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1 Summary of the results of the first talk used in
this talk

Definition 1. A g-module is a vectorspace V together with three fixed linear
operators E, F , and H with satisfy the relations

EF − FE = H

HE − EH = 2E

HF − FH = −2F.

This definition is motivated by the fact that the three natural basis vectors
of g follow the same relations.

Definition 2. A subspace W ⊂ V is called a g-submodule provided that it is
invariant under the action of the linear operators E, F , and H, i.e.

EW ⊂W, FW ⊂W, HW ⊂W.

Any module has two obvious submodules, the zero subspace and the whole
space. Any submodule different from the obvious submodule is called a proper
submodule.

Definition 3. A module that has no proper submodules is called simple.

Example 4. The kernel and the image of a g-homomorphism between two
modules are both submodules. I.e. let V and W be two modules and Φ ∈
Homg(V,W ). Then, Ker(Φ) is a submodule of V and Im(Φ) is a submodule of
W .

Lemma 5. For any f ∈ C[x] (polynomial ring over C) the following holds:

f(H)E = Ef(H + 2)

f(H)F = Ff(H − 2)
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.

Lemma 6. Let V be a simple finite-dimensional module which contains a non-
zero vector v such that E(v) = 0 and H(v) = (n − 1)v. Then, it follows that
V ∼= V(n).

Theorem 7. (Classification of all simple finite-dimensional modules).
Any simple finite-dimensional module of dimension n is isomorphic to V(n).

2 The Semisimples

2.1 Semi-simplicity of finite-dimensional modules
As we have already seen how simple finite-dimensional modules look like, we will
proceed to investigate on finite-dimensional modules that are not simple. We
will introduce semi-simple modules and we will see that all finite-dimensional
modules are at least semi-simple.
Remark 8. Let V and W be two g-modules. We define the following operators
on V ⊕W :

E(v ⊕ w) := E(v)⊕ E(w)

F (v ⊕ w) := F (v)⊕ F (w)

H(v ⊕ w) := H(v)⊕H(w) ∀v ∈ V, w ∈W.

We introduce the notation nV := V ⊕ · · · ⊕ V︸ ︷︷ ︸
n summands

.

Proposition 9. The direct sum of two g-modules V and W endowed with the
operators E, F , and H as given in the remark above is also a g-module.

Proof. We have to prove the following:

(EF − FE)(v ⊕ w) = H(v ⊕ w)

(HE − EH)(v ⊕ w) = 2E(v ⊕ w)

(HF − FH)(v ⊕ w) = −2F (v ⊕ w) ∀v ∈ V, w ∈W.

All these equations can be proved by direct calculation.

(EF − FE)(v ⊕ w) = EF (v ⊕ w)− FE(v ⊕ w)

= E(F (v)⊕ F (w))− F (E(v)⊕ E(w))

= EF (v)⊕ EF (w)− FE(v)⊕ FE(w)

= (EF (v)− FE(v))⊕ (EF (w)− FE(w))

= H(v)⊕H(w)

= H(v ⊕ w).
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(HE − EH)(v ⊕ w) = HE(v ⊕ w)− EH(v ⊕ w)

= H(E(v)⊕ E(w))− E(H(v)⊕H(w))

= HE(v)⊕HE(w)− EH(v)⊕ EH(w)

= (HE(v)− EH(v))⊕ (HE(w)− EH(w))

= (2E(v))⊕ (2E(w))

= 2(E(v)⊕ E(w))

= 2E(v ⊕ w).

(HF − FH)(v ⊕ w) = HF (v ⊕ w)− FH(v ⊕ w)

= H(F (v)⊕ F (w))− F (H(v)⊕H(w))

= HF (v)⊕HF (w)− FH(v)⊕ FH(w)

= (HF (v)− FH(v))⊕ (HF (w)− FH(w))

= (−2F (v))⊕ (−2F (w))

= −2(F (v)⊕ F (w))

= −2F (v ⊕ w).

Remark 10. By the very same calculation as above, it is shown that the vec-
torspace nV := V ⊕ · · · ⊕ V︸ ︷︷ ︸

n summands

endowed with

E(v ⊕ · · · ⊕ v) := E(v)⊕ · · · ⊕ E(v)

F (v ⊕ · · · ⊕ v) := F (v)⊕ · · · ⊕ F (v)

H(v ⊕ · · · ⊕ v) := H(v)⊕ · · · ⊕H(v) ∀v ∈ V

is also a g-module.

Next, we will define the following terms: decomposable, indecomposable,
and semi-simple modules.

Definition 11. A g-module V is called decomposable if there exist two non-
zero g-modules V1 and V2 such that V ∼= V1 ⊕ V2. A g-module which is not
decomposable is called indecomposable. A g-module which is isomorphic to a
direct sum of (possibly many) simple g-modules is called semi-simple.

Let us recall what we have up to now. A module is called simple if there
does not exist a proper submodule. A module is called decomposable if it is
isomorphic to a direct sum of non-zero modules.

A module might be
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simple not simple
indecomposable
decomposable

Generally, there may exist many non-simple but indecomposable modules.
I.e. there exist many modules which have a proper submodule but cannot be
written as a direct sum. However, the finite case is special. We will see that
every finite-dimensional module is at least decomposable into a direct sum of
simple submodules (i.e. semi-simple, Weyl’s theorem). And - in addition - every
indecomposable finite-dimensional module is simple.

To prove Weyl’s theorem, we will need the help of a special operator con-
structed from the “module operators” E, F , and H. Throughout this paragraph,
we will assume that V is a finite-dimensional module.

Definition 12. Casimir operator. The operator C := (H + 1)2 + 4FE on V is
called the Casimir operator.

Lemma 13. This lemma states some useful relations for the Casimir operator.
(a) C = (H − 1)2 + 4EF = H2 + 1 + 2EF + 2FE.
(b) EC = CE, FC = CF , HC = CH. I.e. the Casimir operator commutes

with every g-module operator.

Proof. The proof can be performed by direct calculation. During the proof,
we will need commutation relations for polynomial functions of H given in the
previous talk.

(a)

C
def
= (H + 1)2 + 4FE

EF−FE=H
= H2 + 2H + 1 + 4(EF −H)

= H2 − 2H + 1 + 4EF

= (H − 1)2 + 4EF.

C
seeabove

= H2 − 2H + 1 + 4EF
EF−FE=H

= H2 − 2(EF − FE) + 1 + 4EF

= H2 + 1 + 2EF + 2FE.

(b)
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HC = H((H + 1)2 + 4FE)

= H(H + 1)2 + 4HFE

HF=F (H−2)
= H(H + 1)2 + 4F (H − 2)E

= (H + 1)2H + 4(FHE − 2FE)

HE=E(H+2)
= (H + 1)2H + 4(FE(H + 2)− 2FE)

= (H + 1)2H + 4FEH

= ((H + 1)2 + 4FE)H

= CH

The equalities HF = F (H − 2) and HE = E(H + 2) follow from exercise
1.2.2 with f = 1.

EC = E((H + 1)2 + 4FE)

= E(H + 1)2 + 4EFE

(H−1)2E=E(H+1)2

= (H − 1)2E + 4EFE

= ((H − 1)2 + 4EF ) + E

(a)
= CE

The equality (H − 1)2E = E(H + 1)2 follows again from exercise 1.2.2
with f(H) = (H − 1)2. In this case (H − 1)2E = f(H)E = Ef(H + 2) =
E(H + 2− 1)2 = E(H + 1)2.

FC
(a)
= F ((H − 1)2 + 4EF )

= F (H − 1)2 + 4FEF

(H+1)2F=F (H−1)2
= (H + 1)2F + 4FEF

= ((H + 1)2 + 4FE)F

= CF

The equality (H + 1)2F = F (H − 1)2 follows again from exercise 1.2.2
with f(H) = (H + 1)2. In this case (H + 1)2F = f(H)F = Ff(H − 2) =
F (H − 2 + 1)2 = F (H − 1)2.

Exercise 14. We will need the following result from linear algebra. Let W be
a vectorspace, λ ∈ C, A,B ∈ End(W) mit AB = BA. The eigenspace and the
generalized eigenspace with respect to A are given as follows:

Wλ := {w ∈W |Aw = λw}
W (λ) := {w ∈W |∃k ∈ N : (A− λ)kw = 0}
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Show, that both Wλand W (λ) are invariant with respect to B.

Solution 15. (a) Let e ∈Wλ. It follows that Ae = λe⇐⇒ BAe = Bλe
BA=AB⇐⇒

ABe = λBe⇐⇒ Be ∈Wλ. This proves the first statement.
(b) Let e ∈W (λ). It follows that ∃k ∈ N with

(A− λ)ke = 0

⇐⇒B(A− λ)ke = 0

⇐⇒B(A− λ)(A− λ) . . . (A− λ)e = 0

⇐⇒(BA−Bλ)(A− λ)...(A− λ)e = 0

⇐⇒(AB − λB)(A− λ) . . . (A− λ)e = 0

⇐⇒(A− λ)B(A− λ)...(A− λ)e = 0

⇐⇒(A− λ) . . . (A− λ)Be = 0

⇐⇒(A− λ)kBe = 0

It follows that B ∈W (λ) (with the same k ∈ N).

Remark 16. Applying the Jordan decomposition theorem with respect to the
Casimir operator on the finite-dimensional module V , we obtain

V =
⊕
τ∈C

V (C, τ)

with the same definition (“generalized eigenspace”) as already given above:

V (C, τ) = {v ∈ V |∃k ∈ N : (C − τ)kv = 0}.

The Jordan decomposition theorem assumes the above shape since C is al-
gebraically closed.

The following lemma is needed for the proof of Weyl’s theorem.

Lemma 17. For any τ ∈ C, the subspace V (C, τ) is a submodule of V . In
particular, if V is indecomposable, then exists τ ∈ C with V = V (C, τ).

Proof. To demonstrate:

EV (C, τ) ⊂ V (C, τ)

FV (C, τ) ⊂ V (C, τ)

HV (C, τ) ⊂ V (C, τ)

As calculated above, C commutes with the operators E, F , and H. This im-
plies according to exercise 1.3.5 that E, F , and H leave the above subspaces in-
variant. I.e. all V (C, τ) are submodules of V . Moreover, if V is indecomposable,
there is no proper submodule. I.e. all summands in the Jordan decomposition
must vanish except for one. This completes the proof.
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Exercise 18. Show that CV(n) = n2idV(n) .

Proof. As we are dealing with a multiple of the identiy matrix, we can work
with representation matrices of E, F , and H in any basis, since any multiple
of the identity matrix looks the same for arbitrary basis vectors. Therefore, we
choose to work with the matrix representation of E, F , and H in the scaled
basis (w0, w1, . . . , wn−1) as given in the previous sub-chapter.

H =


n− 1

n− 3
. . .

n− 2n+ 2
n− 2n


Recall that C = (H + 1)2 + 4FE. As H is diagonal, (H + 1)2 is also diagonal.
The diagonal elements of H are given by Hii = n − 2(i − 1) − 1 = n − 2i + 1.
Thus, the diagonal elements of (H+1)2 are given by ((H+1)2)ii = (n−2i+2)2.
From the special form of F and E, it follows that the product FE only contains
diagonal elements.

FE =


0
1 0

2 0
. . . . . .

n− 1 0

 ◦


0 n− 1
. . . . . .

0 2
0 1

0



=


0

1(n− 1)
2(n− 2)

. . .
(n− 1)1

 .

Thus, the diagonal elements of FE are given by (FE)ii = (i− 1)(n− i+ 1).
The diagonal elements of C are then given by (n−2i+2)2 +4(i−1)(n− i+1) =
n2 + 4i2 + 4− 4ni+ 4n− 8i+ 4ni− 4i2 + 4i− 4n+ 4i− 4 = n2.

Theorem 19. Weyl’s theorem.
Every indecomposable finite-dimensional module is simple. Equivalently, ev-

ery finite-dimensional module is semi-simple.

Remark 20. Sketch of the proof.

1. We calculate the kernel of the operators E and F .

2. Then, we will see that the generalized eigenspaces can only be non-null
for the same eigenvalues as already determined for the “true” eigenspaces,
i.e. V (λ) 6= 0 for λ ∈ {−n + 1,−n + 3, . . . ,n− 3,n− 1}.
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3. Then, we will see that the generalized eigenspaces are identical to the
“true” eigenspaces, i.e. V (λ) = Vλ.

4. Then, we will be able to construct submodules of Vλ and write down
a decomposition into submodules, from which we can finally prove the
statement.

Proof. Let V be a non-zero indecomposable finite-dimensional module.
It follows from the above lemma that exists τ ∈ C mit V = V (C, τ). This

can be further specialized since CV = n2idV with n being the dimension of the
vectorspace V . Therefore:

V (C, τ) = {v ∈ V |∃k ∈ N : (C − τ)kv = 0}
= {v ∈ V |∃k ∈ N : (n2 − τ)kv = 0}

The only way we can avoid V (C, τ) from being empty is, if n2 = τ . Therefore:
V = V (C, n2).

Now, we consider the Jordan decomposition

V =
⊕
λ∈C

V (λ)

with V (λ) being the generalized eigenspace with respect to the operator H.
We first claim that E acts injectively on any V (λ) except for λ ∈ {−n −

1, n− 1}. In other words, the restricted map

E|V (λ) : V (λ) −→ V

v 7−→ E|V (λ)(v) := E(v)

is injective for all λ except for λ ∈ {−n − 1, n − 1}. Since E is a linear
operator, we focus on the kernel of E. Let v ∈ V (λ) ∩Ker(E) and assume that
v 6= 0.

E(H(v)) = (EH)(v) = (HE)(v)− 2E(v)︸ ︷︷ ︸
=0

= H(E(v)) = 0.

I.e. from v ∈ V (λ)∩Ker(E) follows H(v) ∈ Ker(E). Furthermore, as shown
in the previous talk, the operator H leaves V (λ) invariant, i.e. H(v) ∈ V (λ).
Thus: H(v) ∈ V (λ) ∩ Ker(E). In other words: the space V (λ) ∩ Ker(E) is
invariant under the action of H.

Furthermore: V (λ)∩Ker(E) 6= 0 since it was assumed that v 6= 0. However,
then it also follows that Vλ ∩Ker(E) 6= 0. This follows like so:

v ∈ V (λ) ∩ Ker(E) ⇒ ∃k ∈ N : (H − λ)kv = 0. Let k be minimal in the
sense that there does not exist k′ < k with (H − λ)k

′
v = 0. Then the element

v′ = (H−λ)k−1v 6= 0 and (H−λ)v′ = 0. I.e. v′ ∈ Vλ. And v′ ∈ Ker(E) since H
leaves the space V (λ)∩Ker(E) invariant (any application of H − λ on a vector
from Ker(E) leaves this vector in Ker(E)).
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Let thus v′′ ∈ Vλ ∩Ker(E) and perform the following calculation:

Cv′′ = ((H + 1)2 + 4FE)v′′

= (H + 1)2v′′ + 4FEv′′︸ ︷︷ ︸
=0

= (H + 1)(H + 1)v′′

(because v′′ ∈ Vλ) = (H + 1)(λ+ 1)v′′

(because v′′ ∈ Vλ) = (λ+ 1)2v′′.

At the same time: Cv′′ = n2v′′. Thus, it follows that λ = ±n− 1. To recall, we
have shown, that from v 6= 0 follows λ = ±n−1. I.e. by reverting the argument,
for any λ 6= ±n− 1 it follows that v = 0.

In the very same way, it is proved that F acts injectively on any V (λ), λ 6=
±n+ 1.

Furthermore, V (λ) 6= 0 is only possible if Vλ 6= 0. In other words: Vλ =
0 =⇒ V (λ) = 0. This can be seen as follows:

Vλ = 0⇐⇒ @v ∈ V \ {0} : (H − λ)v = 0. I.e. any application of (H − λ) on
v never returns 0. I.e. also V (λ) = 0.

Thus, V (λ) 6= 0 only for λ ∈ {−n + 1,−n + 3, . . . , n − 1}. We can draw a
similar picture for the actions of E and F on the V (λ) as already drawn for the
Vλ:

. . . 0
F
�
E
V (−n+ 1)

F
�
E
V (−n+ 3)

F
�
E
. . .

F
�
E
V (n− 3)

F
�
E
V (n− 1)

F
�
E

0 . . .

From this picture, it follows that Ker(E) = V (n−1) and Ker(F ) = V (−n−1)
as the kernels for the other subspaces are zero (1) by the above statements and
(2) by the fact that the kernel of a linear operator that acts on a vector space
with the zero element only must be necessarily zero.

It follows that all vector spaces V (−n+1), V (−n+3), . . . , V (n−1) have the
same dimension. To see this, consider the fact that every injective linear map
to itself is an isomorphism. The map FE is an injective linear map to itself and
thus an isomorphism. This is only possible if the involved vector spaces have
the same dimension.

We will next show that Vλ = V (λ) for λ ∈ {−n + 1,−n + 3, . . . , n − 1}.
(This does not hold in general, this only holds since these vector spaces are
(generalized) eigenspaces with respect to the linear operator H.

For this, define Ai be the restriction of F i to V (n − 1). Ai is then an
isomorphism. Set A = An−1. I.e. A maps from V (n− 1) to V (−n+ 1).

Let C1 and H1 be the restrictions of C and H on V (n − 1) and C2 and
H2 be the restrictions of C and H on V (−n + 1). As C1 = (n − 1)2id and
C2 = (−n+ 1)2id it follows that

AC1 = C2A.
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And using FH = (H+2)F (standard relation of anyH-operator in a module)
multiple times we get:

AH1 = Fn−1H = Fn−2FH = Fn−2(H + 2)F = Fn−2HF + 2Fn−1

= Fn−3FHF + 2Fn−1 = Fn−3(H + 2)F 2 + 2Fn−1 = Fn−3HF 2 + 4Fn−1

= · · ·
= HFn−1 + 2(n− 1)Fn−1 = (H2 + 2(n− 1))A.

As Ker(E) = V (n− 1) and C = (H + 1)2 + 4FE we have

C1 = (H1 + 1)2

As Ker(F ) = V (−n+ 1) and C = (H−1)2 + 4EF we have

C2 = (H2 − 1)2.

Thus, we have:

(H1 + 1)2 = C1

= A−1AC1

= A−1C2A

= A−1(H2 − 1)2A

(see below) = A−1A(H1 + 1− 2n)2

= (H1 + 1− 2n)2

The proof of partial step from above works as follows: from AH1 = (H2 −
2(n − 1))A = H2A + 2(n − 1)A = H2A + 2n − 2A = H2A − A + 2n − A =
(H2 − 1)A + 2n − A ⇐⇒ (H2 − 1)A = A(H1 + 1 − 2n). Thus: (H2 − 1)2A =
(H2 − 1)A(H1 + 1− 2n) = A(H1 + 1− 2n)2.

Summarizing the above, we have

(H1 + 1)2 = (H1 + 1− 2n)2

H2
1 + 2H1 + 1 = H2

1 + 2(1− 2n)H1 + (1− 2n)2

2H1 + 1 = 2(1− 2n)H1 + (1− 2n)2

2H1 + 1 = 2H1 − 4nH1 + 1− 4n+ 4n2

4nH1 = 4n2 − 4n

H1 = n− 1

This in turn implies that V (n−1) = Vn−1. This follows like so: The inclusion
Vn−1 ⊂ V (n − 1) holds in any case. Therefore, it only remains to show that
V (n − 1) ⊂ Vn−1. Let v ∈ V (n − 1). Then: Hv = (n − 1)v ⇒ v ∈ Vn−1 since
Vn−1 = {v ∈ V |(H − (n− 1))v = 0} = {v ∈ V |Hv = (n− 1)v}.
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Furthermore AiH = (H + 2i)Ai. This follows like so:

AiH = F · · ·F︸ ︷︷ ︸
i times

H

FH=(H+2)F
= F · · ·F︸ ︷︷ ︸

i−1 times

(H + 2)F

= F · · ·F︸ ︷︷ ︸
i−1 times

HF + 2Ai

= F · · ·F︸ ︷︷ ︸
i−2 times

(H + 2)FF + 2Ai

= F · · ·F︸ ︷︷ ︸
i−2 times

HFF + 4Ai

= . . .

= HAi + 2iAi

= (H + 2i)Ai.

In addition: v ∈ Vn−1 =⇒ A1v ∈ Vn−3. This is already clear from the
definition of Ai. However, we can calulcate this explicitly as follows: v ∈ Vn−1 ⇒
Hv = (n− 1)v ⇒ A1Hv = (n− 1)A1v ⇒ (H + 2)A1v = HA1v + 2A1v = (n−
1)A1v ⇒ HA1v = (n−3)A1v ⇒ A1v ∈ Vn−3. In addition: A1 is an isomorphism
from V (n − 1) to V (n − 3). It follows that V (n − 3) = Vn−3. By iterative
argumentation, it follows that Vλ = V (λ) for λ ∈ {−n+ 1,−n+ 3, . . . , n− 1}.

Let {v1, . . . , vk} be a basis of Vn−1. For i ∈ {1, . . . , k} denote by Wi the
linear span of {vi, Fvi, . . . , Fn−1vi}. I.e.

W1 = span{v1, Fv1, . . . , Fn−1v1}
W2 = span{v2, Fv2, . . . , Fn−1v2}

. . .

Wk = span{vk, Fvk, . . . , Fn−1vk}

It follows that V ∼= W1 ⊕ · · · ⊕Wk. From the first seminar talk, every Wi

is a submodule of V . As V was assumed to be indecomposable, it follows that
k = 1 and dim(Vn−1) = 1. Furthermore, V ∼= span{v1, Fv1, . . . , Fn−1v1} =
V(n) which was already shown to be simple. We have thus proven the first
part of Weyl’s Theorem: every indecomposable finite-dimensional module is
simple. If the assumption that V is simple does not hold, we have shown that
V ∼= W1⊕· · ·⊕Wk with everyWi being simple, thus V is at least semisimple.

2.2 Tensor products of finite-dimensional modules
Tensor product representations occur in physics when it coms to the rules for
constructing the possible total spin of a system consisting of two subsystems
with spin j1 and j2. For two irreducible representations D(j1) and D(j2),we
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get the decompoition of the tensor product representation into direct sums of
irreducible representations as follows (Clebsch-Gordan series):

D(j1) ⊗D(j2) =

j1+j2⊕
j=|j1−j2|

D(j).

Definition 21. Tensor product of two modules. Let V and W be two modules.
The operators in the tensor product space are defined as

E(v ⊗ w) = E(v)⊗ w + v ⊗ E(w)

F (v ⊗ w) = F (v)⊗ w + v ⊗ F (w)

H(v ⊗ w) = H(v)⊗ w + v ⊗H(w)

Exercise 22. Show that with the above definitions of the operators, the tensor
product space is indeed a module.

Solution 23. We have to prove the following:

(EF − FE)(v ⊗ w) = H(v ⊗ w)

(HE − EH)(v ⊗ w) = 2E(v ⊗ w)

(HF − FH)(v ⊗ w) = −2F (v ⊗ w)

The proof follows by direct calculation:

(EF − FE)(v ⊗ w) = EF (v ⊗ w)− FE(v ⊗ w)

= E(F (v)⊗ w + v ⊗ F (w))− F (E(v)⊗ w + v ⊗ E(w))

= EF (v)⊗ w + F (v)⊗ E(w) + E(v)⊗ F (w) + v ⊗ EF (w)

−FE(v)⊗ w − E(v)⊗ F (w)− F (v)⊗ E(w)− v ⊗ FE(w)

= EF (v)⊗ w − FE(v)⊗ w + v ⊗ EF (w)− v ⊗ FE(w)

= (EF (v)− FE(v))⊗ w + v ⊗ (EF (w)− FE(w))

= H(v)⊗ w + v ⊗ (H(w))

= H(v ⊗ w)

The other relations are proved in the same way.

Definition 24. Let n ∈ N. We denote by V ⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n factors

.

Exercise 25. Let V and W be two modules. Check that the map

Φ : V ⊗W −→ W ⊗ V
(v ⊗ w) 7−→ Φ(v ⊗ w) := w ⊗ v

is an isomorphism.
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Solution 26. It is to be shown that Φ is injective and surjective.
For the injective part, we prove that Ker(Φ) = {0}. This can be done

since Φ is linear. The zero element of a tensor product space is the tensor
product of the individual zero elements. Let y ∈W ⊗ V = 0 = 0W ⊗ 0V . Then
Φ(x) = Φ(v ⊗ w) = w ⊗ v = 0⇐⇒ v = 0, w = 0 =⇒ x = 0.

The surjective part is trivial: Let y = w ⊗ v ∈ W ⊗ V . Then x := v ⊗ w
satisfies the relation Φ(x) = y.

Exercise 27. Let V1, V2, W be modules. Prove that (V1 ⊕ V2) ⊗W ' V1 ⊗
W ⊕ V2 ⊗W .

Solution 28. We work with the decomposition of v1 ∈ V1, v2 ∈ V2, w ∈ W
into basis elements. Let V1 = span{e1i}i=1,...m1 , V2 = span{e2j}j=1,...m2 , W =
span{fk}k=1,...n and V1 3 v1 =

∑
i a1ie1i, V2 3 v2 =

∑
j a2je2j , W 3 w =∑

k bkfk. Then

(v1 ⊕ v2)⊗ w =

∑
i

a1i(e1i, 0) +
∑
j

a2j(0, e2j)

⊗∑
k

bkfk

=
∑
k

bk

∑
i

a1i(e1i, 0) +
∑
j

a2j(0, e2j)

⊗ fk
=
∑
k

bk

∑
i

a1i(e1i, 0)⊗ fk +
∑
j

a2j(0, e2j)⊗ fk


=
∑
i

a1i(e1i, 0)⊗
∑
k

bkfk +
∑
j

a2j(0, e2j)⊗
∑
k

bkfk

'

∑
i

a1ie1i ⊗
∑
k

bkfk,
∑
j

a2je2j ⊗
∑
k

bkfk


= (v1 ⊗ w, v2 ⊗ w)

Exercise 29. Let U, V, W be modules. Prove that U⊗(V ⊗W ) = (U⊗V )⊗W .

Theorem 30. Let m, n ∈ N such that m ≤ n. Then

V(n) ⊗V(m) ' V(n−m+1) ⊕V(n−m+3) ⊕ · · · ⊕V(n+m−3) ⊕V(n+m−1).

Proof. We prove the theorem by induction on m.
Let m = 1. To be verified: V(n) ⊗V(1) ' V(n). Observe that V(1) ' C. Let

{vi}i=1,...n be a basis in V(n) and 1 be a basis in C. Define:

ι : V(n) ⊗ C −→ V(n)

x 7−→ ι(x) = ι(

n∑
i=1

eiλvi ⊗ 1) := λ

n∑
i=1

eivi.
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It is obvious that ι is an isomorphism.
Let m = 2. To be verified: V(n) ⊗V(2) ' V(n−1) ⊕V(n+1). Observe that

V(2) ' C2. Let e1, e2 be the natural basis of C2. I.e.:

e1 =

[
1
0

]
, e2 =

[
0
1

]
.

Observe that with the operators e, f, and h, the following relations hold:

ee1 =

[
0 1
0 0

]
◦
[

1
0

]
= 0

ee2 =

[
0 1
0 0

]
◦
[

0
1

]
=

[
1
0

]
= e1

fe1 =

[
0 0
1 0

]
◦
[

1
0

]
=

[
0
1

]
= e2

fe2 =

[
0 0
1 0

]
◦
[

0
1

]
= 0

he1 =

[
1 0
0 −1

]
◦
[

1
0

]
=

[
1
0

]
= e1

he2 =

[
1 0
0 −1

]
◦
[

0
1

]
=

[
0
−1

]
= −e2

Assume that V(n) = span{vi}ni=1 as already given above. Now, for v0⊗ e1 ∈
V(n) ⊗V(2) calculate

E(v0 ⊗ e1) = Ev0 ⊗ e1 + v0 ⊗ ee1 = 0⊗ e1 + v0 ⊗ 0 = 0

H(v0 ⊗ e1) = Hv0 ⊗ e1 + v0 ⊗ he1 = (n− 1)v0 ⊗ e1 + v0 ⊗ e1 = nv0 ⊗ e1

I.e. (according to exercise 1.2.11) V(n+1) is a direct summand of V(n)⊗V(2).
By the same reasoning, define w := v1 ⊗ e1 − (n− 1)v0 ⊗ e2. Calculate

E(w) = · · · = 0

H(w) = · · · = (n− 2)w

I.e. (again according to exercise 1.2.11) V(n−1) is a direct summand of V(n) ⊗
V(2). There are no more subspaces because the dimension of the space spanned
by the two subspaces is already 2n. I.e. V(n) ⊗V(2) ' V(n−1) ⊕V(n+1).

We prove now the induction step, i.e. we assume that the decomposition I.e.
we show that from the assumption that the decomposition

V(n) ⊗V(m) = V(n−m+1) ⊕V(n−m+3) ⊕ · · · ⊕V(n+m−1)

holds for m ∈ 1, . . . , k − 1 follows that the decomposition also holds for m = k.
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We do this as follows: we compute V(n) ⊗ V(k−1) ⊗ V(2) in two different
ways (using the “associativity” of the tensor product).

V(n) ⊗
(
V(k−1) ⊗V(2)

)
= V(n) ⊗

(
V(k) ⊕V(k−2)

)
=

(
V(n) ⊗V(k)

)
⊕
(
V(n) ⊗V(k−2)

)
=

(
V(n) ⊗V(k)

)
⊕
(
V(n−k+3) ⊕V(n−k+5) ⊕ · · · ⊕V(n+k−5) ⊕V(n+k−3)

)
On the other hand, we have(

V(n) ⊗V(k−1)
)
⊗V(2) =

(
V(n−k+2) ⊕V(n−k+4) ⊕ · · · ⊕V(n+k−4) ⊕V(n+k−2)

)
⊗V(2)

=

(
k−2⊕
i=0

V(n−k+2+2i)

)
⊗V(2)

=

k−2⊕
i=0

(
V(n−k+3+2i) ⊕V(n−k+1+2i)

)
= V(n−k+1) ⊕V(n−k+3) ⊕ · · · ⊕V(n+k−3) ⊕V(n+k−1)

V(n−k+3) ⊕V(n−k+5) ⊕ · · · ⊕V(n+k−3) ⊕V(n+k−1)

Comparing these two results, we get:

V(n) ⊗V(k) = V(n−k+1) ⊕V(n−k+3) ⊕ · · · ⊕V(n+k−3) ⊕V(n+k−1)
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