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Abstract

The aim of these notes is to make the life of the other participants easier, if my talk gets
too chaotic at some point.

1 General motivation

Studying the theory of Lie algebras allows us to understand the structure of more compli-
cated mathematical objects, called Lie groups. We can illustrate the correspondence between
Lie groups and Lie algebras with the following diagram:

{ Lie groups G } { Lie algebras g }

{1-connected,
compact

Lie group G}

TeG

∼

The main object of study of the seminar will be one of the smallest but important Lie algebras
sl2, corresponding to the Lie group SL2. We’re interested in its representation theory for many
reasons, e.g.:

• sl2(C) is isomorphic to the complexi�cation of the real Lie algebras so3 and su2, i.e.
so3 ⊗ C, respectively su2 ⊗ C; (not a subject of the seminar)

• sl2(C) viewed as a six-dimensional real Lie algebra, is isomorphic to the Lie algebra of
the Lorentz group, i.e. the group of linear transformations of the Minkowski space-time;
(not a subject of the seminar)

• the representation theory of sl2(C) extends to other setups, namely the representation
theory of semisimple Lie algebras g can be studied using the same tricks as for sl2(C)
with minimal addional knowledge since everything in sl2(C) is computable and known!
(subject of the seminar)
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2 Basic de�nitions

Assumption 2.1. Throughout these notes we will always work over the �eld of complex num-
bers C, unless it is said that we work over another �eld.

De�nition 2.2. The Lia algebra sl2(C) consists of the vector space

sl2(C) :=
{ [

a b

c d

]
: a, b, c, d ∈ C and a+ d = 0

}
of all complex 2× 2 matrices with zero trace and binary bilinear operation, called Lie bracket,
and de�ned as [X, Y] := XY − YX for X, Y arbitrary matrices.

Remark 2.3. Taking the Lie bracket of two matrices is a well-de�ned operation. Indeed, take
two arbitrary n× n matrices A and B and apply the cyclicity of the trace to their Lie bracket:

tr([A,B]) = tr(AB) − tr(BA) = 0.

The lemma below characterizes every general Lie algebra, in fact it is a part of the de�nition
of a Lie algebra.

Lemma 2.4. (a) For any X ∈ g we have [X,X] = 0.
(b) For any X, Y, Z ∈ g the Jacobi identity holds true, i.e. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y]] = 0.

Proof. (a) Obviously, [X,X] = XX− XX = 0.
(b) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y]] = [X, YZ − ZY] + [Y, ZX − XZ] + [Z,XY − YX] =
X(YZ− ZY) − (YZ− ZY)X+ Y(ZX− XZ) − (ZX− XZ)Y + Z(XY − YX) − (XY − YX)Z =
���XYZ−���XZY −���YZX+���ZYX+���YZX−���YXZ−���ZXY +���XZY +���ZXY −���ZYX−���XYZ+���YXZ = 0.

Remark 2.5. [X,X] = 0 is equivalent to the property, called antisymmetry, de�ned as [X, Y] =
−[Y, X] for all X, Y ∈ g. To see that, recall that [−,−] is bilinear and set 0 = [X + Y, X + Y] =
[X,X] + [X, Y] + [Y, X] + [Y, Y]. This is true for any �eld K with char(K) 6= 2.

The way we presented the Lie algebra sl2(C) is not convenient for our purpose to study the
representation theory of this algebra (in�nitely many elements), that’s why it is better to look
at sl2(C) in terms of generators and relations.

De�nition 2.6. The Lie algebra sl2(C) is 3-dimensional and has a natural basis given by the
matrices:

e =

[
0 1

0 0

]
, f =

[
0 0

1 0

]
, h =

[
1 0

0 −1

]
,

subject of the relations:

[e, f] = ef− fe = h, [h, e] = he− eh = 2e, [h, f] = hf− fh = −2f. (2.1)

Assumption 2.7. From now on, we will use the following notational convention: sl2(C) = g.
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De�nition 2.8. A module over g (or simply a g-module) is a vector space V together with
three �xed linear operators E = EV , F = FV , H = HV on V , which satisfy the equations from
the relations, namely

EF− FE = H, HE− EH = 2E, HF− FH = −2F. (2.2)

Remark 2.9. We can rewrite the last two relations as:

HE = 2E+ EH = E(H+ 2), HF = FH− 2F = F(H− 2).

Example 2.10. Let V = C and E = F = H = 0. This is the notion of the trivial g-module.

Example 2.11. Let V = C2. We identify the set of all linear operators on V with the set of
all 2 × 2 matrices. In this case the linear operators E, F and H coincide with the matrices e,
f, h. The equations 2.1 and 2.2 are satis�ed. This is how the natural (or standard) g-module is
de�ned.

Example 2.12. Take V = g. We de�ne the linear operators as follows:

Eadj is [e,−], Fadj is [f,−], Hadj is [h,−].

This de�nes the adjoint g-module. To see this, check if the relations in 2.2 for g are satis�ed
for the corresponding matrices to the linear operators. The matrices are given by:

Eadj =

 0 0 −2
0 0 0

0 1 0

 , Fadj =
 0 0 0

0 0 2

−1 0 0

 , Hadj =
 2 0 0

0 −2 0

0 0 0

 .
Lemma 2.13. For any X ∈ g we have the following identities:
(a) [e, [f, X]] − [f, [e, X]] = [h,X],
(b) [h, [e, X]] − [e, [h,X]] = [2e, X],
(c) [h, [f, X]] − [f, [h,X]] = [−2f, X].

Proof. We prove only (a), since (b) and (c) follow the same idea.
We rewrite the equation from (a) as [e, [f, X]]−[f, [X, e]]−[h,X] = 0. Using that [e, f] = h and
the antisymmetry of the Lie bracket, we obtain [e, [f, X]] + [f, [X, e]] + [X, [e, f]] = 0, which
corresponds to the Jacobi identity from Lemma 2.4.

De�nition 2.14. Let V,W be g-modules, then a g-homomorphism (also known as intertwiner)
is a linear map Φ : V →W, which makes the diagram commute for all X ∈ {E, F,H}:

V V

W W.

XV

Φ Φ

XW
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In other words XW ◦Φ = Φ ◦ XV , i.e. Φ intertwines the actions of e, f and h on V , such that
we get:

ΦEV = EWΦ,ΦFV = FWΦ,ΦHV = HWΦ.

Example 2.15. We call the morphism Φ : V →W de�ned as v 7→ 0W , the zero morphism. It
clearly satis�es the condition of De�nition 2.14, so it is a g-morphism.

Example 2.16. For any g-module V , the identity map idV on V is an intertwiner. This is
known as the identity morphism.

Remark 2.17. Let us denote the space of all g-homorphisms as Homg(V,W). It has the
structure of a vector space. Let f, g ∈ Homg(V,W), de�ne addition as f + g : V → W,
v 7→ f(v) + g(v). For scalar multiplication we have αf : V → W, v 7→ αf(v) ∈ W. It follows
that Homg(V,W) 6= 0 and dim(Homg(V,W)) = dim(V)dim(W).

Remark 2.18. As seen in the (linear) algebra class we have the following notions for inter-
twiners:

• monomorphism is an injective g-homomorphism;
• epimorphism is a surjective g-homomorphism;
• isomorphism is a bijective g-homomorphism.

For us it makes sense to study g-modules up to isomorphism.

De�nition 2.19. Let V be a g-module. A subspace W ⊂ V is called a subspace (or a g-
submodule) of V , if it is invariant with respect to the action of EV , FV and HV , that means:

EVW ⊂W, FVW ⊂W, HVW ⊂W.

Remark 2.20. The module V has always two submodules, namely the zero module {0} and V
itself.

De�nition 2.21. Any submodule that is not the zero submodule and not V itself is called a
proper submodule. A module V that has no proper submodules is called simple.

Example 2.22. Any module of dimension one is simple.

Example 2.23. The trivial, natural and the adjoint modules are simple.

Example 2.24. Let V = C2 and E = F = H = 0. V has the structure of a g-module which is
not simple, e.g. there is a proper one dimensional submodule spanned by the vector e1 = (1, 0),
we have E(e1) = F(e1) = H(e1) = 0.

Example 2.25. Let V be a g-module and W be a submodule of V . The quotient space V/W
has the natural structure of a g-module given by E(v+W) = E(v)+W, F(v+W) = F(v)+W,
H(v+W) = H(v) +W.

As next we will see a lemma, which we will apply in the proof of the Schur’s lemma.
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Lemma 2.26. Let V andW be two g-modules andΦ an intertwiner. Then we have:
(a) Ker(Φ) of Φ is a submodule of V .
(b) The image Im(Φ) of Φ is a submodule ofW.

Proof. (a) Let v ∈ Ker(Φ) and X ∈ {E, F,H}. We want to show that the space Ker(Φ) is
invariant under the action of X. Indeed:

Φ(XV(v)) = Φ ◦ XV(v) = XW ◦Φ(v) = 0⇒ XV(v) ∈ Ker(Φ).

(b) Letw ∈ Im(Φ), then there exists some v ∈ V such thatw = Φ(v). Apply the de�nition
of an intertwiner:

Φ ◦ XV(v) = XW ◦Φ(v) = XW(w) ∈ Im(Φ),

which proves the claim.

3 Classi�cation of simple �nite-dimensional modules

In this section we will classify all simple �nite-dimensional g-modules. We will see later that
these modules form only a small family of the simple g-modules.

Throught this section, V is always considered to be a non-zero �nite-dimensional g-module.
For λ ∈ C we set:

V(λ) =
{
v ∈ V : (H− λ)kv = 0 for some k ∈ N

}
, called generalized weight space,

Vλ =
{
v ∈ V : Hv = λv

}
, called the eigenspace to λ.

Note that Vλ is a subspace of V(λ) and if λ is not an eigenvalue of H, then Vλ = {0}. Since C
is algebraically closed, from the Jordan Decomposition Theorem we have:

V ∼=
⊕
λ∈C

V(λ).

SetW =
⊕

λ∈C Vλ ⊂ V and note thatW 6= 0 asHmust have at least one non-zero eigenvalue,
hence at least one non-zero eigenvector in V .

We are interested in the actions of E, F and H on V(λ) and Vλ:

Lemma 3.1. Let λ ∈ C. Then we have:
(a) EV(λ) ⊂ V(λ+ 2) and EVλ ⊂ Vλ+2;
(b) FV(λ) ⊂ V(λ− 2) and FVλ ⊂ Vλ−2;
(c) HV(λ) ⊂ V(λ) and HVλ ⊂ Vλ.

Proof. (a) For v ∈ Vλ we have:

H(E(v)) = HE(v) = EH(v) + 2E(v) = λE(v) + 2E(v) = (λ+ 2)E(v),
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by using the relation HE = E(H+ 2). This proves the second statement.
To prove the �rst part take v ∈ V(λ) and let k ∈ N0 be such that (H− λ)kv = 0.

(H− (λ+ 2)k)(E(v)) = (H− (λ+ 2))k(E(v)) = E(H+ 2− (λ+ 2))k(v) = E(H− λ)kv = 0,

which implies that Ev ∈ V(λ+ 2).

(b) The proof follows a similar idea, using the other relation HF = FH− 2F.

(c) Clearly, H(H(v)) = H(λv) = λHv = λ2v ∈ Vλ and HV(λ) = (H − λ)k(Hv) =
(H− λ)k(λv) = λ(H− λ)k(v) = 0.

Corollary 3.2. The spaceW is a submodule of V . In particular,W = V , if V is a simple.

Remark 3.3. A conserquence of the corollary is that we can improve the decomposition as
follows:

V ∼=
⊕
λ∈C

Vλ (3.1)

Since V is �nite-dimensional, the decomposition in 3.1 must be �nite, i.e. Vλ 6= 0 only for
�nitely many λ.
Fix some µ ∈ C such that Vµ 6= 0 and Vµ+2k = 0 for all k ∈ N. With other words, one sees that
all the complex numbers appearing in the decomposition must be congruent to one another
mod 2. Let v ∈ Vµ be some non-zero element. Vµ−2k must be zero for some k ∈ N as we saw
in the Lemma 3.1 part (b). Therefore, there exists a minimal n ∈ N such that Fnv = 0. For
i ∈ {1, 2, . . . n− 1} set vi = Fiv with v0 = v. The decomposition in 3.1 implies that the vi’s are
linearly independent. Let us denote the subspace, spanned by these vectors, as N.

Lemma 3.4. We have that Ev0 = 0 and Evi = i(µ− i+ 1)vi−1 for all i ∈ {1, 2, . . . n− 1}.

Proof. From the Lemma 3.1 part (a), we know that Ev0 must be an eigenvector of H and its
corresponding value is λ + 2, but the λi are ordered the real value, so there is no non-zero
eigenvector corresponding to λ+ 2. The only possibility is that Ev0 is zero.

To prove the rest we proceed by induction on i:
For i = 1: Ev1 = EFv0 = FEv0 +Hv0 = 0+ µv0 = µv0.
Assume that: For i > 1we have Evi−1 = (i−1)(µ−(i−1)+1)vi−2 = (i−1)(µ− i+2)vi−2.
Then: Evi = EFvi−1 = FEvi−1 + Hvi−1 = (i − 1)(µ − i + 2)Fvi−2 + (µ − 2(i − 1))vi−1 =
i(µ− i+ 1)vi−1. This proves the claim.

Corollary 3.5. N is a submodule of V . In particular, N = V given V is simple.

Proof. N is invariant under the actions of H and F. The previous Lemma 3.4 provides that it is
invariant under the action of E.

Lemma 3.6. We �nd an exact value for µ, namely µ = n− 1.
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Proof. By the argument used in the proof of Lemma 3.4 we get:

EFvn−1 = FEvn−1 +Hvn−1 = n(µ− n+ 1)vn−1.

But, Fvn−1 = 0 by our asssumption, hence we obtain n(µ− n+ 1) = 0⇒ µ = n− 1.

Let us summarize the information gained until now regarding the actions of E, F and H on
the basis vectors {v0, v1, v2, . . . , vn−1}:

Actions of E, F and H

Ev0 = 0
Evi = i(n− i)vi−1

Fvn−1 = 0
Fiv0 = vi

Hvi = (n− 2i+ 1)vi

Remark 3.7. With the information we can visualize our results by the following diagram,
known as “ladder” diagram:

vn−1 vn−2 vn−3 vn−4

. . .
v2 v1 v0

an−1 an−2 an−3 a3 a2 a1

1 1 1 1 11

−n+ 1 −n+ 3 −n+ 5 −n+ 7 n− 5 n− 3 n− 1

Figure 1: Ladder diagram

Here the red arrows depicts the action of E, known as raising operator. We set ai = i(n− i).
The action of the lowering operator F is represented in blue. H acts on itself and is represented
by the orange arrows. The labels denote the multiplicities.

Remark 3.8. For every n ∈ N the picture above de�nes on the formal linear span N =
{v0, v1, . . . , vn−1} the structure of a g-module. Indeed, one has to check that the relations from
2.2 are satis�ed for the actions, de�ned above. This is easy to be done, but there are many
identities to be checked. For example, pick the vector v1, we want to check the relation EF −
FE = H. Indeed, we obtain a2−a1 = n−3, which is exactly what the operatorH does. So, the
relation is satis�ed. One checks all the other relations for the other vectors in a similar way.
We denote this module as V(n).

As next, we will consider the main result of today’s talk, namely the classi�cation of the
�nite-dimensional simple modules.

Theorem 3.9. We have the following statements:

(a) For every n ∈ N the module V(n) is a simple g-module of dimension n.
(b) For any n,m ∈ N we have V(n) ∼= V(m), if and only if n = m.
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(c) Let V be a simple �nite-dimensional g-module of dimension n. Then V ∼= V(n).

Proof. (a) The module structure of V(n) follows from Remark 3.8. What is left is to show that
this module is simple. Let M ⊂ V(n) be a non-zero submodule and v ∈ M, v 6= 0. From the
Figure 1 we have that Env = 0, in particular EnM = 0 and hence M must have a non-trivial
intersection with Ker(E). From the same picture it follows that the kernel of E is the linear
span of v0, namely it is one-dimensional. Hence M contains v0. Applying the operator F by
induction gives thatM contains all the vectors vi. This implies that V(n) =M and proves the
simplicity.
(b) Clear, since the vector spaces of the same dimension are isomorphic.
(c) The last result follows from the Figure 1 above.

Remark 3.10. One can rescale the basis by setting wi = 1
i !vi. Apply the actions of E, F and

H to the new basis and get the following symmetric picture just by computations:

wn−1 wn−2 wn−3 wn−4

. . .
w2 w1 w0

1 2 3 n− 3 n− 2 n− 1

n− 1 n− 2 n− 3 2 13

−n+ 1 −n+ 3 −n+ 5 −n+ 7 n− 5 n− 3 n− 1

Figure 2: Ladder diagram in the scaled basis.

This picture gives us a way how to construct the matrices for the linear operators E, F
and H. To get the matrices, apply the linear operators to each of the vectors in the basis
{w0, w1, . . . wn−1}.

E =



0 n− 1 0 . . . 0 0 0

0 0 n− 2 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

... 2 0
...

...
... . . . 0 0 1

0 0 0 . . . 0 0 0


, F =



1 0 0 . . . 0 0 0

0 2 0 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

... 0 0
...

...
... . . . n− 2 0 0

0 0 0 . . . 0 n− 1 0


,

H =



n− 1 0 0 . . . 0 0 0

0 n− 3 0 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
... 5− n 0 0

...
...

... . . . 0 3− n 1

0 0 0 . . . 0 0 1− n


.
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The �nal result for this talk is known as Schur’s lemma and it shows that we don’t have so
much freedom when we want to think about intertwiners between �nite-dimensional simples.

Lemma 3.11. (a) Any non-zero homomorphism between two simple g-modules is an isomor-
phism.
(b) For any two simple �nite-dimensional g-modules V andW we have:

Homg(V,W) ∼=

{
C, if V ∼=W

0, otherwise.

Proof. (a) Let Φ ∈ Homg(V,W) be some non-zero intertwiner. We shall use the result from
Lemma 2.26 saying that Ker(Φ) is a subrepresentation of V and Im(Φ) is a subrepresentation
ofW.
As V is simple andΦ is non-zero, we get that Ker(Φ) = 0, which implies thatΦ is a monomor-
phism.
Same in case of Im(Φ), namelyW is simple andΦ is non-zero, which means that Im(Φ) =W
and hence, Φ is an epimorphism. This implies thatΦ is an isomorphism.

(b) Part (a) shows that Homg(V,W) = 0, if V �W.
Assume that V ∼= W and Ψ 6= 0 ∈ Homg(V,W) is another homomorphism. Then we have
Homg(V,V)→ Homg(V,W), de�ned by Φ 7→ Ψ ◦Φ.
We want to show that Homg(V,V) = C〈idV〉 ∼= C.
If Φ ∈ Homg(V,V) is non-zero, then it should have a non-zero eigenvalue λ ∈ C. Then
Φ−λIdV ∈ Homg(V,V). However, any eigenvector ofΦwith eigenvalue λ belongs to Ker(Φ−
λIdV)⇒ Φ − λIdV is not an isomorphism, because we have a non-trivial kernel, so it is not
injective. Hence it must be 0. This implies thatΦ = λIdV and this gives Homg(V,V) ∼= C.
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