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The setup in a nutshell

Start. A Coxeter system

The Hecke algebra H
The Hecke category a.k.a.

Soergel bimodules S

Has a Kazhdan–
Lusztig (KL) basis

Indecomposable objects

Cell theory + an
asymptotic limit

Output. Parametriza-
tion of simples

Output. Parametriza-
tion of 2-simples

Categorification

Categorification

Morally a categorification!
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Hecke algebras for finite Coxeter groups

W = 〈si | s2
i = 1, braid relations〉 v-deform−−−−−→ H Hecke algebra over Z[v, v−1]

Examples

I tetrahedron ! symmetric group S4 ! A3 Hecke algebra

I cube/octahedron ! Weyl group (Z/2Z)3 n S3 ! B3 Hecke algebra

s :

•

•
, t :

•

, u :

•
I dodeca-/icosahedron ! exceptional Coxeter group ! H3 Hecke algebra

Goal. Classify simple modules in a concise way
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Lusztig∼1984. Use cells and a v→0 limit

(a) The KL basis gives rise to (two-sided) cells J and a cell order <J

(b) Every simple H-module have an apex, an associated cell J , which is
<J -maximal with respect to the KL basis not acting as zero

(c) There exists a Z-semisimple algebra AJ associated to J

Theorem.
{

equivalence classes of simples

of H with apex J

}
1:1←→

{
equivalence classes of simples

of AJ

}

Examples

AJ is the v→0 limit
On the categorical level it comes up very naturally

Small problem. AJ is not so easy to compute

But on the categorical level the statement gets better, so we do not need to worry
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras

Examples of 2-representations

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

tilting modules, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module

Applications of 2-representations

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry

Classical

An A module is called simple (the “elements”)

if it has no A-stable ideals

We have the Jordan–Hölder theorem: every module is built from simples

Goal. Find the periodic table of simples

Categorical

A C 2-module is called 2-simple (the “elements”)

if it has no C -stable 2-ideals

We have the weak 2-Jordan–Hölder theorem: every 2-module is built from 2-simples

Goal. Find the periodic table of 2-simples

Disclaimer

In order to have a satisfactory theory and true statements
one needs to add adjectives

(additive, finite-dimensional hom spaces, Krull–Schmidt, etc.)
but I completely ignore that – my apologies!
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We have the weak 2-Jordan–Hölder theorem: every 2-module is built from 2-simples

Goal. Find the periodic table of 2-simples

Disclaimer

In order to have a satisfactory theory and true statements
one needs to add adjectives

(additive, finite-dimensional hom spaces, Krull–Schmidt, etc.)
but I completely ignore that – my apologies!

Daniel Tubbenhauer 2-representations of Soergel bimodules April 2021 5 / 8



2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras

Examples of 2-representations

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

tilting modules, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module

Applications of 2-representations

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry

Classical

An A module is called simple (the “elements”)

if it has no A-stable ideals
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Example. Rep(G )

I Let C = Rep(G ) (G a finite group)

I C is monoidal and nice. For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial representation 1

I The regular 2-representationM : C → End(C ):

M //

f

��

M⊗
f⊗
��

N // N⊗

I The decategorification is the regular representation

Folk theorem?

Completeness All 2-simples of Rep(G) are of the form V(K , ψ)

Non-redundancy We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1)

Crucial. The parametrization is now a computational problem
instead of a categorical one – so lower in complexity

Why?
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Example. Rep(G )

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ)
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Categorified picture – Soergel bimodules

Theorem (Soergel–Elias–Williamson ∼1990,2012)
There exists a C-linear monoidal category S such that:

I For every w ∈W , there exists an indecomposable object Cw

I The Cw , for w ∈W , form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts

I The identity object is C1, where 1 is the unit in W

I C categorifies H with [Cw ] = cw

Classifying 2-simples of S is the categorical analog of classifying simples of H

Takeaway messages.

Degree zero gives a concise classification of (2-)simples of the Hecke algebra/category

For the Hecke category this boils down even further to a computational problem

For almost all cases Soergel bimodules and Rep(G) have the same-type-of classification
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Categorified picture – degree zero part a.k.a. v→0

Theorem (Lusztig, Elias–Williamson ∼2012)
For every J there exists a semisimple monoidal category AJ such that:

I For every w ∈ J , there exists a simple object Aw

I The Aw , for w ∈ J , form a complete set of pairwise non-isomorphic simple
objects

I The identity object is Ad , where d is the Duflo involution

I AJ categorifies AJ with [Aw ] = aw

The point. S is positively graded and
⊕
J AJ is its degree zero part

Degree zero should be enough for the parametrization of 2-simples, right?

Takeaway messages.

Degree zero gives a concise classification of (2-)simples of the Hecke algebra/category

For the Hecke category this boils down even further to a computational problem

For almost all cases Soergel bimodules and Rep(G) have the same-type-of classification
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Categorified picture – the classification

Theorem (2021)
For every J there exists a semisimple monoidal subcategory AH ⊂AJ such that:

{
equivalence classes of 2-simples

of S with apex J

}
1:1←→

{
equivalence classes of 2-simples

of AH

}

(There is the same notion of apex as on the uncategorified level)

I AH is well-understood and so is its 2-representation theory, except for a
handful of cases, namely eight J , all in exceptional types

I In Weyl type AH is of the form Rep(G ) (up to three exceptions)

Up to eight J we get a complete classification of 2-simples

Example

Takeaway messages.

Degree zero gives a concise classification of (2-)simples of the Hecke algebra/category

For the Hecke category this boils down even further to a computational problem

For almost all cases Soergel bimodules and Rep(G) have the same-type-of classification
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Hecke algebras for finite Coxeter groups

W = 〈si | s2
i = 1, braid relations〉 v-deform−−−−−→ H Hecke algebra over Z[v, v−1]

Examples

I tetrahedron ! symmetric group S4 ! A3 Hecke algebra

I cube/octahedron ! Weyl group (Z/2Z)3 n S3 ! B3 Hecke algebra

s :

•

•
, t :

•

, u :

•
I dodeca-/icosahedron ! exceptional Coxeter group ! H3 Hecke algebra

Goal. Classify simple modules in a concise way
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Example. Square ! B2 Hecke algebra

W = 〈s, t | s2 = t2 = 1, tsts = stst〉

KL basis:

c1 = 1, cs = v(1 + s), ct = v(1 + t), ..., cw0 = v3(1 + s + t + st + ts + sts + tst +w0)

These could act as zero Apex

Cell structure (write w instead of cw ):

2

1

0

<J

<J

s, sts st

ts t, tst

1

w0 AJ2
∼= Z

AJ1
∼= Click

AJ0
∼= Z

Back

The defining representation has apex J1:

s : •
•

7→
(

0 1
1 0

)
, t : • 7→

(
−1 0
0 −1

)

cs = v(1+s) 7→ v

(
1 1
1 1

)
, cw0 = v3(1+s+t+st+ts+sts+tst+w0) 7→

(
0 0
0 0

)

Back

The multiplication tables ([2] = 1+v2) for AJ1 vs. H:

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

∼= Z ⊕ Z ⊕ Mat2×2(Z)

⇒
3 associated simples

The v→0 and mod J2 of:

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst vcst vcst + vcw0 vcs + vcsts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts vcs + v[2]2cw0 vcs + vcsts + v[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst vct + vctst vct + vctst + v[2]cw0 2vcts + vcw0

ct vcts vcts + vcw0 vct + vctst [2]ct [2]ctst [2]cts

ctst vct + vctst vct + v[2]2cw0 vct + vctst + v[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst vcs + vcsts vcs + vcsts + v[2]cw0 2vcst + vcw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

Back

Lusztig∼1984. Use cells and a v→0 limit

(a) The KL basis gives rise to (two-sided) cells J and a cell order <J

(b) Every simple H-module have an apex, an associated cell J , which is
<J -maximal with respect to the KL basis not acting as zero

(c) There exists a Z-semisimple algebra AJ associated to J

Theorem.
{

equivalence classes of simples

of H with apex J

}
1:1←→

{
equivalence classes of simples

of AJ

}

Examples

AJ is the v→0 limit
On the categorical level it comes up very naturally

Small problem. AJ is not so easy to compute

But on the categorical level the statement gets better, so we do not need to worry
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2-representation theory in a nutshell
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nat. trafo

M
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i 7→ M(i)
vector space

F 7→M(F)
linear map

m
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i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras

Examples of 2-representations

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

tilting modules, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module

Applications of 2-representations

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry

Classical

An A module is called simple (the “elements”)

if it has no A-stable ideals

We have the Jordan–Hölder theorem: every module is built from simples

Goal. Find the periodic table of simples

Categorical

A C 2-module is called 2-simple (the “elements”)

if it has no C -stable 2-ideals

We have the weak 2-Jordan–Hölder theorem: every 2-module is built from 2-simples

Goal. Find the periodic table of 2-simples

Disclaimer

In order to have a satisfactory theory and true statements
one needs to add adjectives

(additive, finite-dimensional hom spaces, Krull–Schmidt, etc.)
but I completely ignore that – my apologies!
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G = S3, S4 and S5, # of subgroups (up to conjugacy), Schur multipliers H2 and
ranks rk of 2-simples

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is very different from classical representation theory, but:

This is a computational problem

Example (G = S3,K = S3); the N-matrices

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)

Example (G = S3,K = Z/2Z = S2); the N-matrices

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 )

Back

Categorified picture – the classification

Theorem (2021)
For every J there exists a semisimple monoidal subcategory AH ⊂AJ such that:

{
equivalence classes of 2-simples

of S with apex J

}
1:1←→

{
equivalence classes of 2-simples

of AH

}

(There is the same notion of apex as on the uncategorified level)

I AH is well-understood and so is its 2-representation theory, except for a
handful of cases, namely eight J , all in exceptional types

I In Weyl type AH is of the form Rep(G ) (up to three exceptions)

Up to eight J we get a complete classification of 2-simples

Example

Takeaway messages.

Degree zero gives a concise classification of (2-)simples of the Hecke algebra/category

For the Hecke category this boils down even further to a computational problem

For almost all cases Soergel bimodules and Rep(G) have the same-type-of classification
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There is still much to do...

Thanks for your attention!
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The setup in a nutshell

Start. A Coxeter system

The Hecke algebra H
The Hecke category a.k.a.

Soergel bimodules S

Has a Kazhdan–
Lusztig (KL) basis

Indecomposable objects

Cell theory + an
asymptotic limit

Output. Parametriza-
tion of simples

Output. Parametriza-
tion of 2-simples

Categorification

Categorification

Morally a categorification!
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Hecke algebras for finite Coxeter groups

W = 〈si | s2
i = 1, braid relations〉 v-deform−−−−−→ H Hecke algebra over Z[v, v−1]

Examples

I tetrahedron ! symmetric group S4 ! A3 Hecke algebra

I cube/octahedron ! Weyl group (Z/2Z)3 n S3 ! B3 Hecke algebra

s :

•

•
, t :

•

, u :

•
I dodeca-/icosahedron ! exceptional Coxeter group ! H3 Hecke algebra

Goal. Classify simple modules in a concise way
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Example. Square ! B2 Hecke algebra

W = 〈s, t | s2 = t2 = 1, tsts = stst〉

KL basis:

c1 = 1, cs = v(1 + s), ct = v(1 + t), ..., cw0 = v3(1 + s + t + st + ts + sts + tst +w0)

These could act as zero Apex

Cell structure (write w instead of cw ):

2

1

0

<J

<J

s, sts st

ts t, tst

1

w0 AJ2
∼= Z

AJ1
∼= Click

AJ0
∼= Z

Back

The defining representation has apex J1:

s : •
•

7→
(

0 1
1 0

)
, t : • 7→

(
−1 0
0 −1

)

cs = v(1+s) 7→ v

(
1 1
1 1

)
, cw0 = v3(1+s+t+st+ts+sts+tst+w0) 7→

(
0 0
0 0

)

Back

The multiplication tables ([2] = 1+v2) for AJ1 vs. H:

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

∼= Z ⊕ Z ⊕ Mat2×2(Z)

⇒
3 associated simples

The v→0 and mod J2 of:

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst vcst vcst + vcw0 vcs + vcsts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts vcs + v[2]2cw0 vcs + vcsts + v[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst vct + vctst vct + vctst + v[2]cw0 2vcts + vcw0

ct vcts vcts + vcw0 vct + vctst [2]ct [2]ctst [2]cts

ctst vct + vctst vct + v[2]2cw0 vct + vctst + v[2]cw0 [2]ctst [2]ct+[2]2cw0 [2]cts+[2]cw0

cst vcs + vcsts vcs + vcsts + v[2]cw0 2vcst + vcw0 [2]cst [2]cst+[2]cw0 [2]cs + [2]csts

Back

Lusztig∼1984. Use cells and a v→0 limit

(a) The KL basis gives rise to (two-sided) cells J and a cell order <J

(b) Every simple H-module have an apex, an associated cell J , which is
<J -maximal with respect to the KL basis not acting as zero

(c) There exists a Z-semisimple algebra AJ associated to J

Theorem.
{

equivalence classes of simples

of H with apex J

}
1:1←→

{
equivalence classes of simples

of AJ

}

Examples

AJ is the v→0 limit
On the categorical level it comes up very naturally

Small problem. AJ is not so easy to compute

But on the categorical level the statement gets better, so we do not need to worry
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

Examples of 2-categories

Monoidal categories, module categories Rep(G) of finite groups G ,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules S , categorified quantum groups, categorified Heisenberg algebras

Examples of 2-representations

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

tilting modules, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module

Applications of 2-representations

Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry

Classical

An A module is called simple (the “elements”)

if it has no A-stable ideals

We have the Jordan–Hölder theorem: every module is built from simples

Goal. Find the periodic table of simples

Categorical

A C 2-module is called 2-simple (the “elements”)

if it has no C -stable 2-ideals

We have the weak 2-Jordan–Hölder theorem: every 2-module is built from 2-simples

Goal. Find the periodic table of 2-simples

Disclaimer

In order to have a satisfactory theory and true statements
one needs to add adjectives

(additive, finite-dimensional hom spaces, Krull–Schmidt, etc.)
but I completely ignore that – my apologies!

Daniel Tubbenhauer 2-representations of Soergel bimodules April 2021 5 / 8

G = S3, S4 and S5, # of subgroups (up to conjugacy), Schur multipliers H2 and
ranks rk of 2-simples

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is very different from classical representation theory, but:

This is a computational problem

Example (G = S3,K = S3); the N-matrices

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)

Example (G = S3,K = Z/2Z = S2); the N-matrices

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 )

Back

Categorified picture – the classification

Theorem (2021)
For every J there exists a semisimple monoidal subcategory AH ⊂AJ such that:

{
equivalence classes of 2-simples

of S with apex J

}
1:1←→

{
equivalence classes of 2-simples

of AH

}

(There is the same notion of apex as on the uncategorified level)

I AH is well-understood and so is its 2-representation theory, except for a
handful of cases, namely eight J , all in exceptional types

I In Weyl type AH is of the form Rep(G ) (up to three exceptions)

Up to eight J we get a complete classification of 2-simples

Example

Takeaway messages.

Degree zero gives a concise classification of (2-)simples of the Hecke algebra/category

For the Hecke category this boils down even further to a computational problem

For almost all cases Soergel bimodules and Rep(G) have the same-type-of classification
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There is still much to do...

Thanks for your attention!
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Example. Square ! B2 Hecke algebra

W = 〈s, t | s2 = t2 = 1, tsts = stst〉

KL basis:

c1 = 1, cs = v(1 + s), ct = v(1 + t), ..., cw0 = v3(1 + s + t + st + ts + sts + tst +w0)

These could act as zero Apex

Cell structure (write w instead of cw ):

2

1

0

<J

<J

s, sts st

ts t, tst

1

w0 AJ2
∼= Z

AJ1
∼= Click

AJ0
∼= Z
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The defining representation has apex J1:

s : •
•

7→
(

0 1
1 0

)
, t : • 7→

(
−1 0
0 −1

)

cs = v(1+s) 7→ v

(
1 1
1 1

)
, cw0 = v3(1+s+t+st+ts+sts+tst+w0) 7→

(
0 0
0 0

)
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The multiplication tables ([2] = 1+v2) for AJ1 vs. H:

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

∼= Z ⊕ Z ⊕ Mat2×2(Z)

⇒
3 associated simples

The v→0 and mod J2 of:

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst vcst vcst + vcw0 vcs + vcsts

csts [2]csts [2]cs+[2]2cw0 [2]cst+[2]cw0 cs + csts vcs + v[2]2cw0 vcs + vcsts + v[2]cw0

cts [2]cts [2]cts+[2]cw0 [2]ct + [2]ctst vct + vctst vct + vctst + v[2]cw0 2vcts + vcw0

ct vcts vcts + vcw0 vct + vctst [2]ct [2]ctst [2]cts
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G = S3, S4 and S5, # of subgroups (up to conjugacy), Schur multipliers H2 and
ranks rk of 2-simples

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is very different from classical representation theory, but:

This is a computational problem

Example (G = S3,K = S3); the N-matrices

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)

Example (G = S3,K = Z/2Z = S2); the N-matrices

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 )

Back



G = S3, S4 and S5, # of subgroups (up to conjugacy), Schur multipliers H2 and
ranks rk of 2-simples

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is very different from classical representation theory, but:

This is a computational problem

Example (G = S3,K = S3); the N-matrices

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)

Example (G = S3,K = Z/2Z = S2); the N-matrices

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 )

Back



G = S3, S4 and S5, # of subgroups (up to conjugacy), Schur multipliers H2 and
ranks rk of 2-simples

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Rep(S3)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 S3 D4 A4 S4

# 1 2 1 1 2 1 1 1 1

H2 1 1 1 1 Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 3 5, 2 4, 3 5, 3

Rep(S4)

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

This is very different from classical representation theory, but:

This is a computational problem

Example (G = S3,K = S3); the N-matrices

⊗

⊕ ⊕

ResGK
( ) ∼=  

(
1 0 0
0 1 0
0 0 1

)
, ResGK

( ) ∼=  
(

0 1 0
1 1 1
0 1 0

)
, ResGK

( )
∼=  

(
0 0 1
0 1 0
1 0 0

)

Example (G = S3,K = Z/2Z = S2); the N-matrices

⊗

ResGK
( ) ∼=  ( 1 0

0 1 ), ResGK
( ) ∼= ⊕  ( 1 1

1 1 ), ResGK

( )
∼=  ( 0 1

1 0 )

Back



Computation of AH (Lusztig ∼1984, Bezrukavnikov–Finkelberg–Ostrik ∼2006)

type A B = C D E6

worst case AH ' Rep(1) AH ' Rep(Z/2Zd) AH ' Rep(Z/2Zd) AH ' Rep(S3)

type E7 E8 F4 G2

worst case AH ' Rep(S3) AH ' Rep(S5) AH ' Rep(S4) AH ' S O (3)6

This gives a complete classification of 2-simples for finite Weyl type

Back


	Simples of the Hecke algebra
	Simples of the Hecke category
	Appendix
	Additional Material


