EXERCISES 4: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Let $X=\{a, b, c\}$. List all possible equivalence relations on X.

Exercise 2. Let X be a set, and let X^{X} denote the set of all maps $X \rightarrow X$. Further, let $S(X)$ denote the set of all bijective maps $X \rightarrow X$. Show:
(a) If $f, g \in S(X)$, then $g \circ f$ and $f \circ g$ are also in $S(X)$.
(b) If X has at least two elements, then X^{X} is not commutative with the operation given by 0 .
(c) If X has at least three elements, then $S(X)$ is not commutative with the operation given by \circ.

Exercise 3. Let X, Y be sets and let \sim_{X}, \sim_{Y} be equivalence relations on these sets. Moreover, let $f: X \rightarrow Y$ be a map such that

$$
(\star): \quad\left(x_{1} \sim_{X} x_{2}\right) \Rightarrow\left(f\left(x_{1}\right) \sim_{Y} f\left(x_{2}\right)\right) \quad \forall x_{1}, x_{2} \in X
$$

Show that there is a unique map $[f]$ such that

commutes. What happens if (\star) in the case where \sim_{X} is the identity relation? (Meaning that $\left.\left(x_{1} \sim_{X} x_{2}\right) \Leftrightarrow\left(x_{1}=x_{2}\right).\right)$

Exercise 4. Let (X, \leq) be an ordered set. Further, let A and B subsets of X which are bounded above. Show the following statements in the case where the corresponding suprema und infima exist:
(a) $\sup (A \cup B)=\sup (\sup (A), \sup (B))$.
(b) If $A \subset B$, then $\sup (A) \leq \sup (B)$.
(c) If $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \inf (\sup (A), \sup (B))$.

Formulate and prove the corresponding statements for subsets C and D of X which are bounded below.

Submission of the exercise sheet: 22. Oct. 2018 before the lecture. Return of the exercise sheet: 25. Oct. 2018 during the exercise classes.

