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The following notes are written for the seminar representation theory of
algebras at university of Zurich in the spring semester of 2020, supervised by
Dr. D. Tubbenhauer at the mathematical institute. I will follow closely the
book Quiver representations by Ralf Schiffler (Springer, 2014).

introduction

an aside Although the seminar is about quiver representations, most of
the definitions and results in my part can be introduced in the more general
setting of abstract algebra. I will therefore follow this approach in the first
part of my notes. Naturally, at the end of the notes I will present - in the
context of quivers - examples of the results previously given.

preliminaries I will assume knowledge of the following algebraic struc-
tures: groups, rings and their ideals, fields, the notion of an algebraically
closed field as well as the concept of morphisms between such structures.
Anything else that is needed and not mentioned here will be defined prop-
erly later on.

main goal The corollary that I will be working towards makes a state-
ment about the relation between finite-dimensional modules over k-algebras
(where k is an algebraically closed field) and the algebra that arises from the
endomorphisms on those modules. More precisely, the relation is concerned
with the question of decomposition of modules into direct sums of submod-
ules on the one hand, and the maximal ideals of the endomorphism-algebra
on the other hand. Without further ado, I will now present the necessary
tools to arrive at this result.
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algebras and modules

Throughout, let k be an algebraically closed field.

definition 1. A k-algebra A is a ring with 1, equipped with a k-vector space
structure, such that

1. the vector space inherits addition from the ring (i.e. addition in the
ring and in the vector space coincide)

2. scalar multiplication in the vector space is compatible with the multipli-
cation of the ring, i.e. for c ∈ k and r, s ∈ A one has

c(rs) = (cr)s = r(cs) = (rs)c (1)

Alternatively, one could regard a k-algebra as a ring A together with a
ring homomorphism ν : k → Z(A), where Z(A) denotes the center of A
(i.e. the subring consisting of those elements commuting with every element
in A). Scalar multiplication µ of the vector space can then be described in
terms of ν by

µ : k × A→ A

(c, r) 7→ ν(c)r
(2)

From another perspective, one could also define a k-algebra to be a vector
space equipped with a bilinear map. These definitions are equivalent, as one
can intuitively see by realizing that the bilinear map specifies the multiplica-
tion in the ring, and the bilinearity guarantees point 2 in the above definition
1.

definition 2. Let R be a ring with 1. A right R-module M is an abelian
group (M,+) together with a binary operation M × R → M such that, for
m1,m2 ∈M and r1, r2 ∈ R, one has

1. (m1 +m2)r1 = m1r1 +m2r1

2. m1(r1 + r2) = m1r1 +m2r2

3. m1(r1r2) = (m1r1)r2

4. m11 = m1
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Let G = {m1, . . .mk} ⊆ M for some (right R-)module M . Then M
is said to be generated by G, if, for every m ∈ M , there exist elements
r1, . . . , rk ∈ R such that m = m1r1 + · · · + mkrk. Consequently, M is called
finitely generated, if |G| <∞.

definition 3. Let M and N be R-modules. A morphism from M to N is a
map preserving the structures of addition and multiplication. More precise,
a morphism h : M → N satisfies

1. h(m+m′) = h(m) + h(m′)

2. h(mr) = h(m)r

for all m,m′ ∈M and r ∈ R.

An endomorphism of modules is a morphism from M to M . The set of
all endomorphisms for a given A-module M over a k-algebra A, denoted by
End(M), has the structure of a k-algebra: the structure of the underlying
vector space is given by addition and scalar multiplication of endomorphisms.
That is, for g, h ∈ End(M), c ∈ k and m ∈M

(g + h)(m) = g(m) + h(m)

(g · c)(m) = g(mc)
(3)

Multiplication in End(M) can be defined as composition of endomorphisms,
i.e.

(g · h)(m) = g ◦ h(m) (4)

definition 4. Let R be a ring. A left respectively right ideal I in R is called
maximal, if, whenever there exists an ideal J such that I ⊆ J ⊆ R, then
I = J or J = R. The intersection of all maximal right (resp. left) ideals is
called the right (resp. left) Jacobson radical of R, denoted by radR.

It is a fact (that I will state without proof) that the right radical coincides
with the left radical, thus I will simply write radical in what follows.

lemma 5. Let R be a ring with unity and a ∈ R. Then a ∈ radR =⇒ 1−ba
has a two-sided inverse for every b ∈ R.
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Proof. Let a ∈ radR and assume 1 − ba has no left inverse for some b ∈ R.
It must then be contained in some maximal left ideal J ⊂ R (it is clearly
contained in some left ideal, namely in the ideal (1− ba) generated by itself,
and since it has no left-inverse by assumption, (1 − ba) 6= R). Since J is
maximal and the radical of R is the intersection of all maximal left ideals,
we further have that radR ⊂ J . Since by assumption a ∈ radR, also a ∈ J
and so ba ∈ J for every b ∈ R. But then 1 − ba + ba = 1 ∈ J contradicting
J 6= R. Therefore 1− ba has a left-inverse in R. I will denote this left-inverse
by κ. Then

κ(1− ba) = 1 =⇒ κ = 1 + κba = 1 + (κb)a (5)

But we have just shown that the element 1 + (κb)a = 1 − (−κb)a has a
left-inverse, say l. Therefore

1 = lκ = l(1 + (κb)a)

= l + lκba

= l + ba

(6)

Hence
l = 1− ba (7)

and so
1 = lκ = (1− ba)κ (8)

which shows that κ is also a right-inverse for 1− ba. �

The statement is in fact stronger: it is an if and only if statement that also
holds true for the element 1− ab. Although I will need the other direction of
the implication later on, I decided to only give the proof for this direction, as
it would go beyond the scope of this work to present every proof. Neverthe-
less, I would like to point out that a proof of the fact that the right Jacobson
radical equals the left Jacobson radical can be done by showing that 1− ab
has a two-sided inverse if and only if 1− ba has a two-sided inverse for every
b, together with the reverse direction of lemma 5.

If I is a right ideal in the ring R and M is an R-module, then the set
MI = {m1i1 + . . .mtit : mj ∈M, ij ∈ R} is a submodule of M. This notation
is needed for the following

lemma 6. Let I be a two-sided ideal in a ring R (that is, a left- and right-
ideal) such that I is contained in the radical of R, and let M be a finitely
generated R-module. Then MI = M implies M = 0.
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Proof. The proof will be done by induction on the cardinality of the gener-
ating set of M . Suppose M is generated by the set {m1, . . . ,ms} and let
MI = M .

If s = 1, then M = m1R. Since by assumption M = MI, this implies
that ∀m ∈M there exist elements µ1, . . . µt ∈M and i1, . . . it ∈ I such that

m = µ1i1 + · · ·+ µtit (9)

Thus in particular
m1 = µ1i1 + · · ·+ µtit (10)

Also, since M = m1R, one has that for every j ∈ {1, ..., t} there are elements
rj ∈ R such that

µj = m1rj (11)

Therefore,

m1 = µ1i1 + · · ·+ µtit

= m1r1i1 + · · ·+m1rtit

= m1 (r1i1 + · · ·+ rtit)

= m1ζ

(12)

In other words
m1(1− ζ) = 0 (13)

Since rj ∈ R and ij ∈ I for 1 ≤ j ≤ t, we find ζ ∈ I. By the assumption of
the lemma, the ideal I is contained in the radical of R. Therefore, by lemma
5, we know that for every s ∈ R the element 1 − sζ has a two-sided inverse
in R. In particular (by setting s = 1), 1− ζ has a two sided inverse in R. I
will call this inverse κ. Then

m1 = m11 = m1[(1− ζ)κ] = [m1(1− ζ)]κ = 0κ = 0 (14)

and since m1 generates M , the conclusion M = 0 follows.

Now assume the statement holds true for some s. Let M be generated
by G = {m1, . . . ,ms+1}. As before, M = MI implies

m1 = µ1i1 + · · ·+ µtit (15)
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for some µj ∈ M and ij ∈ I. For every k ∈ {1, . . . , t}, we can write µk in
terms of elements of G as

µk = m1r1,k + · · ·+ms+1rs+1,k (16)

with rj,k ∈ R for 1 ≤ j ≤ s+ 1. Putting the last two equations together, we
find

m1 = (m1r1,1 + · · ·+ms+1rs+1,1)i1 + · · ·+ (m1r1,t + · · ·+ms+1rs+1,t)it

= m1r1,1i1 + · · ·+ms+1rs+1,1i1 + · · ·+m1r1,tit + · · ·+ms+1rs+1,tit

= m1(r1,1i1 + · · ·+ r1,tit) + E = m1Θ + E

(17)

where

E = m2r2,1i1 + · · ·+ms+1rs+1,1i1 + · · ·+m2r2,tit + · · ·+ms+1rs+1,tit (18)

By equation 17 we find
m1(1−Θ) = E (19)

and, since Θ = (r1,1i1 + · · ·+ r1,tit) ∈ I ⊂ radR, by lemma 5 it follows that
1−Θ has a two-sided inverse. Again, I will call this inverse κ. Then

m1 = m1(1−Θ)κ = Eκ (20)

Looking at the form of E in equation 18, we see that, since κ ∈ I ⊂ R,
Eκ can be written as a R-linear combination of the elements in the set
{m2, . . . ,ms+1}. That is, m1 is redundant in the generating set G, and so M
is generated by a set of cardinality s. By induction hypothesis it thus follows
that M = 0 as desired. �

As a consequence, the radical of a finite dimensional algebra is nilpotent,
as the following corollary shows. Recall that an element r of a ring is called
nilpotent, if there exists n ∈ N such that rn = 0. Analogously, an ideal I
of a ring is called nilpotent, if there exists n ∈ N such that In = 0, where
In = {

∑s
j=1 ij,1 . . . ij,n : ij,k ∈ I}. If I is an ideal, so is In for all n.

corollary 7. Let A be a finite dimensional algebra. Then radA is nilpotent.
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Proof. Since ideals of an algebra are subgroups of the additive group and are
closed under multiplication with arbitrary elements of the ring, as well as
closed under scalar multiplication, every ideal of an algebra is a subalgebra.
It therefore follows that if A is finite dimensional, so is every ideal in A. This
implies that for a decreasing chain of ideals A ⊇ I0 ⊇ I1 ⊇ . . . in A, at some
point the dimension cannot be reduced anymore and thus the chain becomes
stationary, i.e. there exists n ∈ N such that for every m > n, Im = In.
Now for a two-sided ideal I in A, In ⊇ In+1 holds true for any n. These
considerations constitute the following chain

A ⊇ radA ⊇ (radA)2 ⊇ . . . (21)

that leads to the identity

(radA)m = (radA)n (22)

for some n ∈ N and every m > n. In particular for m = n+ 1

(radA)n radA = (radA)n (23)

Recall that every ideal in A is finite-dimensional, meaning it has a finite basis
as a k-vector space. One can thus view every ideal in A as a finitely generated
A-module. By identifying (radA)n = M and radA = I, all conditions for
lemma 6 are met, hence

(radA)n = 0 (24)

This completes the proof that the radical of A is nilpotent. �

definition 8. An algebra A is said to be local, if it has a unique maximal
right ideal.

Recall that the left and right radical coincide, and the right radical is the
intersection of all maximal right ideals. So for a local algebra, the unique
maximal right ideal is the same as the radical (and therefore also the same
as the unique maximal left ideal).

lemma 9. Let A be a k-algebra. If, for every a ∈ A, either a or 1 − a is
invertible, then A is local.

Proof. Assume that for every a ∈ A either a or 1 − a has an inverse in A.
Consider an element a that is not in the radical of A. The remark after the
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proof of lemma 5 implies that there exists b ∈ A such that 1−ab has no inverse
in A. By assumption, ab thus has a two-sided inverse in A. Say abτ = 1.
But then bτ is an inverse of a. Since a ∈ A− radA, this shows that A/ radA
is a field. This however implies that radA is maximal. Indeed, assume there
exists an ideal J containing radA. Consider an element r ∈ J − radA. Since
r is not in the radical, it has an inverse in A, due to the considerations
above. Thus also 1 ∈ J which implies J = A. Finally, because the radical is
maximal, it is the unique maximal ideal, so A is local as desired. �

The converse (A local implies either a or 1−a invertible for every a ∈ A)
also holds true. As was done for lemma 5, I restrict this proof to only one
direction. However, I will use the other direction for corollary 11 as well as
for examples at the very end of this work.

definition 10. Let A be a k-algebra. a ∈ A is called idempotent, if a2 = a.

corollary 11. If A is local, the only idempotents are 0 and 1.

Proof. Let A be local and e ∈ A be idempotent. Then e2 = e =⇒ e(1−e) =
0. By the remark above, either e or 1 − e has an inverse. Assume τe = 1.
Then 0 = τ0 = τe(1 − e) = 1 − e, hence e = 1. On the other hand, if
(1− e)τ = 1, then 0 = 0τ = e(1− e)τ = e and so e = 0. �

definition 12. Let A be a k-algebra and M1, . . .Ms be A-modules. The direct
sum M1 ⊕ · · · ⊕Ms is the A-module whose vector space is the direct sum of
the vector spaces of the Mi and whose module structure is given by

(m1, . . . ,ms)a = (m1a, . . . ,msa) (25)

A module is called indecomposable, if it can not be written as a direct sum of
two proper submodules.

I am now prepared to state the main result as mentioned in the introduc-
tion.

corollary 13. Let A be a k-algebra. Let M be a finite dimensional A-module
and EndM its endomorphism algebra. The following are equivalent.

1. M is indecomposable

2. Every φ ∈ EndM is of the form φ = λ id +θ, where θ ∈ EndM is
nilpotent and λ ∈ k

8



3. EndM is local

Proof. ”1 ⇒ 2”: Let M be indecomposable, and consider φ ∈ EndM . Since
M is a finite dimensional A-module, φ is a k-linear map between finite di-
mensional k-vector spaces. In particular, we can use the notion of the char-
acteristic polynomial χφ of φ. Furthermore, since k is algebraically closed,
χφ splits into linear factors over k, hence we can write

χφ(x) =
t∏
i=1

(x− λi)νi (26)

where λi are the eigenvalues of φ with corresponding multiplicity νi, hence
dimM =

∑t
i=1 νi. Let

hi = (φ− λi id)νi = φνi + aνi−1φ
ν−1 + · · ·+ a1φ+ a0 id

Mi = kerhi
(27)

hi, being a linear combination of powers of φ, is itself an element of the endo-
morphism algebra EndM . Hence, Mi being the kernel of an endomorphism
of A-modules is itself an A-module. Observe that Mi ∩Mj = ∅ ∀i 6= j and
dimMi = νi. Therefore M can be decomposed into a direct sum

M = M1 ⊕ · · · ⊕Mt (28)

But by assumption M is indecomposable, forcing t = 1. In other words,
φ has only one eigenvalue. From linear algebra we know that we can find
a basis such that φ is in Jordan normal form (this is possible because the
characteristic polynomial splits into linear factors over k). Thus we can write

φ = λ id +θ (29)

where

θij =

{
1, if j = i+ 1

0 else
(30)

and so θ2 = 0, i.e. in particular nilpotent.

”2 ⇒ 3”: Using lemma 9, if φ is invertible, then EndM is local. So
assume φ is not invertible. This means that λ = 0, and so φ = θ. Our goal
is to show that id−φ is invertible, because then lemma 9 implies again that
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EndM is local. There are two ways to do so:
1. Since φ = θ, φ2 = 0. Therefore id = id−φ2 = (id +φ)(id−φ).
2. Consider the matrix representation of id−θ. Denote by ψn the n × n-
matrix that has the form of id−θ. Using Laplace’s formula for the determi-
nant, one has

detψn = detψn−1 − detQ+
n−2∑
i=1

(−1)i+1 · 0 · detMi (31)

where the Mi are some (n− 1)× (n− 1) matrices and Q is a matrix whose
first column is zero. Thus detQ = 0 and so by iteration detψn = 1∀n, since
ψ1 = 1. Hence id−θ is invertible.

”3 ⇒ 1”: Let EndM be local and assume that M = M1 ⊕ M2. Let
πi : M → Mi and ιi : Mi → M be the natural projections and inclusions
respectively. Then ιi ◦ πi ∈ EndM is idempotent, and so by corollary 11 it
is either zero or the identity on M , since EndM is local. If ιi ◦ πi is zero,
then Mi = 0, because ιi ◦ πi(m) = (0, 0) for all m = (m1,m2) ∈ M implies
ιi(mi) = 0 for all mi ∈ Mi and so Mi = 0. On the other hand, if ιi ◦ πi
is the identity on M , then ιi ◦ πi(m) = m implies ιi(mi) = (m1,m2). This
however shows that mj = 0 for j 6= i, since ιi maps mi into either (m1, 0) or
(0,m2). Therefore Mj = 0 and so in both cases M is indecomposable. This
completes the proof. �

quiver representations

I will assume basic knowledge about quivers, in particular the definition
of a quiver, a representation and a path. For notational purposes, recall that
a quiver Q = (Q0, Q1, s, t) consists of a set of vertices Q0, a set of arrows
Q1 and maps s, t : Q1 → Q0, mapping arrows to their starting and ending
points respectively.

For i ∈ Q0 and α ∈ Q1, I will denote the collection of k-vector spaces of
a representation by Mi and the collection of k-linear maps by φα : Ms(α) →
Mt(α).

For i, j ∈ Q0, αk ∈ Q1 and l ∈ N, a path of length l from i to j will be
denoted by c = (i|α1, . . . , αl|j). Of course, this definition only makes sense
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if t(αk) = s(αk+1) for every 0 < k < l.

Let c = (i|α1, . . . , αl|j) and c′ = (j|α′1, . . . , α′l′|k) be paths. The concate-
nation c · c′ of those paths is defined to be c · c′ = (i|α1, . . . , αl, α

′
1, . . . , α

′
l′ |k).

definition 14. Let Q be a quiver and c, c′ as before. Let V (Q) be the k-
vector space having as basis all paths in Q. If one enriches the structure
of V (Q) with a multiplication defined on the basis elements by cc′ = c · c′
if s(α′1) = t(αl) and zero otherwise, the resulting object is called the path
algebra and denoted by kQ.

Recall the notation of the constant path ei = (i||i). Furthermore, for
simplicity of notation, assume that s and t act on paths as if they were single
arrows, i.e. for c = (i|α1, . . . , αl|j) define s(c) = i and t(c) = j.

lemma 15. 1 ∈ kQ is given by 1 =
∑

i∈Q0
ei.

Proof. Let p =
∑

c λcc be any element in kQ, where λc ∈ k. Then

1p =
∑
i∈Q0

ei
∑
c

λcc =
∑
i∈Q0

∑
c

λceic

=
∑
i∈Q0

∑
c

λccδis(c) =
∑
i∈Q0

∑
c:s(c)=i

λcc

=
∑
c

λcc = p

(32)

where δij denotes the kronecker delta. p1 = p can be proven in a similar
vein, by swapping sums and replacing s(c) with t(c). �

definition 16. A path of the form c = (i|α|i) is called a loop.

As an example, consider the quiver that consists of a single loop. That is,
Q = ({1}, {α}, s, t) with s(α) = t(α) = 1. Its path algebra kQ is isomorphic
to k[x], the algebra of polynomials in one variable over k. To see this, look
at the basis B of kQ. It consists by definition of all paths in Q, so B =
{e1, α, α2, . . . }. Multiplication is given by summing the turns around the
loop, in other words summation of the exponents αsαt = αs+t, with the
convention α0 = e1. An explicit isomorphism ϕ : kQ

∼−→ k[x] defined on the
basis B is therefore given by ϕ(αt) = xt. Note that (with the exception of e1)
there are no multiplicative inverses. This reflects the property that the loop
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has an orientation given by the arrow (”going the other way round is not
possible”). Motivated by these considerations, the more general definition
follows immediately.

definition 17. A path of the form c = (i|α1, . . . αl|i) is called an oriented
cycle.

A loop is thus an oriented cycle of length 1.

corollary 18. Let Q be a quiver without oriented cycles. Then the ideal
generated by all arrows is equal to the radical of kQ.

Remark: For the proof of this corollary I will need finiteness of the set
Q0 of vertices (finiteness of Q0 also forces finiteness of Q1). I am not sure
if the corollary would hold true for e.g. the quiver Q = (N, {αi}i∈N, [αi 7→
i], [αi 7→ i + 1]). I will only give a sketch of the proof, as it would require
some more work to be able to give every detail. The reader is referred to
Quiver representations by Ralf Schiffler for an exact proof.

Proof. (sketch) Let IQ be the two-sided ideal of kQ generated by all arrows
in the quiver Q. Since there are no oriented cycles by assumption, and Q0

is finite, there is a longest path (not necessarily unique). Call it’s length
lmax. Because there is no longer path than this, there is no possibility to
concatenate lmax+1 consecutive arrows. Thus the product of lmax+1 elements
(i.e. arrows) in kQ must be zero. Hence I l

max+1
Q = 0, or in other words IQ

is nilpotent. Further, if I is a two-sided nilpotent ideal in a ring R, then
I ⊂ radR. Indeed, let n be such that In = 0. Let i ∈ I. Then, for every
r ∈ R, ri ∈ I and so (ri)n = 0. Therefore

1 = 1− (ri)n = (1 + ri+ (ri)2 + · · ·+ (ri)n−1)(1− ri) (33)

This shows that 1− ri has an inverse for every r ∈ R, and so by the remark
after the proof of lemma 5, i ∈ radR, hence I ⊂ radR, as i was arbitrary.
As a first conclusion, this shows that IQ ⊂ rad kQ.
Furthermore, for any ideal I in an algebra A, if I is two-sided and nilpotent
and the algebra A/I is isomorphic to the direct product of some copies of the
underlying field k, then I ⊃ radA. One can show that kQ/IQ ∼=

∏
i∈Q0

k,
and so IQ ⊃ rad kQ. The conclusion IQ = rad kQ thus follows. �
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I will end these lines by presenting an example of an endomorphism al-
gebra consisting of endomorphisms of a representation of a quiver. The aim
is to make use of corollary 13 in a concrete situation.

Let Q = ({1, 2}, {α, β}, s(α) = s(β) = 1, t(α) = t(β) = 2). Let M1 =

M2 = k2, φα = 1 and φβ =

[
1 λ
0 1

]
. An endomorphism f = (fi)i∈{1,2} :

M → M must by definition satisfy f2 ◦ φi = φi ◦ f1 for i ∈ {α, β}. Since
φα is the identity on k2, this implies that f1 = f2. For simplicity, in what
follows I will denote f1 = f2 simply by F (so that with the above notation

f = (fi)i∈{1,2} = (F, F )). Using F ∈ M2(k), write F =

[
a b
c d

]
for some

a, b, c, d ∈ k. Looking at the second commuting square, i.e. the case i = β,
it follows

F ◦ φβ = φβ ◦ F

=⇒
[
a b
c d

] [
1 λ
0 1

]
=

[
1 λ
0 1

] [
a b
c d

]
=⇒

[
a λa+ b
c λc+ d

]
=

[
a+ λc b+ λd
c d

] (34)

Therefore a = a + λc, or λc = 0. Also λa + b = λd + b, or λa = λd. I will
proceed by distinguishing cases.

case 1: λ 6= 0

Then λc = 0 implies c = 0 and λa = λd implies a = d. Hence F =

[
a b
0 a

]
and the endomorphism algebra of the representation M consists of

EndM = {m ∈M2(k)|mij = aδij + bδi(i+1)} (35)

Now if a 6= 0, then detF = a2 and so F is invertible. If a = 0, then

1− F =

[
1 −b
0 1

]
is invertible, since detF = 1. Thus for every F ∈ EndM ,

either F or 1 − F is invertible, and so by lemma 9, EndM is local. Using
corollary 13, this shows that M is indecomposable.

case 2: λ = 0
In this case φβ = φα = 1, and so there is no constraint on f1 = f2 = F .
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Hence EndM = M2(k). The elements

[
1 0
0 0

]
and 1 −

[
1 0
0 0

]
are both not

invertible. Therefore, by the remark after the proof of lemma 9, M can not
be local.

14


