EXERCISES 7: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Show that for $m, n \in \mathbb{N}_0$ with $m \leq n$ one has (m!(n-m)!)|n!.

Exercise 2. Show the following statements.

- (a) There are infinitely many primes. (Hint: $p_1p_2\cdots p_r + 1$ is not divisible by p_1, p_2, \dots, p_r .)
- (b) The are arbitrarily big gaps between primes. (Hint: which of $(n+1)!+2, (n+1)!+3, \ldots, (n+1)!+n, (n+1)!+n+1$ are primes?)

Exercise 3. Define a map $f : \mathbb{N}_0 \setminus \{0\} \to \mathbb{N}_0$ recursively via

 $f(1)=2, \quad f(n)=f(n-1)+n2^n, \quad \forall n>1.$ Show that $f(n)=(n-1)2^{n+1}+2$ for all $n\in\mathbb{N}_0\setminus\{0\}.$

Exercise 4. Show that there exist n! total orders on a set with n elements.

Submission of the exercise sheet: 12.Nov.2018 before the lecture. Return of the exercise sheet: 22.Nov.2018 during the exercise sessions.