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Outline
In this talk, we will proceed along the following lines:

• We will first define what a unitary representation is. In order to speak of
unitary representation, the corresponding vector space must be an inner
product space. This is not a restriction in our case since we always work
with vector spaces over the complex numbers. And any vector space over
the field of complex numbers can be equipped with an inner product.

• We will show that any unitary representation of a finite group is either
irreducible or decomposable. (This does not hold for infinite groups.)

• We will show that any representation of a finite group is equivalent to a
unitary representation. It follows that any representation of a finite group
is either irreducible or decomposable.

• Then, we are ready to prove the central theorem of this chapter (Maschke):
every representation of a finite group is completely reducible. (In the next
chapter, it will turn out that the decomposition into irreducible represen-
tations is unique.)

Talk
For this seminar, G is always a finite group (unless otherwise stated).

Definition 1. Let V be an inner product space. A representation ϕ : G −→
GL(V ) is called unitary if ϕg is unitary for every g ∈ G, i.e.

〈ϕgv, ϕgw〉 = 〈v, w〉 ∀v, w ∈ V.

Example 2. We ask ourselves which elements in GL1(C) are unitary. Let
u ∈ GL1(C), i.e. u(z) := αz. For u to be unitary, the following must hold for
all x, y ∈ C:
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〈u(x), u(y)〉 = 〈x, y〉 ⇐⇒ ααxy = xy

⇐⇒ αα = 1

⇐⇒ |α| = 1

I.e. The only unitary linear maps in GL1(C) are the multiplications with a
complex number on the unit circle.

Example 3. This example shows a unitary representation of the (infinite) ad-
ditive group of the real numbers R. Let ϕ : R −→ GL1(C) with ϕtz := e2πitz.
This representation is unitary, since

〈ϕtz1, ϕtz2〉 = e2πitz1e2πitz2

= e2πite−2πitz1z2

= 〈z1, z2〉

Proposition 4. Every unitary representation of a group G is either irreducible
or decomposable.

Proof. Let ϕ be a representation of G in V . If ϕ is irreducible, the proposition
is obviously true. Thus, let ϕ be non-irreducible (reducible). Then, there is
a non-zero proper G-invariant subspace W ⊂ V . Its orthogonal complement
(the set of all elements in V which are orthogonal to any element in W ) is also
non-zero and V = W ⊕W⊥.

It only remains to prove that W⊥ is also G-invariant. Let w ∈ W and
w⊥ ∈ W⊥. We must show that ϕgw⊥ ∈ W⊥, i.e. ϕgw⊥ is orthogonal to any
element in W .

〈
ϕgw

⊥, w
〉 ϕ unitary

=
〈
ϕg−1ϕgw

⊥, ϕg−1w
〉

=
〈
w⊥, ϕg−1w

〉
= 0

The last step follows since w⊥ ∈ W⊥ and ϕg−1w ∈ W . This completes the
proof.

Proposition 5. Every representation of a finite group is equivalent to a unitary
representation.

The proof of the above proposition is along the following lines:

• For any representation ϕ, we construct another representation ρ : G −→
GLn(C) with a special inner product.

• We show that this representation is equivalent to ϕ and unitary with
respect to the inner product defined above.
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Proof. Let ϕ : G −→ GL(V ) be an n-dimensional representation of G. Let
B be a basis of V and T : V −→ Cn the isomorphism that yields the coordi-
nates of a vector in V with respect to B. Define ρ : G −→ GLn(C) such that
ρg := TϕgT

−1. I.e. ρg takes a corrdinate vector in Cn, transforms it to the cor-
responding element in V , applies the original representation ϕg, and transforms
the result in V back to to its coordinate vector in Cn.

It is easy to show that ρ is indeed a representation since ϕ itself is a repre-
sentation. We compute

ρg1+g2 = Tϕg1+g2T
−1

= Tϕg1ϕg2T
−1

= Tϕg1T
−1Tϕg2T

−1

= ρg1ρg2

and

ρg−1 = Tϕg−1T−1

= Tϕ−1g T−1

= ((Tϕ−1g T−1)−1)−1

= (TϕgT
−1)−1

= ρ−1g

Furthermore, the representation is equivalent to ϕ by construction.
Based on the inner product on V we define an inner product on Cn as follows:

(v, w) :=
∑
g∈G
〈ρgv, ρgw〉 .

We show that (·, ·) is indeed an inner product. We compute

(c1v1 + c2v2, w) =
∑
g∈G
〈ρg(c1v1 + c2v2), ρgw〉

=
∑
g∈G

(c1 〈ρgv1, ρgw〉+ c2 〈ρgv2, ρgw〉)

= c1
∑
g∈G
〈ρgv1, ρgw〉+ c2

∑
g∈G
〈ρgv2, ρgw〉

= c1(v1, w) + c2(v2, w).

Next, we verify

(v, w) =
∑
g∈G
〈ρgv, ρgw〉

=
∑
g∈G
〈ρgw, ρgv〉

= (w, v).
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Next, we show that (·, ·) is positive definite. We must thus show that (v, v) ≥
0 ∀v ∈ V and (v, v) = 0⇐⇒ v = 0. The first relation is obvious since

(v, v) =
∑
g∈G
〈ρgv, ρgv〉 .

The sum is positive since we are adding only positive numbers. The second
relation is proven as follows: (v, v) = 0 =

∑
g∈G 〈ρgv, ρgv〉 ⇒ 〈ρgv, ρgw〉 =

0 ∀g ∈ G since we are adding non-negative numbers. Specially, 〈ρ1v, ρ1v〉 =
〈v, v〉 = 0 ⇒ v = 0. Thus, we have finally established that (·, ·) is indeed an
inner product. It remains to show that ρ is unitary with respect to this inner
product. To show this, we compute

(ρhv, ρhw) =
∑
g∈G
〈ρgρhv, ρgρhw〉

=
∑
g∈G
〈ρghv, ρghw〉

=
∑
x∈G
〈ρxv, ρxw〉

= (v, w).

To verify the change of variables above, one must show that the summation
over x still runs through all elements of G. I.e. the map τh : G −→ G with
τh(g) = hg must be bijective for any h ∈ G. Injectivity follows like so: τh(g) =
τh(g′) ⇔ hg = hg′ ⇔ g = g′. To proof surjectivity, it must be shown that
∀g ∈ G ∃g′ ∈ G : τh(g′) = g. Such a g′ ∈ G indeed exists, namely g′ = h−1g.
Indeed: τh(g′) = hg′ = hh−1g = g. This completes the proof.

Corollary 6. Any non-zero representation ϕ of a finite group is either irre-
ducible or decomposable.

Proof. Any representation ϕ of a finite group is equivalent to a unitary repre-
sentation ρ which is either irreducible or decomposable. The irreducibility and
decomposability, however, are “invariant” under equivalence of representations.
This means that also ϕ is either irreducible or decomposable.

Example 7. In this example we present a representation of the infinite group
Z which is not irreducible but still not decomposable. Define ϕ : Z −→ GL2(C)
by

ϕ(n) :=

[
1 n
0 1

]
.

We show that this is a representation by calculating
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ϕ(m+ n) =

[
1 m+ n
0 1

]
=

[
1 m
0 1

]
◦
[

1 n
0 1

]
= ϕ(m)ϕ(n)

and

ϕ(−n) =

[
1 −n
0 1

]
=

[
1 n
0 1

]−1
= ϕ−1(n).

The vector e1 =

[
1
0

]
is an eigenvector of ϕ(n) for all n ∈ Z:

ϕ(n)e1 =

[
1 n
0 1

]
◦
[

1
0

]
=

[
1
0

]
.

Therefore, the space spanned by this eigenvector is a Z-invariant subspace.
Explicitly, for e ∈ span(e1):

ϕ(n)e = ϕ(n)λe1 = λϕ(n)e1 = λe1 ∈ span(e1).

I.e. ϕ is not irreducible. On the other hand, if ϕ were decomposable, it would
be a direct sum of two one-dimensional representations. Such a representation
is diagonal. However, e.g. ϕ(1) is not diagonalizable, as the characteristical
polynomial det(x1 − ϕ(1)) has a double root at x = 1. Therefore, ϕ is not
decomposable.

Theorem 8. Every representation of a finite group is completely reducible.

Proof. The proof works by induction over the dimension of the representation.
Let thus ϕ be a representation of a finite group G on V . For dim(V ) = 1, ϕ is
already irreducible since any one dimensional vector space cannot have any one-
dimensional proper subspaces. Let then the statement be true for dim(V ) = n
and ϕ be a representation of dimension n+1. If ϕ is already irreducible, then we
are done. If ϕ is not irreducible, then it is decomposable according to Corollary
9. This means that V = V1 ⊕ V2 with V1 and V2 being G-invariant subspaces.
Since both dim(V1) and dim(V2) are smaller than n + 1, the representations
ϕ|V1

and ϕ|V2
are completely reducible. This means that V1 = U1 ⊕ · · · ⊕ Us

and V2 = W1 ⊕ · · · ⊕Wr where Ui and Wj are all G-invariant subspaces and
the representations ϕ|Ui

and ϕ|Wj
are all irreducible for i ∈ {1, ..., s} and j ∈

{1, ..., r}. Then, V = U1 ⊕ · · · ⊕ Us ⊕W1 ⊕ · · · ⊕Wr and thus ϕ is completely
reducible.

5



Remark 9. There is an analogy to the spectral theorem in linear algebra. The
spectral theorem states that any Hermitian (self adjoint) matrix is diagonal-
izable. More specifically, let V be a complex inner product vector space of
dimension n. A square matrix A is called Hermitian, if A = A∗ ≡ AT . This is
equivalent to saying that 〈v,Aw〉 = 〈Av,w〉 for all v, w ∈ V . Diagonalizability
means that there exists a unitary matrix U (i.e. a matrix with U∗ = U−1) and
a diagonal matrix Λ such that A = UΛU∗. The proof of the spectral theorem
also works by induction over the dimension of the matrix.

There is, however, a difference between complete reducibility of a represen-
tation and the spectral theorem. In representation theory, complete reducibility
does not mean that all sub-representations are one-dimensional. However, the
spectral theorem states that all eigenspaces are one-dimensional.
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