The double centralizer theorem categorified is...?

Or: Two different and yet similar answers
Daniel Tubbenhauer

$\mathrm{A} \cong \mathcal{E} \mathrm{nd}_{\mathcal{E} \mathrm{nd}_{\mathrm{A}}(\mathrm{M})}(\mathrm{M})$

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang
January 2021

Self-injective \Leftrightarrow projectives=injectives, faithful \Leftrightarrow only 0 acts as zero.

One version of the double centralizer theorem (DCT)

The DCT (Schur $\sim 1901+1927$, Thrall ~ 1947, Morita ~ 1958).

Let A be a self-injective, finite-dimensional algebra, and M be a finite-dimensional, faithful A-module. Then there is a canonical algebra map

$$
\operatorname{can}: \mathrm{A} \rightarrow \mathcal{E} \operatorname{nd}_{\mathcal{E n d}_{\mathrm{A}}(\mathrm{M})}(\mathrm{M})
$$ which is an isomorphism.

- Bad news. We can not create many new algebras out of (A, M). (Same for the categorified versions.)
- Good news. We can A and $\mathrm{B}=\mathcal{E}_{\mathrm{nd}}^{\mathrm{A}}$ (M) against each other.
- Good news. There are plenty of Cermples which we know and like.

Question. What is a categorical analog of the DCT?

One version of the double centralizer theorem (DCT)

The DCT (Schur $\sim 1901+1927$, Thrall ~ 1947, Morita ~ 1958).
Let A be a self-injective, finite-dimensional algebra, and M be a finite-dimensional, faithful A-module. Then there is a canonical algebra map

$$
\operatorname{can}: \mathrm{A} \rightarrow \mathcal{E}^{\operatorname{nd}} \mathcal{E n d}_{\mathrm{A}}(\mathrm{M})(\mathrm{M})
$$

which is an isomorphism.

- Bad news. We can not create many new algebras out of (A, M). (Same for the categorified versions.)
- Good news. We can A and $\mathrm{B}=\mathcal{E}^{\operatorname{nd}} \mathrm{A}_{\mathrm{A}}(\mathrm{M})$ against each other.
- Good news. There are plenty of ceampes which we know and like. Question. What is a categorical analog of the DCT?

Two potential answers.

Goal. Explain the abelian (easier) answer, then the additive (harder). Well, actually I am going to skip the additive one because its too much of a mouthful for today.

Two potential answers.

Goal. Explain the abelian (easier) answer, then the additive (harder). Well, actually I am going to skip the additive one because its too much of a mouthful for today.

Abelian DCT (Etingof-Ostrik ~2003).

Let \mathscr{A} be a finite, pivotal multitensor category and M a finite, faithful \mathscr{A}-module. Then there is a canonical monoidal functor

$$
\operatorname{can}: \mathscr{A} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E}^{\mathrm{nd}_{\mathscr{A}}}}(\mathrm{M})(\mathrm{M}),
$$

which is an equivalence.

Additive DCT (~2020).

Let \mathscr{A} be a monoidal fiat category, \mathcal{J} a two-sided cell and M a simple transitive $\mathscr{A}_{\mathcal{J}}$-module with apex \mathcal{J}. Then there is a canonical monoidal functor

$$
\operatorname{can}: \mathscr{A}_{\mathcal{J}} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E}_{\operatorname{nd}_{\mathscr{A}_{\mathcal{J}}}(\mathrm{M})}(\mathrm{M}), ~}
$$

which is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to

Do not worry: I will applin all the words, at least in the abelian case! The second statement already sounds more complicated, right?

One version of the double centralizer theorem (DCT)
 Then there is a cananical algebra map

which is an isomorphism.

- Bad news. We can not create many new algebras out of (A,M). [samn for
- Good news. We can A and $\mathrm{B}-\varepsilon_{\mathrm{nd}}^{\mathrm{N}}(\mathrm{m})$ aginst each other
- Good news. There are plenty of which we know and be.

Question. What is a categarical analog of the DCTT

A knows B, and B knows A, right?

$$
A-M o d \approx B-M o d
$$

$\exists M$ progenerator such that $A \approx \varepsilon \operatorname{nidn}_{n}(M)$
TM progenerator such that $\mathrm{B} \simeq \varepsilon_{\mathrm{Did}}^{\mathcal{N}}(\mathrm{M})$ ∞

The DCT goss tand in -hand with classial Merith-theory
misimple example.

- - rect, and fix M - Vect , which is faithfu

Another semisimple example
- d - Vect $\epsilon_{\text {, and for }} \mathrm{M}$ - Vect, which is faithful

abelian example.

- $-\mathrm{f}-\mathrm{H}-\mathrm{A}$ od, and fix $\mathrm{M}-\mathrm{V}$ Vect, which is faithful.

$\infty \quad \omega$

Two potential answers.

Goal. Explain both answers: first the abelian (easiet), then the additive (harder).

Example $G-Z / 2 Z \times Z / 2 Z$ (Kiein four group).

KK is not of characteristic 2 , $K G$ is semisimple and additive-abelian. So let us have a look at characteristic 2 , where we have $\mathrm{KG} \approx \mathrm{K}|X, Y| /\left(X^{2}, Y^{2}\right)$
First, abelian:

- X and Y have to act as zero on each simple, so $K G$ has just K as a simple.
- KGG-Nod has just one velement.

hen additive

- Only X^{2} and Y^{2} have to act as zero on each indecomposable, and one can cook-up infinitaly many, eE.
- KG-A od has infinitely many yements
\cdots
of knows F, and Po knows -f. right

-	

Morita equivalence (Etingof-Ostrik ~2003).
Let $\mathcal{A}-$ Eudd $_{A}(\mathrm{M})$ for M a faithful, eact α)-module. Then
$\alpha-$ - mod \approx m-mod.
Example.
A - $\boldsymbol{v}_{\text {ect }}$ and P - G.Nod have the "same" module categories, which is a very non-trivial fact.

Abelian DCT (Etinggof-Ostrik \sim 2003).
Let of he a finite, pirtal multitensor cotegory and M arm there is a canonical monoidal functor
which is an equimalence.
Additive DCT (-2020).
Let od be a monoidal fat category, J a two-sided cell and M a simple trancitioe $\alpha^{\prime} \gamma$-module with apex \mathcal{J}. Then there is a canonical monoidal fumctoe
which is in equimalence when restricted to odld((\mathcal{J}) and corestricted to

Do not worry: I will ail the wards! For now just note that the second statement aiready sounds more complicated

Example (G.-.fod, ground field C).
Let . $\mathrm{d}-\mathrm{G}$. Acol, for G being a finite group. As . d is semsimple.
abelian-additive. Simples zer simple G-modules.

- For any $M, M \in d$, we have $n \notin \square \in d$
$g(m \otimes n)-g m \otimes g n$
for all $g \in G . m \in M, n \in$. There is a trivial module C
The regular . α-module $M: . d \rightarrow \&$ wal $(-d)$

- The decategorification is the regular $K_{0}(-\alpha)$-module.

0
 \qquad
Additive example (~ 2020).
$Y=Y(W, C)$ Soergel bimodules for W finite, the coimariant algebea zed over C, a two-sided cell and C_{J} the cell \mathscr{S}_{J}-module

- Additive DCT. We have

Ean equivemance (C_{a} restricted to aidi((\mathcal{J}) and corestricted to

- 'Endomorphismensatz'. We have

Where α_{0} is the $\delta_{\mathrm{Nal}_{\Delta j}}\left(\mathrm{C}_{j}\right) \simeq \alpha_{j}$

- Morita equivalence We have

$$
Y_{J} \leq \operatorname{stmod} \approx d_{J} s \text { stmod }
$$

One version of the double centralizer theorem (DCT)
The DCT (Schur $\sim 1901+$ 1927. Thrall ~ 1947, Morita $\sim 1958)$.
Let A be a sdffinjective, finite-dimensional a a getra, and M be a faithful A-module Then there is a cananical algebra map
$\operatorname{can}: \mathrm{A} \rightarrow \mathcal{E n d e n a t w}^{\mathrm{m}}(\mathrm{m})$
which is an isomorphism.

- Bad news. We can not create many new algebras out of (A,M). [samn for
- Good news. We can A and $\mathrm{B}-\varepsilon_{\mathrm{nd}}^{\mathrm{N}}(\mathrm{m})$ aginst each other
- Good news. There are plenty of which we know and be.

Question. What is a categarical analog of the DCTT

A knows B, and B knows A, right?

$$
A-M o d \approx B-M o d
$$

$\exists M$ progenerator such that $A \approx \varepsilon \operatorname{nidn}_{n}(M)$
TM progenerator such that $\mathrm{B} \simeq \varepsilon_{\mathrm{Did}}^{\mathcal{N}}(\mathrm{M})$ ∞

The DCT gois tand in -hand wath classial Meritu-becry.

a $-V$ ect, and fix $M-$ Vect , which is faithtur

emisimple example.

Another semisimple example.

- d - Vect $\epsilon_{\text {, and for }} \mathrm{M}$ - Vect, which is faithful

abelian example.

- $A^{\prime}-\mathrm{H} . \boldsymbol{A}$ od, and fix $\mathrm{M}-\mathrm{V}$ Vet, which is faithful.
 $\infty \quad \pi=$

Two potential answers.

Goal. Explain both answers: first the abelian (easiet), then the additive (harder).

Example $G-Z / 2 Z \times Z / 2 Z$ (Kicin four group).
If K is not of charatensitic $2, \mathrm{~K} G$ is semisimple and additive-abelian. So let us have a look at characteristic 2 , where we have $\mathrm{KG} \approx \mathrm{K}|X, Y| /\left(X^{2}, Y^{2}\right)$

First, abelian:

- X and Y have to act as zero on each simple, so $K G$ has just K as a simple.
- KGG-Nod has just one velement.

hen additive

- Only X^{2} and Y^{2} have to act as zero on each indecomposable, and one can cook-up infinitely many, e\&
- KG-Aod has infinitely many elements
\square
d knows 用, and 8 knows . d, right?

Morita equivalence (Etingof-Ostrik ~2003)

$-\alpha-$ mod \simeq m-mod.
Example.
d - $\boldsymbol{V}_{\text {ect, }}$ and P - G.Nod have the "same" module categroies, which is a yery non-trivial fact.

Abelian DCT (Etingof-Ostrik~2003).
Let of be a finite, pivotal multitensor categcon and M a faithful d-module. The there is a canonical monoidal functor
which is an equizalence.
Additive DCT (-2020).
Let s de a monoidal fat categery, \mathcal{J} a two-sided cell and M a simple transititiel $\alpha_{j} /$-module with apex \mathcal{J}. Then there is a canonical monoidal functoe
which is in equimalence when restricted to odld((\mathcal{J}) and corestricted to

Da not worry: I will ail the wards! For now just note that the second statement aiready sounds more complicated

Example (G.-.fod, ground field C).
Let . d - G. A ocl, for G being a finte group. As. d is semisimples.
abelian-additive. Simples zer simple G-modules.

- For any $M, M \in d$, we have $n \notin \square \in d$

$$
g(m ® n)-g m \& g^{n}
$$

for all $g \in G, m \in M, n \in M$. There is a trivial module C
The regular . α-module $M: . d \rightarrow E$ walc $(-d)$

- The decategorification is the regular $K_{0}(-\alpha)$-module.

0
of knows 舟, and © knows . α, right? \qquad
Additive example (~ 2020).
Y $=Y^{(}(\mathrm{W}, \mathrm{C})$ Soergel bimodules for W finite, the coimariant algeber zed over C ,
a two-sided cell and C_{J} the cell \mathscr{S}_{J}-module

- Additive DCT. We have

is an equivilence when restricted to aidil((\mathcal{J}) and corestricted to
Sidid

- 'Endomorphismensatz' We have

Where $\alpha_{\text {, }}$ is the $\delta_{\mathrm{Nal}_{\alpha_{j}}\left(\mathrm{C}_{j}\right) \simeq \alpha_{j}}$

- Morita equiarlence We have

$$
s_{J}-\operatorname{stmod} \approx d_{J} \text { stmod } .
$$

Thanks for your attention!

$$
\begin{aligned}
& \mathrm{A}-\mathcal{M o d} \simeq \mathrm{B}-\mathcal{M o d} \\
& \Leftrightarrow \\
& \exists \mathrm{M} \text { progenerator such that } \mathrm{A} \cong{\mathcal{E} \operatorname{nd}_{\mathrm{B}}(\mathrm{M})} \\
& \Leftrightarrow \\
& \exists \mathrm{M} \text { progenerator such that } \mathrm{B} \cong \mathcal{E}^{\operatorname{nd}_{\mathrm{A}}(\mathrm{M})} \text {. }
\end{aligned}
$$

A knows B, and B knows A, right?

$$
\begin{aligned}
& \mathrm{A}-\mathcal{M o d} \simeq \mathrm{B}-\mathcal{M o d} \\
& \Leftrightarrow \\
& \exists \mathrm{M} \text { progenerator such that } \mathrm{A} \cong \mathcal{E}^{\operatorname{nd}_{\mathrm{B}}(\mathrm{M})} \\
& \Leftrightarrow \\
& \exists \mathrm{M} \text { progenerator such that } \mathrm{B} \cong \mathcal{E} \operatorname{nd}_{\mathrm{A}}(\mathrm{M}) .
\end{aligned}
$$

A knows B, and B knows A, right?

If $\mathrm{A} \subset \mathcal{E} \operatorname{nd}_{\mathbb{K}}(\mathrm{M}), \mathrm{B}=\mathcal{E}^{\operatorname{nd}} \mathrm{A}_{\mathrm{A}}(\mathrm{M})$ and A is semisimple, then:

- $\mathrm{A}=\mathcal{E} \operatorname{nd}_{\mathrm{B}}(\mathrm{M})$;
- B is semisimple;
- As a $\mathrm{A} \otimes \mathrm{B}^{\text {op }}$-module we have

$$
\mathrm{M} \cong \bigoplus_{\text {simples of } A, B} \mathrm{AL}^{i} \otimes \mathrm{~L}^{i}{ }_{\mathrm{B}} .
$$

A knows B, and B knows A, right?

If $\mathrm{A} \subset \mathcal{E} \operatorname{nd}_{\mathbb{K}}(\mathrm{M}), \mathrm{B}=\mathcal{E}^{\operatorname{nd}} \mathrm{A}_{\mathrm{A}}(\mathrm{M})$ and A is semisimple, then:

- $\mathrm{A}=\mathcal{E} \operatorname{nd}_{\mathrm{B}}(\mathrm{M})$;
- B is semisimple;
- As a $\mathrm{A} \otimes \mathrm{B}^{\text {op }}$-module we have

$$
\mathrm{M} \cong \bigoplus_{\text {simples of } A, B} A^{L^{i}} \otimes L^{i}{ }_{B} .
$$

4 Back

Schur $\sim 1901+1927$.
The DCT goes hand-in-hand with classical Schur-Weyl duality.

A knows B, and B knows A, right?

If $\mathrm{M}=\mathrm{Ae}$ for $e^{2}=e, \mathrm{M}$ faithful and $\mathrm{B}=\mathcal{E}_{\mathrm{nd}}^{\mathrm{A}}$ (Ae), then:

- $\mathrm{B} \cong e \mathrm{Ae}$ and $\mathrm{A} \cong \mathcal{E}^{\mathrm{nd}_{e \mathrm{Ae}}(\mathrm{Ae}) \text {; }}$
- The B-simples are in bijection with A-simples N such that $\mathrm{Ne} \neq 0$;
- A is encoded in the (usually) much smaller algebra B.

A knows B, and B knows A, right?

If $\mathrm{M}=\mathrm{Ae}$ for $e^{2}=e, \mathrm{M}$ faithful and $\mathrm{B}=\mathcal{E}^{\operatorname{nd}_{\mathrm{A}}}(\mathrm{Ae})$, then:

- $\mathrm{B} \cong e \mathrm{Ae}$ and $\mathrm{A} \cong \mathcal{E}^{\mathrm{nd}_{e \mathrm{Ae}}(\mathrm{Ae}) \text {; }}$
- The B-simples are in bijection with A-simples N such that $\mathrm{Ne} \neq 0$;
- A is encoded in the (usually) much smaller algebra B.

Green ~ 1980.

The DCT applies for Schur-Weyl in the non-semisimple case.
Soergel ~1990.

The DCT applies in category \mathcal{O}.

Example. (Looks silly, but is prototypical.)

- $A=\mathbb{K}$, and fix $M=\mathbb{K}^{n}$, which is faithful.

- $\mathrm{M} \cong \mathbb{K} \otimes \mathbb{K}^{n}$, perfect matching of isotypic components.

Non-example. (Faithfulness missing.)

- $\mathrm{A}=\mathbb{K}[X] /\left(X^{3}\right)$, and fix $\mathrm{M}=\mathbb{K}^{2}, X \mapsto\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, which is not-faithful.
- $\mathrm{B}=\mathcal{E}^{\operatorname{nd}_{\mathbb{K}}[X] /\left(X^{3}\right)}\left(\mathbb{K}^{2}\right) \cong \mathbb{K}[X] /\left(X^{2}\right)$ and $\mathcal{E} \operatorname{nd}_{\mathbb{K}[X] /\left(X^{2}\right)}\left(\mathbb{K}^{2}\right) \cong \mathbb{K}[X] /\left(X^{2}\right)$.
- $\mathrm{M} \cong \mathbb{K}^{2} \otimes \mathbb{K}$ as a $\mathbb{K}[X] /\left(X^{3}\right)$-module, $\mathrm{M} \cong \mathbb{K} \otimes \mathbb{K}^{2}$ as a $\mathbb{K}[X] /\left(X^{2}\right)$-module.

Non-example. (Self-injectivity missing.)

- $A=\left(\begin{array}{c}\mathbb{K} \\ 0 \\ \mathbb{K} \\ \mathbb{K}\end{array}\right)$, and fix $M=\mathbb{K}^{2}$, which is faithful.

$-\mathrm{M} \cong \mathbb{K}^{2} \otimes \mathbb{K}$ as a $\left(\begin{array}{c}\mathbb{K} \\ 0 \\ \mathbb{K}\end{array}\right)$-module, $\mathrm{M} \cong \mathbb{K} \otimes \mathbb{K}^{2}$ as a $\operatorname{Mat}_{2 \times 2}(\mathbb{K})$-module.

Example (Schur $\sim 1901+1927$, Green ~ 1980).

- $\mathrm{A}=\mathbb{K}\left[S_{d}\right]$, and fix $\mathrm{M}=\left(\mathbb{K}^{n}\right)^{\otimes d}$ for $n \geq d$, which is faithful.
 $\mathcal{E} \operatorname{nd}_{S(n, d)}\left(\left(\mathbb{K}^{n}\right)^{\otimes d}\right) \cong \mathbb{K}\left[S_{d}\right]$.
- $\mathbb{K}\left[S_{d}\right] \cong e S(n, d) e$ and the $\mathbb{K}\left[S_{d}\right]$-simples are in bijection with $S(n, d)$-simples N such that $\mathrm{Ne} \neq 0$.

Example (Soergel's Struktursatz ~1990).

- A a finite-dimensional algebra for $\mathcal{O}_{0}\left(\mathfrak{g}_{\mathbb{C}}\right)$. Fix $\mathrm{M}=\mathrm{Ae}$, which is faithful for the right choice of idempotent $e_{w_{0}}$ (the big projective).
- $\mathrm{B}=\mathcal{E} \operatorname{nd}_{\mathrm{A}}\left(\mathrm{Ae}_{w_{0}}\right) \cong e_{w_{0}} \mathrm{~A} e_{w_{0}}$ (Soergel's Endomorphismensatz ~1990:
$\mathrm{B}=$ coinvariant algebra) and $\mathcal{E} \mathrm{nd}_{e_{w_{0}} \mathrm{~A} e_{w_{0}}}\left(\mathrm{Ae}_{w_{0}}\right) \cong \mathrm{A}$.
- A can be recovered from $e_{w_{0}} \mathrm{Ae}_{w_{0}}$, although A is much more complicated. Explicitly, for $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s l}_{2}$ one gets e.g.

$$
\mathrm{A}=1 \underset{b}{\stackrel{a}{\rightleftarrows}} s /(a \mid b=0), \quad \mathrm{B} \cong \mathbb{C}\{s, b \mid a\}, \quad A s=\quad \longleftarrow_{b} s
$$

Example $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic $2, \mathbb{K} G$ is semisimple and additive=abelian. So let us have a look at characteristic 2 , where we have $\mathbb{K} G \cong \mathbb{K}[X, Y] /\left(X^{2}, Y^{2}\right)$

First, abelian:

- X and Y have to act as zero on each simple, so $\mathbb{K} G$ has just \mathbb{K} as a simple.
- $\mathbb{K} G-\mathscr{M}$ od has just one element (in the periodic table sense).

Then additive:

- Only X^{2} and Y^{2} have to act as zero on each indecomposable, and one can cook-up infinitely many, e.g.

- $\mathbb{K} G-\mathscr{M}$ od has infinitely many elements (in the periodic table sense).

Example $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic $2, \mathbb{K} G$ is semisimple and additive=abelian. So let us have a look at characteristic 2 , where we have $\mathbb{K} G \cong \mathbb{K}[X, Y] /\left(X^{2}, Y^{2}\right)$

First, abelian:
Theorem (Higman ~1953).
For char(K) $=p, \mathbb{K} G-\mathscr{M}$ od is...
...always a finite, pivotal multitensor category.
\ldots monoidal fiat if and only if $(p \nmid|G|$ or the p-Sylow subgroup of G is cyclic).

- $\mathbb{K} G-\mathscr{M}$ od has infinitely many elements (in the periodic table sense).

Example ($G-\mathscr{M}$ od, ground field \mathbb{C}).

- Let $\mathscr{A}=G-\mathscr{M}$ od, for G being a finite group. As \mathscr{A} is semisimple, abelian=additive. Simples are simple G-modules.
- For any $\mathrm{M}, \mathrm{N} \in \mathscr{A}$, we have $\mathrm{M} \otimes \mathrm{N} \in \mathscr{A}$:

$$
g(m \otimes n)=g m \otimes g n
$$

for all $g \in G, m \in \mathrm{M}, n \in \mathrm{~N}$. There is a trivial module \mathbb{C}.

- The regular \mathscr{A}-module $\mathrm{M}: \mathscr{A} \rightarrow \mathscr{E} \mathrm{nd}_{\mathbb{C}}(\mathscr{A})$:

- The decategorification is the regular $K_{0}(\mathscr{A})$-module.

Example ($G-\mathscr{M}$ od, ground field \mathbb{C}).

- Let $K \subset G$ be a subgroup.
- K-Mod is a \mathscr{A}-module, with action

$$
\mathcal{R e s}_{K}^{G} \otimes_{-}: G-\mathscr{M} \text { od } \rightarrow \mathscr{E} \operatorname{nd}_{\mathbb{C}}(K-M o d),
$$

which is indeed an action because $\operatorname{Res}_{K}^{G}$ is a \otimes-functor.

- The decategorifications are $K_{0}(\mathscr{A})$-modules.

Left partial preorder \geq_{L} on indecomposable objects by
$\mathrm{F} \geq_{L} \mathrm{G} \Leftrightarrow$ there exists H such that F is isomorphic to a direct summand of HG.
Left cells \mathcal{L} are the equivalence classes with respect to \geq_{L}, on which \geq_{L} induces a partial order. Similarly, right and two-sided, denoted by \mathcal{R} and \mathcal{J} respectively. Cell \mathscr{A}-modules associated to \mathcal{L} are:

$$
\operatorname{add}\left(\left\{\mathrm{F} \mid \mathrm{F} \geq_{L} \mathcal{L}\right\}\right) / \text { "kill } \geq_{L} \text {-bigger stuff". }
$$

Examples.

- Cells in \mathscr{A} give \otimes-ideals.
- If \mathscr{A} is semisimple, then FF^{\star} and $\mathrm{F}^{\star} \mathrm{F}$ both contain the identity, so cell theory is trivial. The cell \mathscr{A}-module is the regular \mathscr{A}-module.
- For Soergel bimodules cells are Kazhdan-Lusztig cells and cell modules categorify Kazhdan-Lusztig cell modules.
- For categorified quantum groups you can push everything to cyclotomic KLR algebras, and cell modules categorify simple modules.

A finite, pivotal multitensor category \mathscr{A} :

- Basics. \mathscr{A} is \mathbb{K}-linear and monoidal, \otimes is \mathbb{K}-bilinear. Moreover, \mathscr{A} is abelian (this implies idempotent complete).
- Involution. \mathscr{A} is pivotal, e.g. $\mathrm{F}^{\star \star} \cong \mathrm{F}$.
- Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck ring gives a finite-dimensional algebra with involution.

A monoidal fiat category \mathscr{A} :

- Basics. \mathscr{A} is \mathbb{K}-linear and monoidal, \otimes is \mathbb{K}-bilinear. Moreover, \mathscr{A} is additive and idempotent complete.
- Involution. \mathscr{A} is pivotal, e.g. $\mathrm{F}^{\star \star} \cong \mathrm{F}$.
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

A finite, pivotal multitensor category \mathscr{A} :

- Basics. \mathscr{A} is \mathbb{K}-linear and monoidal, \otimes is \mathbb{K}-bilinear. Moreover, \mathscr{A} is abelian (this implies idempotent complete).
- Involution. \mathscr{A} is pivotal, e.g. $\mathrm{F}^{\star \star} \cong \mathrm{F}$.
- Finiteness. Hom-spaces are finite-dimensional, the number of simples is

The crucial difference...

...is what we like to consider as "elements" of our theory:
Abelian prefers simples, additive prefers indecomposables.

This is a - huge difference - for example in the fiat case there is simply no Schur's lemma.

- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

A finite, pivotal multitensor category \mathscr{A} :

- Basics. \mathscr{A} is \mathbb{K}-linear and monoidal, \otimes is \mathbb{K}-bilinear. Moreover, \mathscr{A} is abelian (this implies idempotent complete).
- Involution d is nivntal $\rho \sigma \quad F * * \simeq F$

Fi
fir
firelian examples.
Finite Serre quotients of $G-\mathscr{M}$ od for G being a reductive group.
algebra with involution.

A finite, pivotal multitensor category \mathscr{A} :
\rightarrow Basics. \mathscr{A} is \mathbb{K}-linear and monoidal, \otimes is \mathbb{K}-bilinear. Moreover, \mathscr{A} is abelian (this implies idempotent complete).

- Involution. A is pivotal, e.g. $\mathrm{F}^{\star \star} \cong \mathrm{F}$.
- Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck ring gives a finite-dimensional al Why I like the additive case. All the example I know from my youth are not abelian, but only additive:
- B

Diagram categories, categorified quantum group and their Schur quotients, Soergel bimodules, tilting module categories etc.

And these only fit into the fiat and not the tensor framework.

- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

Abelian. An \mathscr{A}-module M:

- Basics. M is \mathbb{K}-linear and abelian. The action is a monoidal functor M: $\mathscr{A} \rightarrow \mathscr{E} \operatorname{nd}_{\mathbb{K}, l e x}(M)$ (K \mathbb{K}-linear, left exactness).
- Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck group gives a finite-dimensional $G_{0}(\mathscr{A})$-module.

Additive. An \mathscr{A}-module M :

- Basics. M is \mathbb{K}-linear, additive and idempotent complete. The action is a monoidal functor M: $\mathscr{A} \rightarrow \mathscr{E} \mathrm{nd}_{\mathbb{K}}(\mathrm{M})$ (K-linear).
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck group gives a finite-dimensional $K_{0}(\mathscr{A})$-module.

Abelian. An \mathscr{A}-module M :

- Basics. M is \mathbb{K}-linear and abelian. The action is a monoidal functor $\mathrm{M}: \mathscr{A} \rightarrow \mathscr{E}_{\text {nd }_{\mathbb{K}}, \text { lex }}(\mathrm{M})$ (K -linear, left exactness).
- Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck group gives a finite-dimensional

Example.

Everything is constructed such that the regular \mathscr{A}-module \mathscr{A} exists.

Smarter version of the regular \mathscr{A}-module are cell \mathscr{A}-modules.

- Fir But of course there are many more examples. indecomposables is tinite.
- Categorification. The additive Grothendieck group gives a finite-dimensional $K_{0}(\mathscr{A})$-module.

Semisimple example.

- $\mathcal{A}=\mathscr{V}$ ect, and fix $\mathrm{M}=\mathrm{Vect}^{\oplus n}$, which is faithful.
- $\mathscr{B}=\mathscr{E}_{\mathrm{nd}}^{\mathscr{V} \text { ect }}\left(\mathrm{Vect}^{\oplus n}\right) \cong \mathscr{M}^{\text {at }}{ }_{n \times n}(\mathscr{V} \mathrm{ect})$ and

Another semisimple example.

- $\mathscr{A}=\mathscr{V}_{\text {ect }}^{G}$, and fix $M=$ Vect, which is faithful.
- $\mathscr{B}=\mathscr{E}_{\text {nd }_{V_{e c t}}}($ Vect $) \cong G-\mathscr{M}$ od and \mathscr{E} nd $_{G-\mathscr{M} \text { od }}($ Vect $) \cong \mathscr{V}^{\operatorname{ect}}{ }_{G}$.

An abelian example.

- $\mathscr{A}=\mathrm{H}-\mathscr{M}$ od, and fix $\mathrm{M}=$ Vect, which is faithful.
- $\mathscr{B}=\mathscr{E} \operatorname{nd}_{\mathrm{H}-\mathscr{M} \text { od }}($ Vect $) \cong \mathrm{H}^{\star}-\mathscr{M}$ od and $\mathscr{E} \mathrm{nd}_{\mathrm{H}^{\star}-\mathscr{M} \text { od }}($ Vect $) \cong \mathrm{H}-\mathscr{M}$ od.

```
A knows }\mathscr{B}\mathrm{ , and }\mathscr{B}\mathrm{ knows }\mathscr{A}\mathrm{ , right?
```

Morita equivalence (Etingof-Ostrik ~2003).
Let $\mathscr{B}=\mathscr{E} \operatorname{nd}_{\mathscr{A}}(\mathrm{M})$ for M a faithful, exact \mathscr{A}-module. Then

$$
\mathscr{A}-\bmod \simeq \mathscr{B}-\bmod .
$$

Example.

$\mathscr{A}=\mathscr{V} \operatorname{ect}_{G}$ and $\mathscr{B}=G-\mathscr{M}$ od have the "same" module categories, which is a very non-trivial fact.

Additive example (~ 2020).

 $\mathscr{S}=\mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C}, \mathcal{J} a two-sided cell and $\mathrm{C}_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$-module.- Additive DCT. We have

$$
\operatorname{can}: \mathscr{S}_{\mathcal{J}} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E} \operatorname{nd}_{\mathscr{J}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right)
$$

is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to
$\mathscr{E}_{\mathrm{nd}_{\tilde{n_{\mathrm{nd}}^{\mathscr{A}_{\mathcal{J}}}}}^{\mathrm{inj}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right)$.

- "Endomorphismensatz". We have

$$
\mathscr{E}_{\operatorname{nd}_{\mathscr{A}}}\left(\mathrm{C}_{\mathcal{J}}\right) \simeq \mathscr{A}_{\mathcal{J}}
$$

where $\mathscr{A}_{\mathcal{J}}$ is the asymptotic category (semisimple!).

- Morita equivalence. We have

$$
\mathscr{S}_{\mathcal{J}} \text {-stmod } \simeq \mathscr{A}_{\mathcal{J}} \text {-stmod }
$$

This looks weaker than the abelian DCT, but this is what we can prove right now. Anyway, let explain why it is weaker, which finally explains all words in the additive DCT.

Additive example (~ 2020).

$\mathscr{S}=\mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C}, \mathcal{J} a two-sided cell and $\mathrm{C}_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$-module.

- Additive DCT. We have

$$
\operatorname{can}: \mathscr{S}_{\mathcal{J}} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E}_{\mathrm{nd}_{\mathscr{J}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right), ~}
$$

is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to
$\mathscr{E}_{\mathrm{nd}}^{\tilde{E}_{\mathrm{nd} \mathscr{\varkappa}_{\mathcal{J}}}^{\mathrm{inj}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right)$.
To make $\mathrm{C}_{\mathcal{J}}$ faithful,
quotient \mathscr{S} by "bigger stuff"
and get $\mathscr{S}_{\mathcal{J}}$.
$\boldsymbol{\sigma}_{1} \mathscr{A}_{\mathcal{I}}\left(L_{\mathcal{J}}\right) \simeq \mathscr{A}_{\mathcal{J}}$
$\operatorname{add}(\mathcal{J})$: Since "lower stuff" still acts pretty much in an uncontrolable way, restrict to only things in \mathcal{J}.

- Vionila equivalemice. vve llave

In this case you could also consider projective endofunctors.

Additive example (~ 2020).
$\mathscr{S}=\mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C}, \mathcal{J} a two-sided cell and $\mathrm{C}_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$-module.

- Additive DCT. We have

$$
\operatorname{can}: \mathscr{S}_{\mathcal{J}} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E n d}_{\mathscr{S}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right)
$$

is an equivalence $\dot{A}_{\mathcal{J}}$ is the "degree zero part" of $\mathscr{S}_{\mathcal{J}}$. tricted to
$\mathscr{E}_{\mathrm{nd}_{\mathscr{E} \mathrm{nd}_{\mathcal{A}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}^{\mathrm{inj}}\left(\mathrm{C} \mathscr{A}_{\mathcal{A}} \text { is the crystal associated to } \mathscr{S}_{\mathcal{J}} \text {." }\right.}$

- "Endomorphismensatz". We have

$$
\mathscr{E}_{\operatorname{nd}_{\mathscr{A}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right) \simeq \mathscr{A}_{\mathcal{J}}}
$$

where $\mathscr{A}_{\mathcal{J}}$ is the asymptotic category (semisimple!).

- Morita equivalence. We have

$$
\mathscr{S}_{\mathcal{J}} \text {-stmod } \simeq \mathscr{A}_{\mathcal{J}} \text {-stmod }
$$

Additive example (~ 2020).
$\mathscr{S}=\mathscr{S}(W, \mathbb{C})$ Soergel bimodules for W finite, the coinvariant algebra and over \mathbb{C}, \mathcal{J} a two-sided cell and $\mathrm{C}_{\mathcal{J}}$ the cell $\mathscr{S}_{\mathcal{J}}$-module.

- Additive DCT. We have

$$
\operatorname{can}: \mathscr{S}_{\mathcal{J}} \rightarrow \mathscr{E} \operatorname{nd}_{\mathscr{E} \operatorname{nd}_{\mathscr{J}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}\left(\mathrm{C}_{\mathcal{J}}\right)
$$

is an equivalence when restricted to $\operatorname{add}(\mathcal{J})$ and corestricted to
$\mathscr{E n d}_{\tilde{E} \mathrm{nd}_{\mathscr{A}_{\mathcal{J}}}\left(\mathrm{C}_{\mathcal{J}}\right)}^{\mathrm{inj}}\left(\mathrm{C}_{\mathcal{J}}\right)$.

- "Endomorphismensatz". We have

where \mathscr{A}| $\begin{array}{c}\text { stmod are simple transitive modules. } \\ \text { The analogs of categories of simple modules downstairs. }\end{array}$ |
| :---: |

- Morita equivalence. We have

$$
\mathscr{S}_{\mathcal{J}} \text {-stmod } \simeq \mathscr{A}_{\mathcal{J}} \text {-stmod }
$$

