mathsf{LR}\}$  are multifusion algebras.

As a free (Meaning semisimple N-algebras with a certain nice trace form.)

$$\mathrm{J}_{\infty}(\mathrm{W}) = \bigoplus_{\mathsf{LR}} \mathbb{Z}\{t_w \mid w \in \mathsf{LR}\}. \quad \mathsf{Compare:} \quad \mathrm{H}_{\mathtt{v}}(\mathrm{W}) = \mathbb{Z}[\mathtt{v},\mathtt{v}^{-1}]\{\theta_w \mid \mathrm{W}\}.$$

Multiplication.

Let  $H_{\nu}(W)$  of  $H_{\nu}(W)$ 

$$t_x t_y = \sum_{z \in \mathsf{LR}} \gamma_{x,y}^z t_z.$$
 Compare:  $\theta_x \theta_y = \sum_{z \in \mathsf{LR}} h_{x,y}^z \theta_z + \mathsf{bigger}$  friends.

where  $\gamma_{x,y}^z \in \mathbb{N}$  is the leading coefficient of  $h_{x,y}^z \in \mathbb{N}[v,v^{-1}]$ .

Fact (Lusztig  $\sim$ 1984++). Let H<sub>v</sub>(W it  $J_{\infty}(W)$ of  $H_v(W)$  $J_{\infty}(W) = \bigoplus_{i \in R} J_{\infty}^{LR}(W)$  with the  $t_w$  basis and all its summands  $J_{\infty}^{LR}(W) = \mathbb{Z}\{t_w \mid w \in LR\}$ are multifusion algebras. As a free (Meaning semisimple N-algebras with a certain nice trace form.) Surprising fact 1 (Lusztig  $\sim$ 1984++).  $[\theta_{w} | W].$ It seems one throws almost away everything, but: There is an explicit embedding Multiplication  $H_{\mathsf{v}}(\mathsf{W}) \hookrightarrow J_{\infty}(\mathsf{W}) \otimes_{\mathbb{Z}} \mathbb{Z}[\mathsf{v},\mathsf{v}^{-1}]$  $t_x t_y = \sum_{x}$  which is an isomorphism after scalar extension to  $\mathbb{Q}(v)$  ger friends.

where  $\gamma_{x,y}^z \in \mathbb{N}$  is the leading coefficient of  $h_{x,y}^z \in \mathbb{N}[v,v^{-1}]$ .

Fact (Lusztig  $\sim$ 1984++).

 $J_{\infty}(W) = \bigoplus_{i \in R} J_{\infty}^{LR}(W)$  with the  $t_w$  basis and all its summands  $J_{\infty}^{LR}(W) = \mathbb{Z}\{t_w \mid w \in LR\}$ are multifusion algebras.

As a free (Meaning semisimple N-algebras with a certain nice trace form.)

Surprising fact 1 (Lusztig  $\sim$ 1984++). It seems one throws almost away everything, but:

There is an explicit embedding

 $H_{\mathsf{v}}(\mathsf{W}) \hookrightarrow J_{\infty}(\mathsf{W}) \otimes_{\mathbb{Z}} \mathbb{Z}[\mathsf{v},\mathsf{v}^{-1}]$  $t_x t_y = \sum_{x}$  which is an isomorphism after scalar extension to  $\mathbb{Q}(v)$  ger friends.

Surprising fact 2 (Lusztig  $\sim$ 1984++).

There is an explicit 1:1 correspondence

 $\{\text{simples of } H_v(W) \text{ with apex LR}\} \stackrel{1:1}{\longleftrightarrow} \{\text{simples of } J_{\infty}^{LR}(W)\}.$ 

Let H<sub>v</sub>(W

of  $H_v(W)$ 

Multiplication

where  $\gamma_{x,y}^z$ 

it  $J_{\infty}(W)$ 

 $^{1}$ ]{ $\theta_{w} \mid W$ }.

### "Induced" transitive N-algebras and -modules.

Fix a left cell L. Let  $\mathrm{M}(\geq_L)$ , respectively  $\mathrm{M}(>_L)$ , be the  $\mathbb{N}$ -modules spanned by all  $\mathrm{x} \in \mathrm{B}^\mathrm{P}$  in the union  $\mathrm{L}' \geq_L \mathrm{L}$ , respectively  $\mathrm{L}' >_L \mathrm{L}$ . Similarly for right R, two-sided LR and diagonal  $\mathrm{H} = \mathrm{L} \cap \mathrm{R}$  cells.

Left cell module  $C_L = M(\geq_L)/M(>_L)$ . (Left  $\mathbb{N}$ -module.)

Right cell module  $C_R = M(\geq_R)/M(>_R)$ . (Right N-module.)

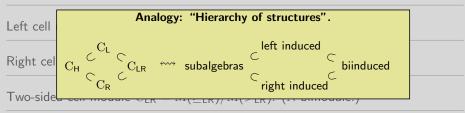
Two-sided cell module  $C_{LR} = M(\geq_{LR})/M(>_{LR})$ . (N-bimodule.)

The diagonal cell  $C_\mathsf{H} = J^\mathsf{H}_\infty(W) = (M(\geq_\mathsf{LR})/M(>_\mathsf{LR})) \cap \mathbb{K}\mathrm{B}^\mathrm{P}(\mathsf{H}).$  (N-subalgebra.)



### "Induced" transitive $\mathbb{N}$ -algebras and -modules.

Fix a left cell L. Let  $M(\geq_L)$ , respectively  $M(>_L)$ , be the  $\mathbb N$ -modules spanned by all  $x\in B^P$  in the union  $L'\geq_L L$ , respectively  $L'>_L L$ . Similarly for right R, two-sided LR and diagonal  $H=L\cap R$  cells.



The diagonal cell  $\mathrm{C}_H=\mathrm{J}_\infty^H(\mathrm{W})=(\mathrm{M}(\geq_{LR})/\mathrm{M}(>_{LR}))\cap \mathbb{K}\mathrm{B}^\mathrm{P}(H).$  (N-subalgebra.)



Example.

 $\mathbb{C}[G]$  with the group element basis has only one cell module, the regular module.

Similarly for any fusion algebra.

two-sided LR and diagonal  $H = L \cap R$  cells.

Left cell module  $\mathrm{C}_L=\mathrm{M}(\geq_L)/\mathrm{M}(>_L).$  (Left  $\mathbb{N}\text{-module.})$ 

Right cell module  $C_R = M(\geq_R)/M(>_R)$ . (Right  $\mathbb{N}$ -module.)

Two-sided cell module  $C_{LR} = M(\geq_{LR})/M(>_{LR})$ . (N-bimodule.)

The diagonal cell  $C_H = J_\infty^H(W) = (M(\geq_{\mathsf{LR}})/M(>_{\mathsf{LR}})) \cap \mathbb{K}B^P(H)$ . (N-subalgebra.)

Example.

 $\mathbb{C}[G]$  with the group element basis has only one cell module, the regular module.

Similarly for any fusion algebra.

two-sided LR and diagonal  $H = L \cap R$  cells.

Example (Kazhdan–Lusztig  $\sim$ 1979, Lusztig  $\sim$ 1983++).

For Hecke algebras of the symmetric group with KL basis the cell modules are Lusztig's cell modules studied in connection with reductive groups in characteristic p.

Two-sided cell module  $C_{LR} = M(>_{LR})/M(>_{LR})$ . (N-bimodule.)

The diagonal cell  $\mathrm{C}_H=\mathrm{J}^H_\infty(\mathrm{W})=(\mathrm{M}(\geq_{\mathsf{LR}})/\mathrm{M}(>_{\mathsf{LR}}))\cap \mathbb{K}\mathrm{B}^\mathrm{P}(\mathsf{H}).$  (\$\mathbb{N}\$-subalgebra.)

Left

Example.

 $\mathbb{C}[G]$  with the group element basis has only one cell module, the regular module.

Similarly for any fusion algebra.

two-sided LR and diagonal  $H = L \cap R$  cells.

Example (Kazhdan–Lusztig  $\sim$ 1979, Lusztig  $\sim$ 1983+++).

For Hecke algebras of the symmetric group with KL basis the cell modules are Lusztig's

cell modules studied in connection with reductive groups in characteristic p.

Two-sided cell module  $C_{LR} = M(\geq_{LR})/M(>_{LR})$ . (N-bimodule.)

## Example (dihedral case).

 Cells:
 cell | 0 | 1 | 2

 size | 1 | 2n-2 | 1

 a | 0 | 1 | n

all

Left

Right

1 for n even:



1 for *n* odd:



n even. Two left cell modules ← Two bicolorings of the type A graph.
n odd. One left cell module ← One bicoloring of the type A graph.

The fusion ring  $K_0(SL(2)_q)$  for  $q^{2e}=1$  has simple objects  $[L_0],[L_1],[L_2]$ . The fusion ring  $J_{\infty}^{LR}(W)$  has simple objects  $t_s,t_{sts},t_{st},t_{t},t_{tst},t_{ts}$ .

&

## Comparison of multiplication tables:

|                           | [ <i>L</i> <sub>0</sub> ] | [ <i>L</i> <sub>2</sub> ] | $[L_1]$                   |
|---------------------------|---------------------------|---------------------------|---------------------------|
| $[L_0]$                   | $[L_0]$                   | [ <i>L</i> <sub>2</sub> ] | [ <i>L</i> <sub>1</sub> ] |
| [ <i>L</i> <sub>2</sub> ] | [ <i>L</i> <sub>2</sub> ] | [ <i>L</i> <sub>0</sub> ] | [L <sub>1</sub> ]         |
| [ <i>L</i> <sub>1</sub> ] | [ <i>L</i> <sub>1</sub> ] | $[L_1]$                   | $[L_0] + [L_2]$           |
|                           |                           |                           |                           |

|                  | t <sub>s</sub>  | tsts            | t <sub>st</sub>         | t <sub>t</sub>   | t <sub>tst</sub> | $t_{	t ts}$                                                                           |
|------------------|-----------------|-----------------|-------------------------|------------------|------------------|---------------------------------------------------------------------------------------|
| ts               | t <sub>s</sub>  | tsts            | tst                     |                  |                  |                                                                                       |
| tsts             | tsts            | ts              | t <sub>st</sub>         |                  |                  |                                                                                       |
| t <sub>ts</sub>  | t <sub>ts</sub> | t <sub>ts</sub> | $t_{ m t} + t_{ m tst}$ |                  |                  |                                                                                       |
| t <sub>t</sub>   |                 |                 |                         | t <sub>t</sub>   | t <sub>tst</sub> | $t_{	t ts}$                                                                           |
| t <sub>tst</sub> |                 |                 |                         | t <sub>tst</sub> | t <sub>t</sub>   | t <sub>ts</sub>                                                                       |
| tst              |                 |                 |                         | tst              | tst              | $t_{\scriptscriptstyle \rm S} + t_{\scriptscriptstyle \rm St_{\scriptscriptstyle S}}$ |

 $J_{\infty}^{LR}(W)$  is a bicolored version of  $K_0(SL(2)_q)$ :

$$t_{s}\&t_{t}\iff [L_{0}], \quad t_{sts}\&t_{tst}\iff [L_{2}], \quad t_{st}\&t_{ts}\iff [L_{1}].$$

The fusion ring  $K_0(SO(3)_q)$  for  $q^{2e} = 1$  has simple objects  $[L_0], [L_2]$ . The fusion ring  $J_{\infty}^{H}(W)$  (H = L<sub>s</sub>  $\cap$  R<sub>s</sub>) has simple objects  $t_{s}$ ,  $t_{sts}$ .

Comparison of multiplication tables:

$$egin{array}{c|c|c|c} & t_{
m s} & t_{
m sts} \ \hline t_{
m s} & t_{
m s} & t_{
m sts} \ \hline t_{
m sts} & t_{
m sts} & t_{
m s} \ \hline \end{array}$$

 $J_{\infty}^{H}(W)$  is  $K_{0}(SO(3)_{a})$ :

$$t_s \leftrightsquigarrow [L_0], \quad t_{sts} \leftrightsquigarrow [L_2].$$

This is the slightly nicer statement.

Fact.

The fusion ring  $I_{\infty}^{H}(W)$  (H =  $I_{\infty} \cap I_{\infty}$ ) has simple objects  $I_{\infty}$ ,  $I_{\infty}$ . [ $I_{\infty}$ ]. The fusion ring  $I_{\infty}^{H}(W)$  (H =  $I_{\infty} \cap I_{\infty}$ ) has simple objects  $I_{\infty}$ ,  $I_{\infty}$ .

Comparison of multiplication tables:

 $J_{\infty}^{H}(W)$  is  $K_{0}(SO(3)_{a})$ :

$$t_s \leftrightsquigarrow [L_0], \quad t_{sts} \leftrightsquigarrow [L_2].$$

Fact.

The fusion ring K Both connections are always true (i.e. for any e).  $[L_2]$ . The fusion ring  $J_{\infty}^{H}(W)$  ( $H = L_{s} + H_{s}$ ) has simple objects  $t_{s}$ ,  $t_{sts}$ .

#### H-cell-theorem.

#### There are 1:1 correspondences

 $\{\text{transitives of } H_{\nu}(W) \text{ with apex LR}\} \overset{1:1}{\longleftrightarrow} \{\text{transitives of } J^{\mathsf{LR}}_{\nu}(W)\} \overset{1:1}{\longleftrightarrow} \{\text{transitives of } J^{\mathsf{H}}_{\nu}(W)\},$ 

 $\text{transitives of } H_v(\mathrm{W}) \text{ with apex LR} \} \overset{1:1}{\longleftrightarrow} \{ \text{transitives of } \mathcal{K}_0(\mathrm{SL}(2)_q^{s,*}) \} \overset{1:1}{\longleftrightarrow} \{ \text{transitives of } \mathcal{K}_0(\mathrm{SO}(3)_q) \}.$ 

$$t_s \leftrightarrow [L_0], \quad t_{sts} \leftrightarrow [L_2].$$

Fact.

The fusion ring  $J_{\infty}^{H}(W)$  (H =  $L_{s} + R_{s}$ ) has simple objects  $t_{s}$ ,  $t_{sts}$ . [ $L_{2}$ ]. The fusion

#### H-cell-theorem.

#### There are 1:1 correspondences

 $\{\text{transitives of } H_v(W) \text{ with apex LR}\} \stackrel{1:1}{\longleftrightarrow} \{\text{transitives of } J_v^{LR}(W)\} \stackrel{1:1}{\longleftrightarrow} \{\text{transitives of } J_v^{H}(W)\},$ 

 $\{\text{transitives of } H_v(W) \text{ with apex LR}\} \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{transitives of } \mathcal{K}_0(\mathrm{SL}(2)_a^{s,t})\} \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{transitives of } \mathcal{K}_0(\mathrm{SO}(3)_q)\}.$ 

$$t_s \iff [L_0], \quad t_{st_s} \iff [L_2].$$

#### Upshot.

 $H_v(W)$  is a non-semisimple version of  $K_0(SL(2)_q)$ ,

 $H_v^H(W)$  is a non-semisimple version of  $K_0(SO(3)_q)$ .

In particular, the Hecke algebras have a v parameter.

The fusion ring  $K_0(SO(3)_q)$  for  $q^{2e}=1$  has simple objects  $[L_0], [L_2]$ . The fusion ring  $J_{\infty}^H(W)$   $(H=L_s\cap R_s)$  has simple objects  $t_s, t_{sts}$ .

Comparison of

#### Fact.

With a bit more care (with the H-cell-theorem) all the above generalizes to any Coxeter group W.

 $J_{\infty}^{H}(W)$  is  $K_{0}(S)$ 

Thus, Hecke algebras are non-semisimple fusion rings.

In general  $J_{\infty}(W)$  is not understood, but for W being a finite Weyl group  $J_{\infty}^{H}(W)$  is very  $\bullet$  nice.

▶ Please stop!

## Beyond?

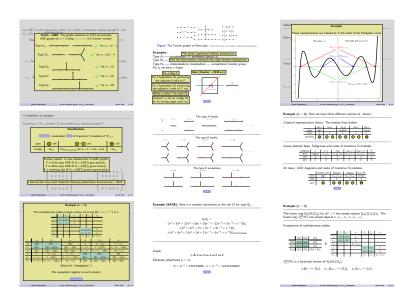
#### Categorification?

- Non-semisimple: Replace Hecke algebra by Soergel bimodules. ✓
- Non-semisimple: Categorical N-modules for dihedral groups. ✓ Zigzag algebras appear.
- ▶ Fusion: Replace asymptotic Hecke algebra by asymptotic Soergel bimodules.
- $\triangleright$  Fusion: Categorical N-modules for  $SL(2)_q$ .  $\checkmark$  Algebras are trivial.
- $\triangleright$  H: Asymptotic Soergel bimodules are very nice, just remove  $K_0$  everywhere.  $\checkmark$
- → H-cell-theorem ? . Work in progress! Click

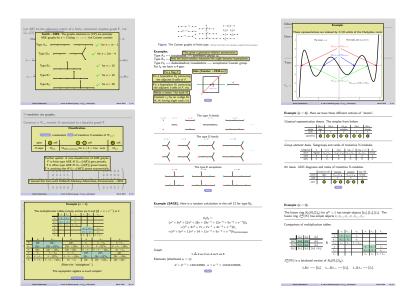
  □ Cli

#### ▶ $SL(n)_q$ ?

- Non-semisimple: Nhedral; leaves the realm of groups. ✓
- Non-semisimple: Categorical N-modules for Nhedral algebras have a Ncolored ADE-type classification. ✓ Generalized zigzag algebras and Chebyshev polynomials appear.
- $\triangleright$  Fusion: One gets  $SL(N)_q$ .
- ▶ Fusion: Categorical  $\mathbb{N}$ -modules of  $\mathrm{SL}(N)_q$  have an ADE-type classification.  $\checkmark$  Algebras are trivial.



#### There is still much to do...



## Thanks for your attention!

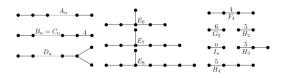


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

#### Examples.

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ .

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 

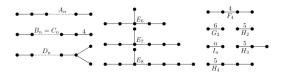
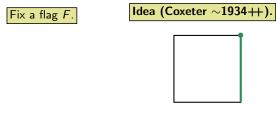


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

### Examples.

Type  $A_3 \leftrightarrow \text{tetra}$  Fact. The symmetries are given by exchanging flags. Type  $B_3 \leftrightarrow \text{cube}/\text{octaneuron} \leftrightarrow \text{veey group} (2/2) \times 3_3$ . Type  $H_3 \leftrightarrow \text{dodecahedron/icosahedron} \leftrightarrow \text{exceptional Coxeter group}$ .



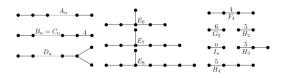


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \leftrightarrow \text{tetrahedron} \leftrightarrow \text{symmetric group } S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ .

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 



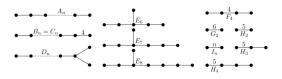
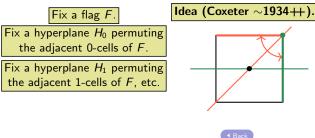


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ .

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 



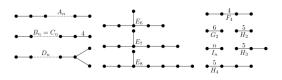
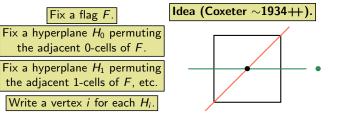


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

Type  $A_3 \iff$  tetrahedron  $\iff$  symmetric group  $S_4$ .

Type  $B_3 \iff \text{cube/octahedron} \iff \text{Weyl group } (\mathbb{Z}/2\mathbb{Z})^3 \ltimes S_3$ .

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 



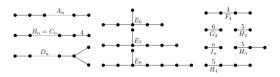


Figure: The Coxeter graphs of finite type. (Picture from https://en.wikipedia.org/wiki/Coxeter\_group.)

This gives a generator-relation presentation.

Type  $A_3 \leftrightarrow$  tetrahedron  $\leftrightarrow$  symmetric group  $S_4$ .

Type B<sub>3</sub> And the braid relation measures the angle between hyperplanes.

Type  $H_3 \longleftrightarrow dodecahedron/icosahedron \longleftrightarrow exceptional Coxeter group.$ 

For  $I_8$  we have a 4-gon:

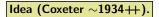
## Fix a flag F.

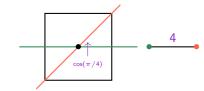
Fix a hyperplane  $H_0$  permuting the adjacent 0-cells of F.

Fix a hyperplane  $H_1$  permuting the adjacent 1-cells of F, etc.

Write a vertex i for each  $H_i$ .

Connect i, j by an n-edge for  $H_i, H_j$  having angle  $\cos(\pi/n)$ .





$$\begin{array}{ll} U_0(\mathtt{X}) = \mathtt{1}, & U_1(\mathtt{X}) = \mathtt{X}, & \mathtt{X} \ U_{e+1}(\mathtt{X}) = U_{e+2}(\mathtt{X}) + U_e(\mathtt{X}) \\ U_0(\mathtt{X}) = \mathtt{1}, & U_1(\mathtt{X}) = \mathtt{2}\mathtt{X}, & \mathtt{2}\mathtt{X} \ U_{e+1}(\mathtt{X}) = U_{e+2}(\mathtt{X}) + U_e(\mathtt{X}) \end{array}$$

**Kronecker**  $\sim 1857$ . Any complete set of conjugate algebraic integers in ]-2,2[ is a subset of  $\mathrm{roots}(\mathsf{U}_{e+1}(\mathsf{X}))$  for some e.

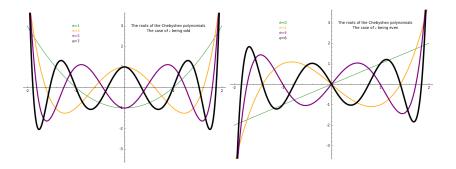


Figure: The roots of the Chebyshev polynomials (of the second kind).



In case you are wondering why this is supposed to be true, here is the main observation of **Smith**  $\sim$ **1969**:

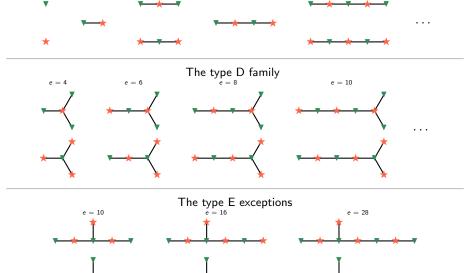
$$\mathsf{U}_{e+1}(\mathtt{X},\mathtt{Y}) = \pm \mathrm{det}(\mathtt{X}\mathrm{Id} - A(\mathsf{A}_{e+1}))$$

Chebyshev poly. = char. poly. of the type  $A_{e+1}$  graph and

$$XT_{n-1}(X) = \pm \det(XId - A(D_n)) \pm (-1)^{n \mod 4}$$

first kind Chebyshev poly. '=' char. poly. of the type  $D_n$  graph  $(n = \frac{e+4}{2})$ .

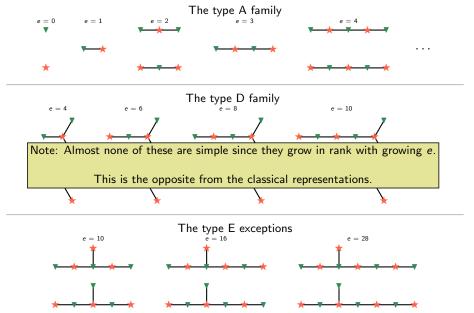
**∢** Back



The type A family e = 3

e = 0

e = 1



**Example (SAGE).** The Weyl group of type B<sub>6</sub>. Number of elements: 46080. Number of cells: 26, named 0 (trivial) to 25 (top).

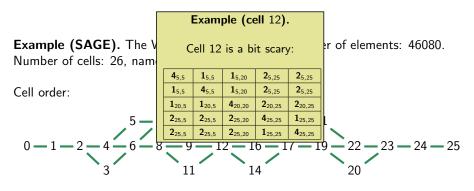
Cell order:

$$0-1-2-4$$
 $\begin{array}{c} 5-7-10-13-15-18-21 \\ 0-1-2-4-6-8-9-12-16-17-19-22-23-24-25 \\ 11 \end{array}$ 

Size of the cells and whether the cells are strongly regular (sr):

| cell | 0 | 1  | 2   | 3   | 4   | 5    | 6   | 7    | 8    | 9    | 10  | 11   | 12    | 13  | 14   | 15  | 16   | 17   | 18   | 19  | 20  | 21   | 22  | 23  | 24 | 25 |
|------|---|----|-----|-----|-----|------|-----|------|------|------|-----|------|-------|-----|------|-----|------|------|------|-----|-----|------|-----|-----|----|----|
| size | 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62 | 1  |
|      | 0 | 1  | 2   | 2   | 2   | 4    | - 4 | 6    | - 6  | 6    | 6   | 6    | 7     | 0   | 10   | 10  | 10   | 15   | 11   | 16  | 17  | 12   | 15  | 25  | 25 | 36 |





Size of the cells and whether the cells are strongly regular (sr):

| cell | 0 | 1  | 2   | 3   | 4   | 5    | 6   | 7    | 8    | 9    | 10  | 11   | 12    | 13  | 14   | 15  | 16   | 17   | 18   | 19  | 20  | 21   | 22  | 23  | 24 | 25 |
|------|---|----|-----|-----|-----|------|-----|------|------|------|-----|------|-------|-----|------|-----|------|------|------|-----|-----|------|-----|-----|----|----|
| size | 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62 | 1  |
| a    | 0 | 1  | 2   | 3   | 3   | 4    | 4   | 5    | 5    | 6    | 6   | 6    | 7     | 9   | 10   | 10  | 10   | 15   | 11   | 16  | 17  | 12   | 15  | 25  | 25 | 36 |

◆ Back

**Example** (e = 4). Here we have three different notions of "atoms".

## Classical representation theory. The simples from before.

|          | $M_{0,0}$ | $M_{2,0}$           | $\mathcal{M}_{\sqrt{2}}$ | $M_{0,2}$ | $M_{2,2}$      |
|----------|-----------|---------------------|--------------------------|-----------|----------------|
| atom     | sign      |                     | rotation                 |           | trivial        |
| rank     | 1         | 1                   | 2                        | 1         | 1              |
| apex(KL) | 1         | <u>s</u> – <u>l</u> | <u>s</u> – <u>l</u>      | 8 - 1     | w <sub>0</sub> |

## *Group element basis.* Subgroups and ranks of transitive ℕ-modules.

| subgroup | 1       | (st)                     | $\langle w_0 \rangle$                                  | $\langle w_0, s \rangle$ | $\langle w_0, sts \rangle$                 | G       |
|----------|---------|--------------------------|--------------------------------------------------------|--------------------------|--------------------------------------------|---------|
| atom     | regular | $M_{0,0} \oplus M_{2,2}$ | $\mathcal{M}_{\sqrt{2}} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{2,0} \oplus M_{2,2}$ | $\mathrm{M}_{0,2}{\oplus}\mathrm{M}_{2,2}$ | trivial |
| rank     | 8       | 2                        | 4                                                      | 2                        | 2                                          | 1       |
| apex     | G       | G                        | G                                                      | G                        | G                                          | G       |

## *KL basis.* ADE diagrams and ranks of transitive $\mathbb{N}$ -modules.

|      | bottom cell | ▼ ★ ▼                                   | * * *                                   | top cell |
|------|-------------|-----------------------------------------|-----------------------------------------|----------|
| atom | sign        | $M_{2,0} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{0,2} \oplus \mathcal{M}_{\sqrt{2}}$ | trivial  |
| rank | 1           | 3                                       | 3                                       | 1        |
| apex | 1           | 3 - 1                                   | <u>s</u> – <u>1</u>                     | Wo       |

**Example** (e = 4). Here we have three different notions of "atoms".

Classical representation theory. The simples from before.

|          | $M_{0,0}$ | $M_{2,0}$ | $\mathcal{M}_{\sqrt{2}}$ | $M_{0,2}$ | $M_{2,2}$         |
|----------|-----------|-----------|--------------------------|-----------|-------------------|
| atom     | sign      |           | rotation                 |           | trivial           |
| rank     | 1         | 1         | 2                        | 1         | 1                 |
| apex(KL) | (1)       | (s) - (h) | (s) - (h)                | (s) - (h) | (W <sub>0</sub> ) |

#### Fun fact.

Group ele Choose your favorite field and perform the Jordan decomposition. Then you will see all simples appearing!

| atom | regular | $M_{0,0} \oplus M_{2,2}$ | $\mathcal{M}_{\sqrt{2}} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{2,0} \oplus M_{2,2}$ | $\mathrm{M}_{0,2}{\oplus}\mathrm{M}_{2,2}$ | trivial |
|------|---------|--------------------------|--------------------------------------------------------|--------------------------|--------------------------------------------|---------|
| rank | 8       | 2                        | 4                                                      | 2                        | 2                                          | 1       |
| apex | G       | G                        | G                                                      | G                        | G                                          | G       |

*KL basis.* ADE diagrams and ranks of transitive  $\mathbb{N}$ -modules.

|      | bottom cell | <del>* * *</del>                        | * * *                                   | top cell       |
|------|-------------|-----------------------------------------|-----------------------------------------|----------------|
| atom | sign        | $M_{2,0} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{0,2} \oplus \mathcal{M}_{\sqrt{2}}$ | trivial        |
| rank | 1           | 3                                       | 3                                       | 1              |
| apex | 1           | 8 - 0                                   | 8 - 0                                   | W <sub>0</sub> |

**Example** (e = 4). Here we have three different notions of "atoms".

Classical representation theory. The simples from before.

|          | $M_{0,0}$ | $M_{2,0}$ | $\mathcal{M}_{\sqrt{2}}$ | $M_{0,2}$           | $M_{2,2}$         |
|----------|-----------|-----------|--------------------------|---------------------|-------------------|
| atom     | sign      |           | rotation                 |                     | trivial           |
| rank     | 1         | 1         | 2                        | 1                   | 1                 |
| apex(KL) | 1         | (s) - (n) | <u>s</u> – <u>_</u>      | <u>s</u> – <u>_</u> | (W <sub>0</sub> ) |

#### Fun fact.

Group ele Choose your favorite field and perform the Jordan decomposition. Then you will see all simples appearing!

| atom | regular | $M_{0,0} \oplus M_{2,2}$ | $\mathcal{M}_{\sqrt{2}} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{2,0} \oplus M_{2,2}$ | $M_{0,2} \oplus M_{2,2}$ | trivial |
|------|---------|--------------------------|--------------------------------------------------------|--------------------------|--------------------------|---------|
| rank | 8       | 2                        | 4                                                      | 2                        | 2                        | 1       |
| apex | G       | G                        | G                                                      | G                        | G                        | G       |

"Knowing the transitive ℕ-modules

KL basis. ADE diag knowing the simples for all primes  $p \ge 0$ ."

|      | DOLLOTTI CCII | , , , , , , , , , , , , , , , , , , ,   | ^ ' ^                                   | top cen |
|------|---------------|-----------------------------------------|-----------------------------------------|---------|
| atom | sign          | $M_{2,0} \oplus \mathcal{M}_{\sqrt{2}}$ | $M_{0,2} \oplus \mathcal{M}_{\sqrt{2}}$ | trivial |
| rank | 1             | 3                                       | 3                                       | 1       |
| apex | 1             | <u>s</u> – <u>_</u>                     | <u>s</u> – <u> </u>                     | Wo      |

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$



$$\begin{aligned} \theta_d\theta_d = \\ \left(\mathbf{v}^7 + 5\mathbf{v}^5 + 12\mathbf{v}^3 + 18\mathbf{v} + 18\mathbf{v}^{-1} + 12\mathbf{v}^{-3} + 5\mathbf{v}^{-5} + \mathbf{v}^{-7}\right)\theta_d \\ + \left(\mathbf{v}^5 + 4\mathbf{v}^3 + 7\mathbf{v} + 7\mathbf{v}^{-1} + 4\mathbf{v}^{-3} + \mathbf{v}^{-5}\right)\theta_u \\ + \left(\mathbf{v}^6 + 5\mathbf{v}^4 + 11\mathbf{v}^2 + 14 + 11\mathbf{v}^{-2} + 5\mathbf{v}^{-4} + \mathbf{v}^{-6}\right)\theta_{121232123565} \end{aligned}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

◆ Back

$$\begin{aligned} t_d t_d &= \\ \left( \mathbf{v}^7 + 5\mathbf{v}^5 + 12\mathbf{v}^3 + 18\mathbf{v} + 18\mathbf{v}^{-1} + 12\mathbf{v}^{-3} + 5\mathbf{v}^{-5} + \mathbf{v}^{-7} \right) \theta_d \\ &+ \left( \mathbf{v}^5 + 4\mathbf{v}^3 + 7\mathbf{v} + 7\mathbf{v}^{-1} + 4\mathbf{v}^{-3} + \mathbf{v}^{-5} \right) \theta_u \\ &+ \left( \mathbf{v}^6 + 5\mathbf{v}^4 + 11\mathbf{v}^2 + 14 + 11\mathbf{v}^{-2} + 5\mathbf{v}^{-4} + \mathbf{v}^{-6} \right) \theta_{121232123565} \end{aligned}$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

**∢** Back

$$t_{d}t_{d} = (v^{7} + 5v^{5} + 12v^{3} + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_{d} + (v^{5} + 4v^{3} + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_{u} + (v^{6} + 5v^{4} + 11v^{2} + 14 + 11v^{-2} + 5v^{-4} + v^{-6})\theta_{121232123565}$$

Bigger friends.

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

Graph:

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$



$$t_d t_d = (v^7 + 5v^5 + 12v^3 + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_d + (v^5 + 4v^3 + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_u$$

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$

**◀** Back

$$t_d t_d = (v^7 + 5v^5 + 12v^3 + 18v + 18v^{-1} + 12v^{-3} + 5v^{-5} + v^{-7})\theta_d + (v^5 + 4v^3 + 7v + 7v^{-1} + 4v^{-3} + v^{-5})\theta_u$$

Killed in the limit  $v \to \infty$ .

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$



$$t_d t_d = t_d$$

Looks much simpler.

Graph:

$$1 - 2 - 3 - 4 - 5 - 6$$

Elements (shorthand  $s_i = i$ ):

$$d = d^{-1} = 132123565, \ u = u^{-1} = 12132123565.$$



## Example (SAGE; Type $B_6$ ).

Up to  $\mathbb{N}$ -equivalence: five left cell modules, five right cell modules, one two-sided cell bimodule, three H subalgebras:

$$L = \begin{bmatrix} 4_{5,5} & 1_{5,5} & 1_{5,20} & 2_{5,25} & 2_{5,25} \\ 1_{5,5} & 4_{5,5} & 1_{5,20} & 2_{5,25} & 2_{5,25} \\ 1_{20,5} & 1_{20,5} & 4_{20,20} & 2_{20,25} & 2_{20,25} \\ 2_{25,5} & 2_{25,5} & 2_{25,20} & 4_{25,25} & 1_{25,25} \\ 2_{25,5} & 2_{25,5} & 1_{25,20} & 1_{25,25} & 4_{25,25} \\ 1_{5,5} & 4_{5,5} & 1_{5,20} & 2_{5,25} & 2_{5,25} \\ 1_{20,5} & 1_{20,5} & 4_{20,20} & 2_{20,25} & 2_{20,25} \\ 2_{25,5} & 2_{25,5} & 2_{25,20} & 4_{25,25} & 1_{25,25} \\ 2_{25,5} & 2_{25,5} & 2_{25,20} & 4_{25,25} & 1_{25,25} \\ 2_{25,5} & 2_{25,5} & 2_{25,20} & 1_{25,25} & 4_{25,25} \end{bmatrix}$$

$$\mathsf{R} = \begin{bmatrix} \mathbf{4}_{5,5} & \mathbf{1}_{5,5} & \mathbf{1}_{5,20} & \mathbf{2}_{5,25} & \mathbf{2}_{5,25} \\ \mathbf{1}_{5,5} & \mathbf{4}_{5,5} & \mathbf{1}_{5,20} & \mathbf{2}_{5,25} & \mathbf{2}_{5,25} \\ \mathbf{1}_{20,5} & \mathbf{1}_{20,5} & \mathbf{4}_{20,20} & \mathbf{2}_{20,25} & \mathbf{2}_{20,25} \\ \mathbf{2}_{25,5} & \mathbf{2}_{25,5} & \mathbf{2}_{25,20} & \mathbf{4}_{25,25} & \mathbf{1}_{25,25} \\ \mathbf{2}_{25,5} & \mathbf{2}_{25,5} & \mathbf{2}_{25,20} & \mathbf{1}_{25,25} & \mathbf{4}_{25,25} \\ \end{bmatrix}$$

$$\mathsf{H} = \begin{bmatrix} \mathbf{4}_{5,5} & \mathbf{1}_{5,5} & \mathbf{1}_{5,20} & \mathbf{2}_{5,25} & \mathbf{2}_{5,25} \\ \mathbf{1}_{5,5} & \mathbf{4}_{5,5} & \mathbf{1}_{5,20} & \mathbf{2}_{5,25} & \mathbf{2}_{5,25} \\ \mathbf{1}_{20,5} & \mathbf{1}_{20,5} & \mathbf{4}_{20,20} & \mathbf{2}_{20,25} & \mathbf{2}_{20,25} \\ \mathbf{2}_{25,5} & \mathbf{2}_{25,5} & \mathbf{2}_{25,20} & \mathbf{4}_{25,25} & \mathbf{1}_{25,25} \\ \mathbf{2}_{25,5} & \mathbf{2}_{25,5} & \mathbf{2}_{25,20} & \mathbf{4}_{25,25} & \mathbf{1}_{25,25} \\ \mathbf{2}_{25,5} & \mathbf{2}_{25,5} & \mathbf{2}_{25,20} & \mathbf{1}_{25,25} & \mathbf{4}_{25,25} \end{bmatrix}$$

**Fact.** The three  $\mathbb{N}$ -algebras  $J_{\infty}^{\mathsf{H}}(W)$  are all "categorical Morita equivalent". (They have the same number of transitive  $\mathbb{N}$ -modules.)

$$\mathbf{M} = \mathbb{C}\langle 1, 2, 3 \rangle$$

$$\begin{array}{lll} \theta_{\rm s} \leadsto \begin{pmatrix} {\rm v} + {\rm v}^{-1} & 0 & 1 \\ 0 & {\rm v} + {\rm v}^{-1} & 1 \\ 0 & 0 & 0 \end{pmatrix} & \theta_{\rm t} \leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & {\rm v} + {\rm v}^{-1} \end{pmatrix} \\ \\ \theta_{\rm sts} \leadsto \begin{pmatrix} 0 & {\rm v} + {\rm v}^{-1} & 1 \\ {\rm v} + {\rm v}^{-1} & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} & \theta_{\rm tst} \leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & {\rm v} + {\rm v}^{-1} \end{pmatrix} \\ \\ \theta_{\rm ts} \leadsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & {\rm v} + {\rm v}^{-1} \end{pmatrix} & \theta_{\rm st} \leadsto \begin{pmatrix} 1 & 1 & {\rm v} + {\rm v}^{-1} \\ 1 & 1 & {\rm v} + {\rm v}^{-1} \\ 0 & 0 & 0 \end{pmatrix} \end{array}$$

$$\mathbf{M} = \mathbb{C}\langle 1, 2, 3 \rangle$$

$$\mathrm{M}=\mathbb{C}\langle 1,2,3\rangle$$



$$t_{\rm s} \sim egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

$$t_{ exttt{sts}} \leadsto egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

$$t_{\rm ts} \sim egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 1 & 1 & 0 \end{pmatrix}$$

$$t_{t} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$t_{ t tst} \sim egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$t_{st} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{Example.}$$

$$t_{\mathrm{st}}t_{\mathrm{ts}} = t_{\mathrm{s}} + t_{\mathrm{sts}}$$

$$[L_{1}][L_{1}] = [L_{0}] + [L_{2}]$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

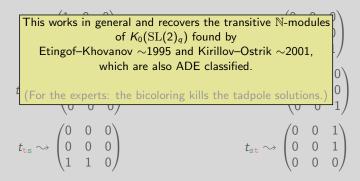
$$t_{\mathrm{ts}} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

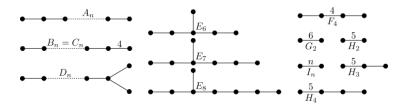
$$t_{\mathrm{st}} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M = \mathbb{C}\langle 1, 2, 3 \rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \qquad 3 \qquad 2$$





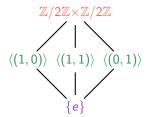
**Figure:** The connected Coxeter diagrams of finite type. The finite Weyl groups are of type A, B = C, D, E, F and G.

# Example: Hecke algebras as non-semisimple fusion rings (Lusztig ${\sim}1984$ ).

**4** Back

## Example ( $G = \mathbb{Z}/2 \times \mathbb{Z}/2$ ).

Subgroups, Schur multipliers and 2-simples.

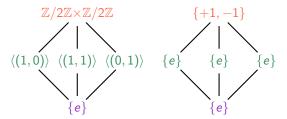


In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

## Example ( $G = \mathbb{Z}/2 \times \mathbb{Z}/2$ ).

Subgroups, Schur multipliers and 2-simples.

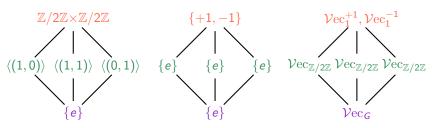


In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

## Example ( $G = \mathbb{Z}/2 \times \mathbb{Z}/2$ ).

Subgroups, Schur multipliers and 2-simples.



In particular, there are two categorifications of the trivial module, and the rank sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.

## Example (SAGE; Type $B_6$ ).

Reducing from 46080 to 14500 to 4:

|      | <b>4</b> <sub>5,5</sub>  | <b>1</b> <sub>5,5</sub>  | <b>1</b> <sub>5,20</sub>  | <b>2</b> <sub>5,25</sub>  | <b>2</b> <sub>5,25</sub>  |
|------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
|      | 15,5                     | <b>4</b> <sub>5,5</sub>  | 1 <sub>5,20</sub>         | <b>2</b> <sub>5,25</sub>  | <b>2</b> <sub>5,25</sub>  |
| LR = | 1 <sub>20,5</sub>        | 1 <sub>20,5</sub>        | 4 <sub>20,20</sub>        | <b>2</b> <sub>20,25</sub> | <b>2</b> <sub>20,25</sub> |
|      | <b>2</b> <sub>25,5</sub> | <b>2</b> <sub>25,5</sub> | <b>2</b> <sub>25,20</sub> | <b>4</b> <sub>25,25</sub> | <b>1</b> <sub>25,25</sub> |
|      | <b>2</b> <sub>25,5</sub> | <b>2</b> <sub>25,5</sub> | <b>2</b> <sub>25,20</sub> | 1 <sub>25,25</sub>        | <b>4</b> <sub>25,25</sub> |

$$\mathscr{J}_{\infty}^{\mathsf{H}} {=} \mathcal{V} \mathrm{ec}_{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}},$$

rank sequence: 1, 1, 2, 2, 2, 4.

In particular, there is one non-cell 2-simple: one 2 is missing.



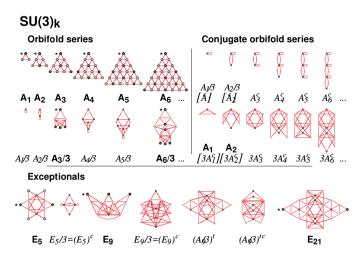


Figure: "Subgroups" of  $SU(3)_q$ .

(Picture from "The classification of subgroups of quantum SU(N)", Ocneanu  $\sim$ 2000.)

**4** Back