Lectures on $\mathfrak{s l}_{2}(\mathbb{C})$ - Seminar talk - The Semisimples

Samuel Renold

23.02.2019

1 Summary of the results of the first talk used in this talk

Definition 1. A \mathfrak{g}-module is a vectorspace V together with three fixed linear operators E, F, and H with satisfy the relations

$$
\begin{aligned}
E F-F E & =H \\
H E-E H & =2 E \\
H F-F H & =-2 F .
\end{aligned}
$$

This definition is motivated by the fact that the three natural basis vectors of \mathfrak{g} follow the same relations.

Definition 2. A subspace $W \subset V$ is called a \mathfrak{g}-submodule provided that it is invariant under the action of the linear operators E, F, and H, i.e.

$$
E W \subset W, F W \subset W, H W \subset W
$$

Any module has two obvious submodules, the zero subspace and the whole space. Any submodule different from the obvious submodule is called a proper submodule.

Definition 3. A module that has no proper submodules is called simple.
Example 4. The kernel and the image of a \mathfrak{g}-homomorphism between two modules are both submodules. I.e. let V and W be two modules and $\Phi \in$ $\operatorname{Hom}_{\mathfrak{g}}(V, W)$. Then, $\operatorname{Ker}(\Phi)$ is a submodule of V and $\operatorname{Im}(\Phi)$ is a submodule of W.

Lemma 5. For any $f \in \mathbb{C}[x]$ (polynomial ring over \mathbb{C}) the following holds:

$$
\begin{aligned}
f(H) E & =E f(H+2) \\
f(H) F & =F f(H-2)
\end{aligned}
$$

Lemma 6. Let V be a simple finite-dimensional module which contains a nonzero vector v such that $E(v)=0$ and $H(v)=(n-1) v$. Then, it follows that $V \cong \mathbf{V}^{(n)}$.

Theorem 7. (Classification of all simple finite-dimensional modules).
Any simple finite-dimensional module of dimension n is isomorphic to $\mathbf{V}^{(n)}$.

2 The Semisimples

2.1 Semi-simplicity of finite-dimensional modules

As we have already seen how simple finite-dimensional modules look like, we will proceed to investigate on finite-dimensional modules that are not simple. We will introduce semi-simple modules and we will see that all finite-dimensional modules are at least semi-simple.
Remark 8. Let V and W be two \mathfrak{g}-modules. We define the following operators on $V \oplus W$:

$$
\begin{array}{ll}
E(v \oplus w) & :=E(v) \oplus E(w) \\
F(v \oplus w) & :=F(v) \oplus F(w) \\
H(v \oplus w) & :=H(v) \oplus H(w) \forall v \in V, w \in W .
\end{array}
$$

We introduce the notation $n V:=\underbrace{V \oplus \cdots \oplus V}_{n \text { summands }}$.
Proposition 9. The direct sum of two \mathfrak{g}-modules V and W endowed with the operators E, F, and H as given in the remark above is also a \mathfrak{g}-module.
Proof. We have to prove the following:

$$
\begin{aligned}
(E F-F E)(v \oplus w) & =H(v \oplus w) \\
(H E-E H)(v \oplus w) & =2 E(v \oplus w) \\
(H F-F H)(v \oplus w) & =-2 F(v \oplus w) \forall v \in V, w \in W .
\end{aligned}
$$

All these equations can be proved by direct calculation.

$$
\begin{aligned}
(E F-F E)(v \oplus w) & =E F(v \oplus w)-F E(v \oplus w) \\
& =E(F(v) \oplus F(w))-F(E(v) \oplus E(w)) \\
& =E F(v) \oplus E F(w)-F E(v) \oplus F E(w) \\
& =(E F(v)-F E(v)) \oplus(E F(w)-F E(w)) \\
& =H(v) \oplus H(w) \\
& =H(v \oplus w) .
\end{aligned}
$$

$$
\begin{aligned}
(H E-E H)(v \oplus w) & =H E(v \oplus w)-E H(v \oplus w) \\
& =H(E(v) \oplus E(w))-E(H(v) \oplus H(w)) \\
& =H E(v) \oplus H E(w)-E H(v) \oplus E H(w) \\
& =(H E(v)-E H(v)) \oplus(H E(w)-E H(w)) \\
& =(2 E(v)) \oplus(2 E(w)) \\
& =2(E(v) \oplus E(w)) \\
& =2 E(v \oplus w) \\
& \\
(H F-F H)(v \oplus w) & =H F(v \oplus w)-F H(v \oplus w) \\
& =H(F(v) \oplus F(w))-F(H(v) \oplus H(w)) \\
& =H F(v) \oplus H F(w)-F H(v) \oplus F H(w) \\
& =(H F(v)-F H(v)) \oplus(H F(w)-F H(w)) \\
& =(-2 F(v)) \oplus(-2 F(w)) \\
& =-2(F(v) \oplus F(w)) \\
& =-2 F(v \oplus w) .
\end{aligned}
$$

Remark 10. By the very same calculation as above, it is shown that the vectorspace $n V:=\underbrace{V \oplus \cdots \oplus V}_{n \text { summands }}$ endowed with

$$
\begin{array}{ll}
E(v \oplus \cdots \oplus v) & :=E(v) \oplus \cdots \oplus E(v) \\
F(v \oplus \cdots \oplus v) & :=F(v) \oplus \cdots \oplus F(v) \\
H(v \oplus \cdots \oplus v) & :=H(v) \oplus \cdots \oplus H(v) \forall v \in V
\end{array}
$$

is also a \mathfrak{g}-module.
Next, we will define the following terms: decomposable, indecomposable, and semi-simple modules.

Definition 11. A \mathfrak{g}-module V is called decomposable if there exist two nonzero \mathfrak{g}-modules V_{1} and V_{2} such that $V \cong V_{1} \oplus V_{2}$. A \mathfrak{g}-module which is not decomposable is called indecomposable. A \mathfrak{g}-module which is isomorphic to a direct sum of (possibly many) simple \mathfrak{g}-modules is called semi-simple.

Let us recall what we have up to now. A module is called simple if there does not exist a proper submodule. A module is called decomposable if it is isomorphic to a direct sum of non-zero modules.

A module might be

	simple	not simple
indecomposable		
decomposable		

Generally, there may exist many non-simple but indecomposable modules. I.e. there exist many modules which have a proper submodule but cannot be written as a direct sum. However, the finite case is special. We will see that every finite-dimensional module is at least decomposable into a direct sum of simple submodules (i.e. semi-simple, Weyl's theorem). And - in addition - every indecomposable finite-dimensional module is simple.

To prove Weyl's theorem, we will need the help of a special operator constructed from the "module operators" E, F, and H. Throughout this paragraph, we will assume that V is a finite-dimensional module.

Definition 12. Casimir operator. The operator $C:=(H+1)^{2}+4 F E$ on V is called the Casimir operator.

Lemma 13. This lemma states some useful relations for the Casimir operator.
(a) $C=(H-1)^{2}+4 E F=H^{2}+1+2 E F+2 F E$.
(b) $E C=C E, F C=C F, H C=C H$. I.e. the Casimir operator commutes with every \mathfrak{g}-module operator.

Proof. The proof can be performed by direct calculation. During the proof, we will need commutation relations for polynomial functions of H given in the previous talk.
(a)

$$
\begin{array}{cll}
C & \stackrel{\text { def }}{=} & (H+1)^{2}+4 F E \\
E F-F E=H & H^{2}+2 H+1+4(E F-H) \\
= & H^{2}-2 H+1+4 E F \\
= & (H-1)^{2}+4 E F \\
& \\
C & \stackrel{\text { seeabove }}{=} & H^{2}-2 H+1+4 E F \\
& E F-\stackrel{F}{=} E=H & H^{2}-2(E F-F E)+1+4 E F \\
& = & H^{2}+1+2 E F+2 F E .
\end{array}
$$

(b)

$$
\begin{array}{rll}
H C & = & H\left((H+1)^{2}+4 F E\right) \\
& = & H(H+1)^{2}+4 H F E \\
H F=F(H-2) & & H(H+1)^{2}+4 F(H-2) E \\
& = & (H+1)^{2} H+4(F H E-2 F E) \\
H E=E(H+2) & & (H+1)^{2} H+4(F E(H+2)-2 F E) \\
& = & \\
& = & (H+1)^{2} H+4 F E H \\
& = & C H
\end{array}
$$

The equalities $H F=F(H-2)$ and $H E=E(H+2)$ follow from exercise 1.2 .2 with $f=1$.

$$
\begin{array}{rlrl}
E C & = & E\left((H+1)^{2}+4 F E\right) \\
& = & E(H+1)^{2}+4 E F E \\
(H-1)^{2} E & \stackrel{=E(H+1)^{2}}{=} & (H-1)^{2} E+4 E F E \\
& = & & \left((H-1)^{2}+4 E F\right)+E \\
& \stackrel{(a)}{=} & C E
\end{array}
$$

The equality $(H-1)^{2} E=E(H+1)^{2}$ follows again from exercise 1.2.2 with $f(H)=(H-1)^{2}$. In this case $(H-1)^{2} E=f(H) E=E f(H+2)=$ $E(H+2-1)^{2}=E(H+1)^{2}$.

$$
\begin{array}{rlrl}
F C & \stackrel{(a)}{=} & & F\left((H-1)^{2}+4 E F\right) \\
& = & F(H-1)^{2}+4 F E F \\
(H+1)^{2} F & =F(H-1)^{2} & & (H+1)^{2} F+4 F E F \\
& = & & \left((H+1)^{2}+4 F E\right) F \\
& = & C F
\end{array}
$$

The equality $(H+1)^{2} F=F(H-1)^{2}$ follows again from exercise 1.2.2 with $f(H)=(H+1)^{2}$. In this case $(H+1)^{2} F=f(H) F=F f(H-2)=$ $F(H-2+1)^{2}=F(H-1)^{2}$.

Exercise 14. We will need the following result from linear algebra. Let W be a vectorspace, $\lambda \in \mathbb{C}, A, B \in \operatorname{End}(\mathrm{~W})$ mit $A B=B A$. The eigenspace and the generalized eigenspace with respect to A are given as follows:

$$
\begin{aligned}
W_{\lambda} & :=\{w \in W \mid A w=\lambda w\} \\
W(\lambda) & :=\left\{w \in W \mid \exists k \in \mathbb{N}:(A-\lambda)^{k} w=0\right\}
\end{aligned}
$$

Show, that both W_{λ} and $W(\lambda)$ are invariant with respect to B.
Solution 15. (a) Let $e \in W_{\lambda}$. It follows that $A e=\lambda e \Longleftrightarrow B A e=B \lambda e \stackrel{B A=A B}{\Longleftrightarrow}$ $A B e=\lambda B e \Longleftrightarrow B e \in W_{\lambda}$. This proves the first statement.
(b) Let $e \in W(\lambda)$. It follows that $\exists k \in \mathbb{N}$ with

$$
\begin{aligned}
& (A-\lambda)^{k} e=0 \\
\Longleftrightarrow & B(A-\lambda)^{k} e=0 \\
\Longleftrightarrow & B(A-\lambda)(A-\lambda) \ldots(A-\lambda) e=0 \\
\Longleftrightarrow & (B A-B \lambda)(A-\lambda) \ldots(A-\lambda) e=0 \\
\Longleftrightarrow & (A B-\lambda B)(A-\lambda) \ldots(A-\lambda) e=0 \\
\Longleftrightarrow & (A-\lambda) B(A-\lambda) \ldots(A-\lambda) e=0 \\
\Longleftrightarrow & (A-\lambda) \ldots(A-\lambda) B e=0 \\
\Longleftrightarrow & (A-\lambda)^{k} B e=0
\end{aligned}
$$

It follows that $B \in W(\lambda)$ (with the same $k \in \mathbb{N}$).
Remark 16. Applying the Jordan decomposition theorem with respect to the Casimir operator on the finite-dimensional module V, we obtain

$$
V=\bigoplus_{\tau \in \mathbb{C}} V(C, \tau)
$$

with the same definition ("generalized eigenspace") as already given above:

$$
V(C, \tau)=\left\{v \in V \mid \exists k \in \mathbb{N}:(C-\tau)^{k} v=0\right\} .
$$

The Jordan decomposition theorem assumes the above shape since \mathbb{C} is algebraically closed.

The following lemma is needed for the proof of Weyl's theorem.
Lemma 17. For any $\tau \in \mathbb{C}$, the subspace $V(C, \tau)$ is a submodule of V. In particular, if V is indecomposable, then exists $\tau \in \mathbb{C}$ with $V=V(C, \tau)$.

Proof. To demonstrate:

$$
\begin{array}{lcl}
E V(C, \tau) & \subset & V(C, \tau) \\
F V(C, \tau) & \subset & V(C, \tau) \\
H V(C, \tau) & \subset & V(C, \tau)
\end{array}
$$

As calculated above, C commutes with the operators E, F, and H. This implies according to exercise 1.3.5 that E, F, and H leave the above subspaces invariant. I.e. all $V(C, \tau)$ are submodules of V. Moreover, if V is indecomposable, there is no proper submodule. I.e. all summands in the Jordan decomposition must vanish except for one. This completes the proof.

Exercise 18. Show that $C_{\mathbf{V}^{(n)}}=n^{2} \mathrm{id}_{\mathbf{V}^{(n)}}$.
Proof. As we are dealing with a multiple of the identiy matrix, we can work with representation matrices of E, F, and H in any basis, since any multiple of the identity matrix looks the same for arbitrary basis vectors. Therefore, we choose to work with the matrix representation of E, F, and H in the scaled basis $\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$ as given in the previous sub-chapter.

$$
H=\left[\begin{array}{lllll}
n-1 & & & & \\
& n-3 & & & \\
& & \ddots & & n-2 n+2 \\
& & & n-2 n
\end{array}\right]
$$

Recall that $C=(H+1)^{2}+4 F E$. As H is diagonal, $(H+1)^{2}$ is also diagonal. The diagonal elements of H are given by $H_{i i}=n-2(i-1)-1=n-2 i+1$. Thus, the diagonal elements of $(H+1)^{2}$ are given by $\left((H+1)^{2}\right)_{i i}=(n-2 i+2)^{2}$. From the special form of F and E, it follows that the product $F E$ only contains diagonal elements.

$$
\begin{aligned}
F E & =\left[\begin{array}{lllll}
0 & & & & \\
1 & 0 & & & \\
& 2 & 0 & & \\
& & \ddots & \ddots & \\
& & & n-1 & 0
\end{array}\right] \circ\left[\begin{array}{ccccc}
0 & n-1 & & & \\
& \ddots & \ddots & & \\
& & 0 & 2 & \\
& & & 0 & 1 \\
& & & \\
& & \\
& =\left[\begin{array}{lllll}
0 & & & & \\
& 1(n-1) & & & \\
& & & \ddots & \\
& & & & (n-1) 1
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

Thus, the diagonal elements of $F E$ are given by $(F E)_{i i}=(i-1)(n-i+1)$. The diagonal elements of C are then given by $(n-2 i+2)^{2}+4(i-1)(n-i+1)=$ $n^{2}+4 i^{2}+4-4 n i+4 n-8 i+4 n i-4 i^{2}+4 i-4 n+4 i-4=n^{2}$.

Theorem 19. Weyl's theorem.
Every indecomposable finite-dimensional module is simple. Equivalently, every finite-dimensional module is semi-simple.

Remark 20. Sketch of the proof.

1. We calculate the kernel of the operators E and F.
2. Then, we will see that the generalized eigenspaces can only be non-null for the same eigenvalues as already determined for the "true" eigenspaces, i.e. $V(\lambda) \neq 0$ for $\lambda \in\{-\mathrm{n}+1,-\mathrm{n}+3, \ldots, \mathrm{n}-3, \mathrm{n}-1\}$.
3. Then, we will see that the generalized eigenspaces are identical to the "true" eigenspaces, i.e. $V(\lambda)=V_{\lambda}$.
4. Then, we will be able to construct submodules of V_{λ} and write down a decomposition into submodules, from which we can finally prove the statement.

Proof. Let V be a non-zero indecomposable finite-dimensional module.
It follows from the above lemma that exists $\tau \in \mathbb{C}$ mit $V=V(C, \tau)$. This can be further specialized since $C_{V}=n^{2} \mathrm{id}_{V}$ with n being the dimension of the vectorspace V. Therefore:

$$
\begin{aligned}
V(C, \tau) & =\left\{v \in V \mid \exists k \in \mathbb{N}:(C-\tau)^{k} v=0\right\} \\
& =\left\{v \in V \mid \exists k \in \mathbb{N}:\left(n^{2}-\tau\right)^{k} v=0\right\}
\end{aligned}
$$

The only way we can avoid $V(C, \tau)$ from being empty is, if $n^{2}=\tau$. Therefore: $V=V\left(C, n^{2}\right)$.

Now, we consider the Jordan decomposition

$$
V=\bigoplus_{\lambda \in \mathbb{C}} V(\lambda)
$$

with $V(\lambda)$ being the generalized eigenspace with respect to the operator H.
We first claim that E acts injectively on any $V(\lambda)$ except for $\lambda \in\{-n-$ $1, n-1\}$. In other words, the restricted map

$$
\begin{aligned}
E_{\mid V(\lambda)}: V(\lambda) & \longrightarrow V \\
v & \longmapsto E_{\mid V(\lambda)}(v):=E(v)
\end{aligned}
$$

is injective for all λ except for $\lambda \in\{-n-1, n-1\}$. Since E is a linear operator, we focus on the kernel of E. Let $v \in V(\lambda) \cap \operatorname{Ker}(E)$ and assume that $v \neq 0$.

$$
E(H(v))=(E H)(v)=(H E)(v)-\underbrace{2 E(v)}_{=0}=H(E(v))=0 .
$$

I.e. from $v \in V(\lambda) \cap \operatorname{Ker}(E)$ follows $H(v) \in \operatorname{Ker}(E)$. Furthermore, as shown in the previous talk, the operator H leaves $V(\lambda)$ invariant, i.e. $H(v) \in V(\lambda)$. Thus: $H(v) \in V(\lambda) \cap \operatorname{Ker}(E)$. In other words: the space $V(\lambda) \cap \operatorname{Ker}(E)$ is invariant under the action of H.

Furthermore: $V(\lambda) \cap \operatorname{Ker}(E) \neq 0$ since it was assumed that $v \neq 0$. However, then it also follows that $V_{\lambda} \cap \operatorname{Ker}(E) \neq 0$. This follows like so:
$v \in V(\lambda) \cap \operatorname{Ker}(E) \Rightarrow \exists k \in \mathbb{N}:(H-\lambda)^{k} v=0$. Let k be minimal in the sense that there does not exist $k^{\prime}<k$ with $(H-\lambda)^{k^{\prime}} v=0$. Then the element $v^{\prime}=(H-\lambda)^{k-1} v \neq 0$ and $(H-\lambda) v^{\prime}=0$. I.e. $v^{\prime} \in V_{\lambda}$. And $v^{\prime} \in \operatorname{Ker}(\mathrm{E})$ since H leaves the space $V(\lambda) \cap \operatorname{Ker}(E)$ invariant (any application of $H-\lambda$ on a vector from $\operatorname{Ker}(E)$ leaves this vector in $\operatorname{Ker}(E)$).

Let thus $v^{\prime \prime} \in V_{\lambda} \cap \operatorname{Ker}(E)$ and perform the following calculation:

$$
\begin{aligned}
C v^{\prime \prime} & =\left((H+1)^{2}+4 F E\right) v^{\prime \prime} \\
& =(H+1)^{2} v^{\prime \prime}+\underbrace{4 F E v^{\prime \prime}}_{=0} \\
& =(H+1)(H+1) v^{\prime \prime} \\
\text { (because } \left.v^{\prime \prime} \in V_{\lambda}\right) & =(H+1)(\lambda+1) v^{\prime \prime} \\
\text { (because } \left.v^{\prime \prime} \in V_{\lambda}\right) & =(\lambda+1)^{2} v^{\prime \prime} .
\end{aligned}
$$

At the same time: $C v^{\prime \prime}=n^{2} v^{\prime \prime}$. Thus, it follows that $\lambda= \pm n-1$. To recall, we have shown, that from $v \neq 0$ follows $\lambda= \pm n-1$. I.e. by reverting the argument, for any $\lambda \neq \pm n-1$ it follows that $v=0$.

In the very same way, it is proved that F acts injectively on any $V(\lambda), \lambda \neq$ $\pm n+1$.

Furthermore, $V(\lambda) \neq 0$ is only possible if $V_{\lambda} \neq 0$. In other words: $V_{\lambda}=$ $0 \Longrightarrow V(\lambda)=0$. This can be seen as follows:
$V_{\lambda}=0 \Longleftrightarrow \nexists v \in V \backslash\{0\}:(H-\lambda) v=0$. I.e. any application of $(H-\lambda)$ on v never returns 0 . I.e. also $V(\lambda)=0$.

Thus, $V(\lambda) \neq 0$ only for $\lambda \in\{-n+1,-n+3, \ldots, n-1\}$. We can draw a similar picture for the actions of E and F on the $V(\lambda)$ as already drawn for the V_{λ} :

$$
\ldots 0 \underset{E}{\stackrel{F}{\leftrightharpoons}} V(-n+1) \underset{E}{\stackrel{F}{\leftrightharpoons}} V(-n+3) \underset{E}{\stackrel{F}{\leftrightharpoons}} \ldots \underset{E}{\stackrel{F}{\leftrightharpoons}} V(n-3) \underset{E}{\stackrel{F}{\leftrightharpoons}} V(n-1) \underset{E}{\stackrel{F}{\leftrightharpoons}} 0 \ldots
$$

From this picture, it follows that $\operatorname{Ker}(E)=V(n-1)$ and $\operatorname{Ker}(F)=V(-n-1)$ as the kernels for the other subspaces are zero (1) by the above statements and (2) by the fact that the kernel of a linear operator that acts on a vector space with the zero element only must be necessarily zero.

It follows that all vector spaces $V(-n+1), V(-n+3), \ldots, V(n-1)$ have the same dimension. To see this, consider the fact that every injective linear map to itself is an isomorphism. The map $F E$ is an injective linear map to itself and thus an isomorphism. This is only possible if the involved vector spaces have the same dimension.

We will next show that $V_{\lambda}=V(\lambda)$ for $\lambda \in\{-n+1,-n+3, \ldots, n-1\}$. (This does not hold in general, this only holds since these vector spaces are (generalized) eigenspaces with respect to the linear operator H.

For this, define A_{i} be the restriction of F^{i} to $V(n-1) . A_{i}$ is then an isomorphism. Set $A=A_{n-1}$. I.e. A maps from $V(n-1)$ to $V(-n+1)$.

Let C_{1} and H_{1} be the restrictions of C and H on $V(n-1)$ and C_{2} and H_{2} be the restrictions of C and H on $V(-n+1)$. As $C_{1}=(n-1)^{2} \mathrm{id}$ and $C_{2}=(-n+1)^{2} \mathrm{id}$ it follows that

$$
A C_{1}=C_{2} A
$$

And using $F H=(H+2) F$ (standard relation of any H-operator in a module) multiple times we get:

$$
\begin{aligned}
A H_{1} & =F^{n-1} H=F^{n-2} F H=F^{n-2}(H+2) F=F^{n-2} H F+2 F^{n-1} \\
& =F^{n-3} F H F+2 F^{n-1}=F^{n-3}(H+2) F^{2}+2 F^{n-1}=F^{n-3} H F^{2}+4 F^{n-1} \\
& =\cdots \\
& =H F^{n-1}+2(n-1) F^{n-1}=\left(H_{2}+2(n-1)\right) A .
\end{aligned}
$$

As $\operatorname{Ker}(E)=V(n-1)$ and $C=(H+1)^{2}+4 F E$ we have

$$
C_{1}=\left(H_{1}+1\right)^{2}
$$

As $\operatorname{Ker}(F)=V(-n+1)$ and $C=(H-1)^{2}+4 E F$ we have

$$
C_{2}=\left(H_{2}-1\right)^{2} .
$$

Thus, we have:

$$
\begin{aligned}
\left(H_{1}+1\right)^{2} & =C_{1} \\
& =A^{-1} A C_{1} \\
& =A^{-1} C_{2} A \\
& =A^{-1}\left(H_{2}-1\right)^{2} A \\
\text { (see below) } & =A^{-1} A\left(H_{1}+1-2 n\right)^{2} \\
& =\left(H_{1}+1-2 n\right)^{2}
\end{aligned}
$$

The proof of partial step from above works as follows: from $A H_{1}=\left(H_{2}-\right.$ $2(n-1)) A=H_{2} A+2(n-1) A=H_{2} A+2 n-2 A=H_{2} A-A+2 n-A=$ $\left(H_{2}-1\right) A+2 n-A \Longleftrightarrow\left(H_{2}-1\right) A=A\left(H_{1}+1-2 n\right)$. Thus: $\left(H_{2}-1\right)^{2} A=$ $\left(H_{2}-1\right) A\left(H_{1}+1-2 n\right)=A\left(H_{1}+1-2 n\right)^{2}$.

Summarizing the above, we have

$$
\begin{aligned}
\left(H_{1}+1\right)^{2} & =\left(H_{1}+1-2 n\right)^{2} \\
H_{1}^{2}+2 H_{1}+1 & =H_{1}^{2}+2(1-2 n) H_{1}+(1-2 n)^{2} \\
2 H_{1}+1 & =2(1-2 n) H_{1}+(1-2 n)^{2} \\
2 H_{1}+1 & =2 H_{1}-4 n H_{1}+1-4 n+4 n^{2} \\
4 n H_{1} & =4 n^{2}-4 n \\
H_{1} & =n-1
\end{aligned}
$$

This in turn implies that $V(n-1)=V_{n-1}$. This follows like so: The inclusion $V_{n-1} \subset V(n-1)$ holds in any case. Therefore, it only remains to show that $V(n-1) \subset V_{n-1}$. Let $v \in V(n-1)$. Then: $H v=(n-1) v \Rightarrow v \in V_{n-1}$ since $V_{n-1}=\{v \in V \mid(H-(n-1)) v=0\}=\{v \in V \mid H v=(n-1) v\}$.

Furthermore $A_{i} H=(H+2 i) A_{i}$. This follows like so:

$$
\begin{aligned}
A_{i} H & =\underbrace{F \cdots F}_{i \text { times }} H \\
& F H=\stackrel{(H+2) F}{=} \underbrace{F \cdots F F}_{i-1 \text { times }}(H+2) F \\
& =\underbrace{F \cdots F}_{i-1 \text { times }} H F+2 A_{i} \\
& =\underbrace{F \cdots F}_{i-2 \text { times }}(H+2) F F+2 A_{i} \\
& =\underbrace{F \cdots F}_{i-2 \text { times }} H F F+4 A_{i} \\
& =\ldots \\
& =H A_{i}+2 i A_{i} \\
& =(H+2 i) A_{i} .
\end{aligned}
$$

In addition: $v \in V_{n-1} \Longrightarrow A_{1} v \in V_{n-3}$. This is already clear from the definition of A_{i}. However, we can calulcate this explicitly as follows: $v \in V_{n-1} \Rightarrow$ $H v=(n-1) v \Rightarrow A_{1} H v=(n-1) A_{1} v \Rightarrow(H+2) A_{1} v=H A_{1} v+2 A_{1} v=(n-$ 1) $A_{1} v \Rightarrow H A_{1} v=(n-3) A_{1} v \Rightarrow A_{1} v \in V_{n-3}$. In addition: A_{1} is an isomorphism from $V(n-1)$ to $V(n-3)$. It follows that $V(n-3)=V_{n-3}$. By iterative argumentation, it follows that $V_{\lambda}=V(\lambda)$ for $\lambda \in\{-n+1,-n+3, \ldots, n-1\}$.

Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of V_{n-1}. For $i \in\{1, \ldots, k\}$ denote by W_{i} the linear span of $\left\{v_{i}, F v_{i}, \ldots, F^{n-1} v_{i}\right\}$. I.e.

$$
\begin{aligned}
W_{1} & =\operatorname{span}\left\{v_{1}, F v_{1}, \ldots, F^{n-1} v_{1}\right\} \\
W_{2} & =\operatorname{span}\left\{v_{2}, F v_{2}, \ldots, F^{n-1} v_{2}\right\} \\
& \ldots \\
W_{k} & =\operatorname{span}\left\{v_{k}, F v_{k}, \ldots, F^{n-1} v_{k}\right\}
\end{aligned}
$$

It follows that $V \cong W_{1} \oplus \cdots \oplus W_{k}$. From the first seminar talk, every W_{i} is a submodule of V. As V was assumed to be indecomposable, it follows that $k=1$ and $\operatorname{dim}\left(V_{n-1}\right)=1$. Furthermore, $V \cong \operatorname{span}\left\{v_{1}, F v_{1}, \ldots, F^{n-1} v_{1}\right\}=$ $\mathbf{V}^{(n)}$ which was already shown to be simple. We have thus proven the first part of Weyl's Theorem: every indecomposable finite-dimensional module is simple. If the assumption that V is simple does not hold, we have shown that $V \cong W_{1} \oplus \cdots \oplus W_{k}$ with every W_{i} being simple, thus V is at least semisimple.

2.2 Tensor products of finite-dimensional modules

Tensor product representations occur in physics when it coms to the rules for constructing the possible total spin of a system consisting of two subsystems with spin j_{1} and j_{2}. For two irreducible representations $D^{\left(j_{1}\right)}$ and $D^{\left(j_{2}\right)}$, we
get the decompoition of the tensor product representation into direct sums of irreducible representations as follows (Clebsch-Gordan series):

$$
D^{\left(j_{1}\right)} \otimes D^{\left(j_{2}\right)}=\bigoplus_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} D^{(j)}
$$

Definition 21. Tensor product of two modules. Let V and W be two modules. The operators in the tensor product space are defined as

$$
\begin{aligned}
& E(v \otimes w)=E(v) \otimes w+v \otimes E(w) \\
& F(v \otimes w)=F(v) \otimes w+v \otimes F(w) \\
& H(v \otimes w)=H(v) \otimes w+v \otimes H(w)
\end{aligned}
$$

Exercise 22. Show that with the above definitions of the operators, the tensor product space is indeed a module.

Solution 23. We have to prove the following:

$$
\begin{aligned}
(E F-F E)(v \otimes w) & =H(v \otimes w) \\
(H E-E H)(v \otimes w) & =2 E(v \otimes w) \\
(H F-F H)(v \otimes w) & =-2 F(v \otimes w)
\end{aligned}
$$

The proof follows by direct calculation:

$$
\begin{aligned}
(E F-F E)(v \otimes w)= & E F(v \otimes w)-F E(v \otimes w) \\
= & E(F(v) \otimes w+v \otimes F(w))-F(E(v) \otimes w+v \otimes E(w)) \\
= & E F(v) \otimes w+F(v) \otimes E(w)+E(v) \otimes F(w)+v \otimes E F(w) \\
& -F E(v) \otimes w-E(v) \otimes F(w)-F(v) \otimes E(w)-v \otimes F E(w) \\
= & E F(v) \otimes w-F E(v) \otimes w+v \otimes E F(w)-v \otimes F E(w) \\
= & (E F(v)-F E(v)) \otimes w+v \otimes(E F(w)-F E(w)) \\
= & H(v) \otimes w+v \otimes(H(w)) \\
= & H(v \otimes w)
\end{aligned}
$$

The other relations are proved in the same way.
Definition 24. Let $n \in \mathbb{N}$. We denote by $V^{\otimes n}:=\underbrace{V \otimes \cdots \otimes V}_{n \text { factors }}$.
Exercise 25. Let V and W be two modules. Check that the map

$$
\begin{array}{ll}
\Phi: & V \otimes W \longrightarrow W \otimes V \\
& (v \otimes w) \longmapsto \Phi(v \otimes w):=w \otimes v
\end{array}
$$

is an isomorphism.

Solution 26. It is to be shown that Φ is injective and surjective.
For the injective part, we prove that $\operatorname{Ker}(\Phi)=\{0\}$. This can be done since Φ is linear. The zero element of a tensor product space is the tensor product of the individual zero elements. Let $y \in W \otimes V=0=0_{W} \otimes 0_{V}$. Then $\Phi(x)=\Phi(v \otimes w)=w \otimes v=0 \Longleftrightarrow v=0, w=0 \Longrightarrow x=0$.

The surjective part is trivial: Let $y=w \otimes v \in W \otimes V$. Then $x:=v \otimes w$ satisfies the relation $\Phi(x)=y$.

Exercise 27. Let V_{1}, V_{2}, W be modules. Prove that $\left(V_{1} \oplus V_{2}\right) \otimes W \simeq V_{1} \otimes$ $W \oplus V_{2} \otimes W$.

Solution 28. We work with the decomposition of $v_{1} \in V_{1}, v_{2} \in V_{2}, w \in W$ into basis elements. Let $V_{1}=\operatorname{span}\left\{e_{1 i}\right\}_{i=1, \ldots m_{1}}, V_{2}=\operatorname{span}\left\{e_{2 j}\right\}_{j=1, \ldots m_{2}}, W=$ $\operatorname{span}\left\{f_{k}\right\}_{k=1, \ldots n}$ and $V_{1} \ni v_{1}=\sum_{i} a_{1 i} e_{1 i}, \quad V_{2} \ni v_{2}=\sum_{j} a_{2 j} e_{2 j}, W \ni w=$ $\sum_{k} b_{k} f_{k}$. Then

$$
\begin{aligned}
\left(v_{1} \oplus v_{2}\right) \otimes w & =\left[\sum_{i} a_{1 i}\left(e_{1 i}, 0\right)+\sum_{j} a_{2 j}\left(0, e_{2 j}\right)\right] \otimes \sum_{k} b_{k} f_{k} \\
& =\sum_{k} b_{k}\left[\sum_{i} a_{1 i}\left(e_{1 i}, 0\right)+\sum_{j} a_{2 j}\left(0, e_{2 j}\right)\right] \otimes f_{k} \\
& =\sum_{k} b_{k}\left[\sum_{i} a_{1 i}\left(e_{1 i}, 0\right) \otimes f_{k}+\sum_{j} a_{2 j}\left(0, e_{2 j}\right) \otimes f_{k}\right] \\
& =\sum_{i} a_{1 i}\left(e_{1 i}, 0\right) \otimes \sum_{k} b_{k} f_{k}+\sum_{j} a_{2 j}\left(0, e_{2 j}\right) \otimes \sum_{k} b_{k} f_{k} \\
& \simeq\left(\sum_{i} a_{1 i} e_{1 i} \otimes \sum_{k} b_{k} f_{k}, \sum_{j} a_{2 j} e_{2 j} \otimes \sum_{k} b_{k} f_{k}\right) \\
& =\left(v_{1} \otimes w, v_{2} \otimes w\right)
\end{aligned}
$$

Exercise 29. Let U, V, W be modules. Prove that $U \otimes(V \otimes W)=(U \otimes V) \otimes W$.
Theorem 30. Let $m, n \in \mathbb{N}$ such that $m \leq n$. Then

$$
\mathbf{V}^{(n)} \otimes \mathbf{V}^{(m)} \simeq \mathbf{V}^{(n-m+1)} \oplus \mathbf{V}^{(n-m+3)} \oplus \cdots \oplus \mathbf{V}^{(n+m-3)} \oplus \mathbf{V}^{(n+m-1)}
$$

Proof. We prove the theorem by induction on m.
Let $m=1$. To be verified: $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(1)} \simeq \mathbf{V}^{(n)}$. Observe that $\mathbf{V}^{(1)} \simeq \mathbb{C}$. Let $\left\{v_{i}\right\}_{i=1, \ldots n}$ be a basis in $\mathbf{V}^{(n)}$ and $\mathbf{1}$ be a basis in \mathbb{C}. Define:

$$
\begin{aligned}
\iota: \mathbf{V}^{(n)} \otimes \mathbb{C} & \longrightarrow \mathbf{V}^{(n)} \\
x & \longmapsto \iota(x)=\iota\left(\sum_{i=1}^{n} e_{i} \lambda v_{i} \otimes \mathbf{1}\right):=\lambda \sum_{i=1}^{n} e_{i} v_{i} .
\end{aligned}
$$

It is obvious that ι is an isomorphism.
Let $m=2$. To be verified: $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(2)} \simeq \mathbf{V}^{(n-1)} \oplus \mathbf{V}^{(n+1)}$. Observe that $\mathbf{V}^{(2)} \simeq \mathbb{C}^{2}$. Let e_{1}, e_{2} be the natural basis of \mathbb{C}^{2}. I.e.:

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Observe that with the operators e, f, and h, the following relations hold:

$$
\begin{aligned}
& e e_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \\
& e e_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \circ\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=e_{1} \\
& f e_{1}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=e_{2} \\
& f e_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \circ\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \\
& h e_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
0
\end{array}\right]=e_{1} \\
& h e_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \circ\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-e_{2}
\end{aligned}
$$

Assume that $\mathbf{V}^{(n)}=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{n}$ as already given above. Now, for $v_{0} \otimes e_{1} \in$ $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(2)}$ calculate

$$
\begin{aligned}
& E\left(v_{0} \otimes e_{1}\right)=E v_{0} \otimes e_{1}+v_{0} \otimes e e_{1}=0 \otimes e_{1}+v_{0} \otimes 0=0 \\
& H\left(v_{0} \otimes e_{1}\right)=H v_{0} \otimes e_{1}+v_{0} \otimes h e_{1}=(n-1) v_{0} \otimes e_{1}+v_{0} \otimes e_{1}=n v_{0} \otimes e_{1}
\end{aligned}
$$

I.e. (according to exercise 1.2.11) $\mathbf{V}^{(n+1)}$ is a direct summand of $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(2)}$. By the same reasoning, define $w:=v_{1} \otimes e_{1}-(n-1) v_{0} \otimes e_{2}$. Calculate

$$
\begin{aligned}
& E(w)=\cdots=0 \\
& H(w)=\cdots=(n-2) w
\end{aligned}
$$

I.e. (again according to exercise 1.2.11) $\mathbf{V}^{(n-1)}$ is a direct summand of $\mathbf{V}^{(n)} \otimes$ $\mathbf{V}^{(2)}$. There are no more subspaces because the dimension of the space spanned by the two subspaces is already $2 n$. I.e. $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(2)} \simeq \mathbf{V}^{(n-1)} \oplus \mathbf{V}^{(n+1)}$.

We prove now the induction step, i.e. we assume that the decomposition I.e. we show that from the assumption that the decomposition

$$
\mathbf{V}^{(n)} \otimes \mathbf{V}^{(m)}=\mathbf{V}^{(n-m+1)} \oplus \mathbf{V}^{(n-m+3)} \oplus \cdots \oplus \mathbf{V}^{(n+m-1)}
$$

holds for $m \in 1, \ldots, k-1$ follows that the decomposition also holds for $m=k$.

We do this as follows: we compute $\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k-1)} \otimes \mathbf{V}^{(2)}$ in two different ways (using the "associativity" of the tensor product).

$$
\begin{aligned}
\mathbf{V}^{(n)} \otimes\left(\mathbf{V}^{(k-1)} \otimes \mathbf{V}^{(2)}\right) & =\mathbf{V}^{(n)} \otimes\left(\mathbf{V}^{(k)} \oplus \mathbf{V}^{(k-2)}\right) \\
& =\left(\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k)}\right) \oplus\left(\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k-2)}\right) \\
& =\left(\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k)}\right) \oplus\left(\mathbf{V}^{(n-k+3)} \oplus \mathbf{V}^{(n-k+5)} \oplus \cdots \oplus \mathbf{V}^{(n+k-5)} \oplus \mathbf{V}^{(n+k-3)}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left(\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k-1)}\right) \otimes \mathbf{V}^{(2)}= & \left(\mathbf{V}^{(n-k+2)} \oplus \mathbf{V}^{(n-k+4)} \oplus \cdots \oplus \mathbf{V}^{(n+k-4)} \oplus \mathbf{V}^{(n+k-2)}\right) \otimes \mathbf{V}^{(2)} \\
= & \left(\bigoplus_{i=0}^{k-2} \mathbf{V}^{(n-k+2+2 i)}\right) \otimes \mathbf{V}^{(2)} \\
= & \bigoplus_{i=0}^{k-2}\left(\mathbf{V}^{(n-k+3+2 i)} \oplus \mathbf{V}^{(n-k+1+2 i)}\right) \\
= & \mathbf{V}^{(n-k+1)} \oplus \mathbf{V}^{(n-k+3)} \oplus \cdots \oplus \mathbf{V}^{(n+k-3)} \oplus \mathbf{V}^{(n+k-1)} \\
& \mathbf{V}^{(n-k+3)} \oplus \mathbf{V}^{(n-k+5)} \oplus \cdots \oplus \mathbf{V}^{(n+k-3)} \oplus \mathbf{V}^{(n+k-1)}
\end{aligned}
$$

Comparing these two results, we get:

$$
\mathbf{V}^{(n)} \otimes \mathbf{V}^{(k)}=\mathbf{V}^{(n-k+1)} \oplus \mathbf{V}^{(n-k+3)} \oplus \cdots \oplus \mathbf{V}^{(n+k-3)} \oplus \mathbf{V}^{(n+k-1)}
$$

