Exotic sheaves via categorical actions

Clemens Koppensteiner (joint work with Sabin Cautis)

Institute for Advanced Study

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Usually: Constructible sheaves or D-modules

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

- Usually: Constructible sheaves or D-modules
- Recently: Abelian subcategories of derived categories of coherent sheaves.

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

- Usually: Constructible sheaves or D-modules
- Recently: Abelian subcategories of derived categories of coherent sheaves.
- Exotic sheaves: Certain subcategories of D^b_{coh}(Ñ), D^b_{coh}(g̃) and related categories.

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

- Usually: Constructible sheaves or D-modules
- Recently: Abelian subcategories of derived categories of coherent sheaves.
- Exotic sheaves: Certain subcategories of D^b_{coh}(Ñ), D^b_{coh}(g̃) and related categories.

Quite successful.

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

- Usually: Constructible sheaves or D-modules
- Recently: Abelian subcategories of derived categories of coherent sheaves.
- Exotic sheaves: Certain subcategories of D^b_{coh}(Ñ), D^b_{coh}(g̃) and related categories.

- Quite successful.
- But hard to understand.

 $\begin{array}{rcl} \mbox{Geometric} & = & \mbox{study of representations} \\ \mbox{representation theory} & = & \mbox{via categories of sheaves} \end{array}$

- Usually: Constructible sheaves or D-modules
- Recently: Abelian subcategories of derived categories of coherent sheaves.
- Exotic sheaves: Certain subcategories of D^b_{coh}(Ñ), D^b_{coh}(g̃) and related categories.

- Quite successful.
- But hard to understand (for a geometer).

Certain subcategories of $D^b_{\mathrm{coh}}(\tilde{\mathcal{N}})$, $D^b_{\mathrm{coh}}(\tilde{\mathfrak{g}})$ and related categories.

Important property: Exotic sheaves interact well with a certain action of the affine braid group constructed by Bezrukavnikov and Riche.

Certain subcategories of $D^b_{\mathrm{coh}}(\tilde{\mathcal{N}})$, $D^b_{\mathrm{coh}}(\tilde{\mathfrak{g}})$ and related categories.

Important property: Exotic sheaves interact well with a certain action of the affine braid group constructed by Bezrukavnikov and Riche.

Cautis-Kamnitzer: "Braid group actions come from categorical actions."

Certain subcategories of $D^b_{\mathrm{coh}}(\tilde{\mathcal{N}})$, $D^b_{\mathrm{coh}}(\tilde{\mathfrak{g}})$ and related categories.

Important property: Exotic sheaves interact well with a certain action of the affine braid group constructed by Bezrukavnikov and Riche.

Cautis-Kamnitzer: "Braid group actions come from categorical actions."

Question

Do exotic sheaves come from categorical actions?

Categorical actions

Usual representation theory of a Lie algebra ${\mathfrak g}$

Study representations V by decomposing into weight spaces V_{λ} and analyzing the action of \mathfrak{sl}_2 -triples.

Categorical actions

Usual representation theory of a Lie algebra ${\mathfrak g}$

Study representations V by decomposing into weight spaces V_{λ} and analyzing the action of \mathfrak{sl}_2 -triples.

Categorify:

 $V_{\lambda} \rightsquigarrow$ (triangulated) categories $\mathcal{K}(\lambda)$

 $e_i, f_i \longrightarrow adjoint functors E_i, F_i$

+ relations between those functors

Categorical actions

 $V_{\lambda} \longrightarrow$ (triangulated) categories $\mathcal{K}(\lambda)$ $e_i, f_i \longrightarrow$ adjoint functors E_i, F_i

+ relations between those functors

イロト 不得 トイヨト イヨト

-

Braid groups

Form complexes of functors $\mathcal{K}(\lambda) \rightarrow \mathcal{K}(s_i \lambda)$

$$\mathsf{T}_{i}|_{\mathcal{K}(\lambda)} = \mathsf{E}_{i}^{(\ell)} \to \mathsf{F}_{i}\mathsf{E}_{i}^{(\ell+1)} \to \mathsf{F}_{i}^{(2)}\mathsf{E}_{i}^{(\ell+2)} \to \cdots, \quad \ell = \langle \alpha_{i}, \lambda \rangle.$$

Braid groups

Form complexes of functors $\mathcal{K}(\lambda) \rightarrow \mathcal{K}(s_i \lambda)$

$$\mathsf{T}_{i}|_{\mathcal{K}(\lambda)} = \mathsf{E}_{i}^{(\ell)} \to \mathsf{F}_{i}\mathsf{E}_{i}^{(\ell+1)} \to \mathsf{F}_{i}^{(2)}\mathsf{E}_{i}^{(\ell+2)} \to \cdots, \quad \ell = \langle \alpha_{i}, \lambda \rangle.$$

Theorem (Cautis, Kamnitzer)

The T_i induce an action of the braid group of \mathfrak{g} on $\bigoplus_{\lambda} \mathcal{K}(\lambda)$.

イロト イポト イヨト イヨト

-

Braid groups

Form complexes of functors $\mathcal{K}(\lambda) \rightarrow \mathcal{K}(s_i \lambda)$

$$\mathsf{T}_{i}|_{\mathcal{K}(\lambda)} = \mathsf{E}_{i}^{(\ell)} \to \mathsf{F}_{i}\mathsf{E}_{i}^{(\ell+1)} \to \mathsf{F}_{i}^{(2)}\mathsf{E}_{i}^{(\ell+2)} \to \cdots, \quad \ell = \langle \alpha_{i}, \lambda \rangle.$$

Theorem (Cautis, Kamnitzer)

The T_i induce an action of the braid group of \mathfrak{g} on $\bigoplus_{\lambda} \mathcal{K}(\lambda)$.

(日)、

-

Corollary $\widehat{\mathfrak{sl}}_n$ -action \longrightarrow affine braid group action

Abelian categories from categorical actions

Theorem (Cautis, K.)

"Categorical $\widehat{\mathfrak{sl}}_n$ -actions have abelian refinements."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Abelian categories from categorical actions

Theorem (Cautis, K.) "Categorical $\widehat{\mathfrak{sl}}_n$ -actions have abelian refinements." Fix μ such that $\mathcal{K}(\mu)$ is "big enough":

abelian subcat. of E_i , F_i restrict abelian subcat. of $\mathcal{K}(\mu)$ to exact functors each $\mathcal{K}(\lambda)$

Abelian categories from categorical actions

Theorem (Cautis, K.) "Categorical $\widehat{\mathfrak{sl}}_n$ -actions have abelian refinements." Fix μ such that $\mathcal{K}(\mu)$ is "big enough":

abelian subcat. of	E_i, F_i restrict	abelian subcat. of
$\mathcal{K}(\mu)$	to exact functors	each $\mathcal{K}(\lambda)$

In particular: Exotic sheaves can be obtained in this way.

Applications

- Geometric construction of categories of exotic sheaves.
- Study these categories inductively starting from the easy highest weight categories.
- Get exotic sheaves on new spaces (convolution varieties of affine Grassmannian orbit closures).

- Applications to knot theory?
- Applications to birational geometry?