Representation Theory of Algebras Talk 8: Algebras and Modules I

In this talk we will introduce k-algebras and modules, where k is an algebraically closed field. Since all' algebras are also rings, we'll start off by recalling some basics from ring theory.
Then weal move on to defining k-algebras and five You plenty of examples on Chow we can connect them to Quivers through path algebras. And lastly well present modules and relate them to path algebras and Quivers as well.
4.1 Basics from 12 ing Theory

Since this section is meant as a refresher on some things that we'll use later, well keep it brief and not delve into too many details or give all of the proofs.

Def let R be a ring with $1 \neq 0$.
A right ideal left ideal) $I \leq R$ is a subgroup of the additive four $(R,+$) st.
$\forall a \in I, \forall r \in R$ ar ex (resp. ra
$\forall a \in I, \forall r \in R$ ar $\quad \forall$ (resp. $r \cdot a \in I$).
If a right ideal is also a left ideal then we'll simply refer to it as an ideal of R, for short.
examples (4.1)
(1) $\{0\} \leqslant R$ and R itself are both ideals of R
(2) Given an ideal $I \in R$ and $m \in \mathbb{N}, m>0$ $I^{m}:=\left\{\right.$ all finite sums of elements $\left.a_{1} \cdot a_{2} \cdot \cdots \cdot a_{m} \quad \mid a_{1} \in I\right\}$ is an ideal of 12

Def (4.1) An ideal $I \subseteq 12$ is called nilpotent if $I^{m}=0$ for some $m \in \mathbb{N}, m>0$.

Def (4.2) A proper (left /right) ideal I < R is called maximal if $\forall \jmath \leq R$ ideals st. $I \leq 0 \subseteq R \quad$ it holds that either $0=I$ or $0=0$.

Remark: (1) In a commutative ring R an Ideal $I \leq R$ is m aximal iffy the quotient ring R/I is a field.
(2) If k is afield, then its only ideals are $\{0\}, k$.

Def (4.3) The radical rad is the intersection of all maximal right ideals in 12

Lemma 4.1) let 12 be a ring and $a \in R$ then the following statements are equivalent:
(1) $a \in \operatorname{rad} R$
(2) $\forall b \in R, \quad 1-a b$ has a right inverse
(3) $\forall b \in R, \quad 1-a b$ has a two-sided inverse
(4) a is an element of the intersection of all maximal left idea's
(5) $\forall 6 \in 12$, $\forall-b a$ has a left inverse
(6) $\forall b \in R, 12$, $\forall a$ has two-sided inverse

Corollary (4.2)
(1) $\mathrm{rad} R$ is also equal to the intersection of all maximal left ideals
(2) rad 12 is an ideal of 12
(3) rad (R/rodR) $=0$
(4) If $I \subseteq R$ an ideal is nilpotent, then $I \leq \operatorname{rad} R$
4.2. Algebras

In this section we'll define algebras and their properties and give a couple detailed examples, including the path algebra of a quiver.
1)ef (4.4) (et k be an algebraically closed field. A k -algebra A is a singles $\left(A_{1}+\ldots\right)$ with unity 1 sit. A also has the structure of a k-vector space where:
(1) addition in the vector space A coincides with addition in the ring A
(2) scalar multiplication in the vector space A is compatible with the ring multiplication ie: $\forall a, b \in A \quad \forall \lambda \in k, \quad \lambda \cdot(a \cdot b)=(\lambda \cdot a) \cdot b=a(\lambda \cdot b)=(a \cdot b) \cdot \lambda$

Remark the dimension of the algebra A is the dimension of the k-vectorspace A.
examples (4.2)
(1) The ring of polynomials $k[x]$ in x, is a k-a debra. Its unity is the constant polynomial 1.
Scalar multiplication by $d \in h$ is done by multiplying each coefficient of apolynomial $4 y$. We can easily see that multiplication and scalar multiplication in $k[x]$ ar compatible:
$f(x), f(x) \in k[x]$, , $\in k$ then:

$$
((f(x) \cdot f(x))=(\lambda \cdot f(x)) \dot{f}(x)=f(x) \cdot(f f(x))=(f(x) \cdot f(x)) \downarrow
$$

(2) The set of all $n \times n$ Matrices ore k, Mat an (k), is a k-afobea, its unity being the
identity matrix. identity matrix.

It should be clear how Matixi (h) is a ring and has a k-veetor space structure. Scalar multiplication is just the sane as usual.

Again it is easy to clack multiplication compatibility: $A, B \in M_{a} t_{n+4}(k), \lambda \in k \quad t$ Len:

$$
\lambda \cdot(A \cdot B)=(\lambda A) \cdot B=A \cdot(\lambda B)=(A \cdot B) \cdot \lambda
$$

(3) We look at the set of (owe Cor upper) triangular matrices. These clearly form a sub ring of all matrices, and there tore also Lave a $k-A / f e b r a$ structure
the unity, multiplication and scalar multiplication are the same as in Matin (k)
(4) The set of all 3×3 matrices of the form:
also form a k-algebra.
the identity matrix is in the set.
Let us just check the multiplication:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
c & d & e
\end{array}\right) \quad B=\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & w & 0 \\
x & y & z
\end{array}\right) \quad a, b, c, d, e, v, w, x, y, z \in L \\
& \lambda(A \cdot B)=\lambda \cdot\left[\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
c & d & e
\end{array}\right) \cdot\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & w & 0 \\
x & y & z
\end{array}\right)\right]=d \cdot\left(\begin{array}{ccc}
a v & 0 & 0 \\
0 & b w & 0 \\
c v+e x & d w+e y & c z
\end{array}\right) \\
& (\lambda A) \cdot 13=\left(\begin{array}{ccc}
\lambda a & 0 & 0 \\
0 & \lambda b & 0 \\
\lambda c & \lambda d & \lambda_{c}
\end{array}\right) \cdot\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & w & 0 \\
x & y & z
\end{array}\right)=\left(\begin{array}{ccc}
\lambda a v & 0 & 0 \\
0 & \lambda b w & 0 \\
\lambda_{c u}+l_{c x} & \lambda d \omega+d_{e y} & \lambda_{e z}
\end{array}\right)^{\prime \prime} \\
& A(\lambda B)=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
c & d & e
\end{array}\right) \cdot\left(\begin{array}{ccc}
d_{v} & 0 & 0 \\
0 & d_{w} & 0 \\
d_{x} & d_{y} & \lambda_{2}
\end{array}\right)=\left(\begin{array}{ccc}
d_{a v} & 0 & 0 \\
0 & d_{w} & 0 \\
\lambda_{c v}+d_{c x} & d d_{w}+\lambda_{e y} & \lambda_{e z}
\end{array}\right) \\
& (A \cdot B) d=\left(\begin{array}{ccc}
a v & 0 & 0 \\
0 & b u & 0 \\
c v+e x & d w+e y & e z
\end{array}\right)^{\prime \prime} \cdot 1
\end{aligned}
$$

(5) what about the set of all 3×3 matrices of the form:
wed $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ are both elements but $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ is not. therefore t his set does not fulfill thc properties of a k-algebra.
(6) if A is an algebra, them the opposite algebra A^{00} is defined on the same underly ing vector space ie. as a set of elements $A=A O P$. But the multiplication in $A^{\circ p}$ is defined as:

$$
\forall a, b \in A^{\circ r} \quad a \cdot b:=b \cdot a
$$

multiplication in $A^{-r} \quad \tau_{m u l t i p l i c a t i o n ~ i n ~} A$ then $A^{\circ r}$ is also an algebra.

Remark: Take $B=\left\{b_{1}, b_{2} \ldots b_{n}\right\}$ a basis of $t L_{c}$ underlying vectorspace of the $k-a / g e b-a ~ A$, then every $a \in A$ is a linear combine cation of the $b ; i=r \ldots n$.
So if we take $a, a^{\prime} \in A$ two arbitrary elements:

$$
a=\sum_{i=1}^{n} d_{i} b_{i} \quad a^{\prime}=\sum_{i=1}^{n} l_{i}^{\prime} b_{i} \quad \text { for } \quad J_{i}, l_{!}!\in k \quad i=1 \ldots n
$$

then their product must satisfy:

$$
a \cdot a^{\prime}=\left(\sum_{i=1}^{n} d_{i} \cdot b_{i}\right) \cdot\left(\sum_{i=1}^{n} \lambda_{i}^{\prime} b_{i}\right)=\sum_{i, j=1}^{n} d_{i} d_{j}^{\prime} b_{i} b_{j}
$$

this means, that if we specify how to multiply any two basis elements then multiplication in the k-algebra is completely determined.

Recall: A quiver Q is a quadruple $\left(Q_{0}, Q_{1}, s, t\right)$ consisting of the following data:

- Q_{0} is a set of vertices
Q_{1} is a set of arrows
si $Q_{1} \rightarrow Q_{0}$ is a map, which sends an arrow to its starting point
- t: $Q_{1} \rightarrow Q_{0}$ is a map, which sends an arrow to its and point
we weporesent an arrow $\alpha \in Q$, by drawing it from its start to its and point, Like so:

$$
s(\alpha) \xrightarrow{\alpha} t(\alpha)
$$

Def let Q be a quiver. Given two pat ls

$$
c=\left(i\left|\alpha_{7}, \alpha_{2}, \ldots \alpha_{r}\right| j\right), c^{\prime}=\left(j \mid \alpha_{n}^{\prime}, \alpha_{2}^{\prime}, \ldots \alpha_{r}^{\prime} / k\right)
$$

with $j=t(c)=s\left(c^{\prime}\right)$,
we denote by $c \cdot c$ ' the concatenation of two paths given by:

$$
c \cdot c^{\prime}=\left(i / \alpha_{1}, \alpha_{2}, \ldots \alpha_{r}, \alpha_{2}^{\prime}, \ldots \alpha_{r}^{\prime} \mid k\right)
$$

With this new definition we can start defining multiplication for paths. Together with on- remark before we can use this to construct a useful k-algebra, namely the path algebra.

Def (4.5) (et Q be a quiver.
We define the path algebra $k Q$ of Q as the algebra with basis comprised of all paths in the quiver Q and multiplication of two basis elements c, c^{\prime} given by:

$$
c \cdot c^{\prime}=\left\{\begin{array}{cc}
c \cdot c^{\prime} & \text { if } s\left(c^{\prime}\right)=t(c) \\
0 & \text { otherwise }
\end{array}\right.
$$

therefore the product of any two elements in the path algebra is determined by:

$$
\left(\sum_{c} \lambda_{c} \cdot c\right) \cdot\left(\sum_{c} \lambda_{c} \cdot c^{\prime}\right)=\sum_{c, c^{\prime}} \lambda_{c} \cdot \lambda_{c}^{\prime} \cdot c \cdot c^{\prime}
$$

Lemma (4.3) the unity element of a path algebra $k Q$ is given by the sum of all constant paths:

$$
1=\sum_{i \in a_{0}} e_{i}
$$

proof
let $a \in k Q$ then $a=\sum_{c} d_{c} \cdot c$ for $\lambda_{c} \in k$ then

$$
a \cdot\left(\sum_{i \in Q_{0}} c_{i}\right)=\sum_{i \in Q_{0}}(\underbrace{\left.\sum_{c} 1_{c} \cdot c\right) e_{i}}
$$

since $c \cdot e_{i}=c$ if $t(c)=i$ then only path where $f(c)=i$ remain
$\sum_{i \in Q_{0}}\left(\sum_{c} \lambda_{c} \cdot c\right) e_{i}=\sum_{i \in Q_{0}} \sum_{c \in c} \sum_{c i=i} J_{c} \cdot c$ since every vertex in Q_{0}

$$
\begin{aligned}
& =\sum_{c} d_{c} \cdot c=a \quad \text { path will appear once } \\
& \text { similarly: } \sum_{i \in Q_{0}} e_{i} \cdot a=\left(\sum_{i \in Q_{0}} e_{i}\right)\left(\sum_{c} l_{c} \cdot c\right)=\sum_{i \in Q_{0}} \sum_{c} l_{c} e_{i} \cdot c \\
& =\sum_{i \in Q_{0}} \sum_{s(c)=i} l_{c} \cdot c=\sum_{c} b_{c} \cdot c=a
\end{aligned}
$$

examples (4.3)
(1) let Q be the quiver, 1 人 $Q_{0}=\{1\}, Q_{1}=\{\alpha\}$ then the paths of Q are $e_{1}, \alpha, \alpha^{2}, \alpha^{3} \ldots \ldots$ thus the path algebra $\& Q$ be has basis $e_{1}\left\{c_{1}, \alpha, \alpha, \ldots\right\}$ multiplication is simply: $\alpha^{s} \cdot \alpha^{t}=\alpha^{s+t} \quad$ sit $\in \mathbb{N}$ Then $k Q$ is isomorphic to the algebra of poly nomials over L. This can be shown through the basis elements fairly simply:

$$
\begin{aligned}
& \varphi: k Q \longrightarrow k[x] \\
& \sum_{n=0}^{m} d_{n} \alpha^{n} \longmapsto \sum_{n=0}^{m} J_{n} \cdot x^{n} \\
& e\left(\alpha^{s} \cdot \alpha^{t}\right)=\varphi\left(\alpha^{s+t}\right)=x^{s+t}=x^{s} \cdot x^{t}=\varphi\left(\alpha^{s}\right) e\left(\alpha^{t}\right)
\end{aligned}
$$

(2) let Q be the quiver $!\xrightarrow{\alpha_{1}} ?^{2} \xrightarrow{\alpha_{2}} 3^{3} \xrightarrow{\alpha_{3}} \ldots \xrightarrow{\alpha_{n-1}}$ n then $k \subset Q$ is isomorphic to the set of all upper triangular matrices non.
Since each path in $k Q$ is a straight path from i to $w i t h \quad i \leq j \quad 1 \leq i, j \leq n \quad t$ hen we can uniquely denote each bersis element of hQ by $c_{i, j}$ the unique path from ito st.:

$$
c_{i j}=\left\{\begin{array}{l}
e_{i}, i=j \\
\alpha_{i} \cdots \alpha_{j-1}, i \neq j
\end{array} \quad \text { and } \quad s\left(c_{i j}\right)=i, \quad t\left(c_{i j}\right)=j\right.
$$

then $\varphi: k Q \longrightarrow \operatorname{Mat}_{n \times n} \square(k)$

$$
\sum_{\substack{i, j \\
1 \leqslant i \leq j \leqslant n}} l_{i, j} \cdot c_{i j} \longmapsto\left(\begin{array}{ccc}
\lambda_{1,1}, & \cdots & j_{1, n} \\
\cdots & & \vdots \\
0 & \ddots & \vdots \\
& & \\
& & j_{n, n}
\end{array}\right)
$$

note $+h_{a t} \quad e\left(\sum_{i=1}^{n} c_{i i}\right)=e\left(\sum_{i=1}^{n} e_{i}\right)=\left(\begin{array}{cc}1 & 0 \\ j \cdot 1\end{array}\right)=I_{n}$ ie. φ sends $1_{k Q} t_{0} 1_{\text {nato }}$
we'll demonstrate $\varphi(a \cdot b)=\varphi(a) \cdot \varphi(b)$ by an example:
let $n=3 \quad a, b \in k Q \quad$ where $a=\sum_{1 \leqslant i \leqslant j s 3} \lambda_{i j} c_{i j} \quad b=p_{23} c_{23}$

$$
a \cdot b=\left(1_{11} c_{11}+1_{12} c_{12}+1_{13} c_{73}+1_{22} c_{22}+1_{29} c_{23}+1_{33} c_{33}\right) \cdot\left(\rho_{23} \cdot c_{23}\right)
$$

since $c_{i j} \cdot c_{23} \neq 0 \Leftrightarrow j=2$ we lave:

$$
a \cdot b=1_{12} \cdot \rho_{23} \cdot c_{12} \cdot c_{23}+\lambda_{22} \cdot \rho_{23} \cdot c_{22} \cdot c_{23}=\lambda_{12} \cdot \rho_{23} \cdot c_{13}+\lambda_{22} \cdot \rho_{23} \cdot c_{23}
$$

on the other hand:

$$
\varphi(a) \cdot \varphi(b)=\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{23}
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \rho_{23} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1_{12} \rho_{23} \\
0 & 0 & \lambda_{22} \rho_{23} \\
0 & 0 & 0
\end{array}\right)=\varphi(a \cdot b)
$$

Also, we'll demonstrate an example that when 2 points cont be concatenated, we get the 0 matrix.
For example, take $a=\alpha_{1}=c_{12}$, and $b=c_{3}=c_{33}$
the: $a \cdot b=c_{12} \cdot c_{33}=0 \quad$ and $\quad e(a)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \quad e(b)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
t lerefore $e(a) \cdot \varphi(b)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\varphi(0)=\varphi(c . b)$
(3) let Q be the quiver

then $k Q$ is isomorphic to the set of all matrices of the form: where $d_{c} \in K$ are the coefficients of the path c.
$k Q$ has the basis:

$$
\left\{c_{1}, e_{2}, e_{3}, e_{4}, \alpha, \beta, g, s \alpha, g \alpha\right\}
$$

the structure and rap for this issmorpliim is very similar to (2), so we won't go into detail here.

Def (4.6) (et A. 3 be two k-algebras, then
a k-linear $m<p$ f: $A \rightarrow 13$ is a
homomorphism of algebras if:

- $f(1)=1$
- $\forall a, a^{\prime} \in A \quad f\left(a \cdot a^{\prime}\right)=f(a) \cdot f\left(a^{\prime}\right)$

We already used sue l homomorphisms in examples 4.3. Now we'll give you a problem where you can try to work with these maps as well:

Problem 4.5 let G be a group and let
$k G:=\left\{\sum_{\delta \in G} \int_{\delta} \cdot \delta / d_{\delta} \in k\right.$, finitely many b_{f} are nonzero $\}$
be the k-algebra with basis G and maltiplicestion given by the group operation. $k G$ is called the group algebra of G. Show that:
(1) $k \mathbb{Z}$ is isomorphic to the algebra of Laurent polynomials in one variable over k.
(2) $k(\mathbb{Z} / n \mathbb{Z})$ is isomosplic to $k[x] /\left(x^{n}-7\right)$

Solutions
(1) define $\Phi: k \mathbb{Z} \longrightarrow k\left[x, x^{-1}\right]^{\ll \text { Laurent }}$ polynomials in x

$$
\sum_{n \in \mathbb{Z}} J_{n} \cdot n \longmapsto \sum_{n \in \mathbb{Z}} J_{n} x^{n}
$$

we need to show that Φ is a bijective k-algebra homomorphism: let $a, b \in k \mathbb{Z} \rho \in k$

$$
\begin{aligned}
& a=\sum_{n \in \mathbb{Z}} d_{n} \cdot n \quad b=\sum_{n \in \mathbb{Z}} d_{n}^{\prime} \cdot n \\
& \cdot \Phi(\rho \cdot a+b)=\Phi\left(\rho \cdot \sum_{n \in \mathbb{Z}} l_{n} \cdot n+\sum_{n \in \mathbb{Z}} d_{n}^{\prime} \cdot n\right)=\Phi\left(\sum_{n \in \mathbb{Z}}\left(\rho d_{n}+l_{n}^{\prime}\right) n\right) \\
&=\sum_{n \in \mathbb{Z}}\left(\rho d_{-}+d_{n}^{\prime}\right) x^{n}=\left(\sum_{n \in \mathbb{Z}} \lambda_{1} x^{n}+\sum_{n \in \mathbb{Z}} d_{n}^{\prime} x^{n}=\rho \cdot \Phi(a)+\Phi(b)\right.
\end{aligned}
$$

$\Rightarrow \underline{\sigma}$ is k Linear.

- in $k \mathbb{Z}$ the unity is 0 since in this k algebra

$$
\begin{aligned}
& n \cdot m:=n+m \\
& \Phi(0)=\Phi(1 \cdot 0)=1 \cdot x^{0}=1 \leftarrow 4 n i \neq y \text { in } k\left[x, x^{-1}\right] \\
& \cdot \Phi(a \cdot b)=\Phi\left(\left(\sum_{n \in \mathbb{Z}} d_{n} \cdot n\right) \cdot\left(\sum_{n \in \mathbb{Z}}!_{n}^{\prime} \cdot n\right)\right)=\Phi\left(\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} J_{k} \cdot d_{n-k}^{\prime}\right) \cdot n\right) \\
& =\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} d_{k} \cdot d_{n-k}^{\prime}\right) x^{n}=\left(\sum_{n \in \mathbb{Z}} d_{n} x^{n}\right) \cdot\left(\sum_{n \in \mathbb{Z}} d_{n}^{\prime} x^{n}\right)=\Phi(a) \cdot \mathbb{E}(b)
\end{aligned}
$$

$\Rightarrow \Phi$ is a k-afebra homomorphism.

$$
\begin{aligned}
& \cdot \Phi(a)=\Phi(b) \Leftrightarrow \sum_{n \in \mathbb{Z}} \lambda_{n} x^{n}=\sum_{n \in \mathbb{Z}} \lambda_{n}^{\prime} x^{n} \\
& \Leftrightarrow \lambda_{n}=\lambda_{n}^{\prime} \quad \forall n \in \mathbb{Z} \quad \Leftrightarrow \sum_{n \in \mathbb{Z}} d_{n} \cdot n \quad \sum_{n \in \mathbb{Z}} d_{n}^{\prime} \cdot n \Leftrightarrow a=b
\end{aligned}
$$

$\Rightarrow \Phi$ is infective

- let $\sum_{n \in \mathbb{Z}} a_{n} x^{n} \in k\left[x, x^{-1}\right]$ then $a_{n} \in k \quad \forall n \in \mathbb{Z}$ so then $\sum_{n \in \mathbb{Z}} a_{n} \cdot n \in \mathbb{Z}$ and $\Phi\left(\sum_{n \in \mathbb{Z}} a_{n} \cdot n\right)=\sum_{n \in \mathbb{Z}} a_{n} x^{n}$ \Rightarrow б is su-jective
(2) First off, let as recall that for any $p(x) \in k(x]$ using long devision, one can find $g(x), r(x) \in K(x)$ st. $p(x)=\left(x^{n}-1\right) q(x)+r(x)$ where: $r(x)=\sum_{i=0}^{n-1} \lambda_{i} x^{i}$, hence $k[x] /\left(x^{n}-1\right) \cong\left\{\sum_{i=0}^{n} \lambda_{i} x^{n} / / d_{i} \in k\right\}$
next, note $+l_{a t}$ in $k[x] /\left(x^{n}-1\right), x^{m} \equiv x^{m(\bmod n)} \quad \forall m \in \mathbb{N}$ hence, in multiplying two elements in $k(x) /\left(x^{n}, \cdots\right)$ we can replace $x^{i} \cdot x^{j}$ by $x^{i+j(\operatorname{modn})}$, so:

$$
\begin{aligned}
& \left(\sum_{i=0}^{n-1} d_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} \lambda_{j}^{\prime} x^{j}\right)=\sum_{i} \sum_{j} \lambda_{i} \lambda_{j}^{\prime} x^{i+j}=\sum_{k=0}^{n-1}\left(\sum_{i+j=k \bmod n} d_{i} \lambda_{j}^{\prime}\right) x^{k} \\
& =\sum_{k=0}^{n-0}\left(l_{0} \lambda_{k}^{\prime}+\lambda_{1} d_{k-1}^{\prime}+\ldots+\lambda_{k} \lambda_{0}^{\prime}+\lambda_{k+1} \lambda_{n-1}^{\prime}+\ldots+\lambda_{n \ldots-1} \cdot \lambda_{k+1}^{\prime}\right) x^{k}
\end{aligned}
$$

similarly for $a, b \in k(\mathbb{Z} / n \mathbb{Z})$ where

$$
\begin{aligned}
& a=\sum_{i=0}^{n-n} d_{i} i \quad b=\sum_{j=0}^{n-2} d_{j}^{j} j \quad \text { then: } \\
& \left.a \cdot b=\sum_{i=0}^{M 10} \sum_{j=0}^{M a} 1_{i} 1_{j}^{\prime} \cdot(i+j)_{\bmod n}=\sum_{k=0}^{M 1}\left(\sum_{i+j=k \operatorname{modn}} 1_{i} d_{j}\right)^{\prime}\right) k \\
& =\sum_{k=0}^{n-1}\left(\lambda_{0} \lambda_{k}^{\prime}+\lambda_{1} \lambda_{k-1}^{\prime}+\lambda_{2} \lambda_{k-2}^{\prime}+\ldots+\lambda_{k} \lambda_{0}^{\prime}+\lambda_{k+1} \lambda_{n-1}^{\prime}+\ldots+\lambda_{n-1} \lambda_{k+1}^{\prime}\right) k
\end{aligned}
$$

$$
\sum_{i=0}^{n-1} d_{i} \cdot i \longmapsto \sum_{i=0}^{n-1} d_{i} x^{i}\left(x^{n}-1\right)
$$

we need to show that ψ is a bijective k-algebra homomorphism. (et $a, b \in k(\mathbb{Z} / n \mathbb{Z}) \rho \in L_{k}$

$$
\begin{aligned}
& a=\sum_{i=0}^{n-7} d_{i} \cdot i \quad b=\sum_{i=0}^{n-1} 1_{i}^{\prime} \cdot i \\
& \left.=\psi(\rho \cdot a+b)=\psi / \rho \cdot \sum_{i=0}^{n-7} d_{i} i+\sum_{i=0}^{n-n} d_{i}^{\prime} i\right)=\psi\left(\sum_{i=0}^{n-1}\left(\rho_{i}+1_{i}^{\prime}\right) ;\right) \\
& =\sum_{i=0}^{n-1}\left(\rho d_{i}+l_{i}^{\prime}\right) x^{i}=\Gamma \sum_{i=0}^{n-1} d_{i} x^{i}+\sum_{i=0}^{n-1} l_{i}^{\prime} x^{i}=\rho \cdot \psi(a)+\psi(b) \\
& \Rightarrow \psi \text { is } k \text { linear }
\end{aligned}
$$

- Again 0 is the unity of $k(\mathbb{Z} / n \mathbb{Z})$ $4(0)=x^{0}=1 \leftarrow$ the unity in $k[x] /\left(x^{n}-1\right)$

$$
\begin{aligned}
&\left.\psi(a \cdot b)=\psi\left(\sum_{i=0}^{n-n} d_{i} \cdot i\right) \cdot\left(\sum_{i=0}^{n-n} d_{i}^{\prime} \cdot i\right)\right) \\
&= \psi\left(\sum_{i=0}^{n-1}\left(d_{0} d_{i}^{\prime}+1_{n} d_{i, n}^{\prime}+d_{2} d_{i-2}^{\prime}+\ldots .+d_{i} d_{0}+d_{i+n} d_{n-1}^{\prime}+\ldots+d_{n-1} d_{i+1}^{\prime}\right) i\right) \\
&=\sum_{i=0}^{n-n}\left(d_{0} d_{i}^{\prime}+d_{1} d_{i-1}^{\prime}+\ldots+d_{i} d_{0}+d_{i+1} \cdot d_{n-1}^{\prime}+\ldots+d_{n-1} d_{i+n}^{\prime}\right) x^{i} \\
&=\left(\sum_{i=0}^{n-n} d_{i} x^{i}\right) \cdot\left(\sum_{i=0}^{n-n} d_{i}^{\prime} x^{i}\right)=\psi(a) \cdot \psi(b)
\end{aligned}
$$

$\Rightarrow \Psi$ is a k-algebra homomorphism

- $\psi(a)=\psi(b) \Leftrightarrow \sum_{i=0}^{n-1} d_{i} \cdot x^{i}=\sum_{i=0}^{m i n} d_{i}^{\prime} x^{i} \Leftrightarrow d_{i}=J_{i}^{\prime} \quad \forall i=0 \ldots a-1$ $\Leftrightarrow \sum_{i=0}^{n-7} l_{i} i=\sum_{i=0}^{n-n} f_{i}^{\prime} i \Leftrightarrow a=b$
- Let $\sum_{i=0}^{n-1} a_{i} x^{i} \in k[x] /\left(x^{n}-1\right) \quad$ then $a_{i} \in k \quad \forall i=0,-n-1$ so $\sum_{i=0}^{n-1} a_{i} \cdot i \in k(\mathbb{Z} / n \mathbb{Z})$ and $\psi\left(\sum_{i=0}^{n-1} a_{i} \cdot i\right)=\sum_{i=0}^{n-1} a_{i} x^{i}$ $\Rightarrow \psi$ is surjective
1)ef (4.7) (et B be a k-vector subspace of A then 3 is a suba'gebra if B contains 1 and $\forall b, b^{\prime} \in 13 \quad b . b^{\prime} \in 3$

Prop (4.4) If I $\operatorname{If} A$ is a nilpotent ideal of A st. the Algebra $A / I \cong k \times k \times \cdots \times k$ then $I=\operatorname{rad} A$
proof we already know t lat $I \leq$ and A from Corollary 9.2 since k is a field, we know 0 , k are its solc.decils, hence $n a x i m a l$ ideals of $k x \ldots x k$ are:
$0 \times k \times k \ldots \times k$, $k \times 0 \times k \times \ldots \times k \ldots . . k \times \ldots \times k 0 \times k$, $k \times \ldots \times k \times 0$ $\Rightarrow \operatorname{rad}(A / I)=0$ since the radical ideal is the intersection of all the maximal ideals by definition.
consider $\pi: A \rightarrow A / I$
let $a \in \operatorname{rad} / \mathrm{A} \mid$ then from lemma 4.1 we know $\forall b \in A \quad 1-b a$ las an inverse $c \in A$, then:

$$
1+I=\pi(1)=\pi(c \cdot(1-b a))=\pi(c) \pi\left(1-b_{a}\right)=\pi(c) \cdot\left(1-\pi\left(b_{0}\right) \cdot \pi(a)\right)
$$ which means $\left(1-T_{1}(b) . \pi(a)\right)$ Las an inverse in A / I then again by lonna $4.1 \pi(a) \in \operatorname{rad}(A / \pm)$ but we rue slow $\operatorname{rad}(A / I)=0 \Rightarrow \pi(a)=0 \Rightarrow a \in I$ therefore $\operatorname{rad} A \leq I$

Corollary (4.5) If Q is a quiver without oriented cycles, then rad $k Q$ is the ideal generated by all arrows in Q.

A path of the form $\overbrace{\alpha_{l}}^{i \xrightarrow{\alpha_{1}} \cdot \xrightarrow{\alpha_{2}} \cdot \ldots \xrightarrow{\alpha_{l .}} \cdot}$ give by $\left(i / \alpha_{1}, \alpha_{2}, \ldots \alpha_{l, 1}, \alpha_{l} / i\right)$, is an oriented by $l_{\text {le. }}$.
proof We denote by $1 R_{Q}$ the ideal generated by all arrows in Q. We let L be the largest integer s.t. Q will contain a path of length L, ic. any product of $l+\neg$ arrows will be O.
This means $R_{Q}^{+1}=0$ hence R_{Q} is a ail potent ideal. $A /$ so $\left\{e_{i}+R_{Q} l_{i} \in Q_{0}\right\}$ is a basis for $k Q / R_{Q}$ so $k Q / R_{Q} \cong k \times \ldots \times k$ Łnnmbe of copies of k is $\left|Q_{0}\right|$ then by 1 Pop $4.4 \quad R_{Q}=\operatorname{rad}(k Q)$

Remark (4.6) It's important in this corollary that Q fulfills the condition of laving no oriented cycles. For $t h$ is quiver Q : $i 5 \alpha$ for example
the path algebra $k Q$ is isonaeplie to the polynomials $k[x]$. And since every linear polynomial $x-a$, for a Gk, generates a maximal ideal, we see that rad $k[x]=0$.
4. 3 Module s

In this section we'll define modules over a Ring 12 with 1. Well also present some examples and finish with an example of a worplism between two modules over a path algebra.

Def (4.8) let 12 be a ring with $1 \neq 0$ a right R-module M is an abelian group togetherwith a binary operation, called the right R-action:

$$
\begin{aligned}
& M \times 12 \longrightarrow M \\
& (m,-1 \longmapsto m \cdot r
\end{aligned}
$$

st. $\forall m_{1}, m_{2} \in M$ and $\forall r_{1}, r_{2} \in 12$ we lave t lat:
(1) $\left(m_{1}+m_{2}\right) r=m_{1} r_{1}+m_{2} r_{2}$
(2) $\left.m_{1} \mid r_{1}+r_{2}\right)=m_{1} r_{1}+m_{1} \cdot r_{2}$
(3) $m_{1} \cdot\left(r_{1} \cdot r_{2}\right)=\left(m_{1} \cdot r_{1}\right) r_{2}$
(4) $m_{1} \cdot 1=m_{1}$
a left R-module is defined by multiplying the elements of μ from the left and following the axioms (1)... (ه) accordingly.
examples (4.5)
(1) If $I \subseteq R$ is a right ideal, then I is a right R-module, where the right Reaction is given by multiplication in 12 . In particorlar, the ideal generated by $a \in R$ namely $a \cdot R=\{\operatorname{arl} / r \in R\}$ is a right R-module
(2) If Q is a quiver and $A=6 Q$ is its path algebra then for any vertex $i \in Q$. we can define an A-module sci) whose abelian goop is the one dimensional k-vector space generated by $\{c i\}$ and whose A action is given by:

$$
\forall c \in A \quad m \cdot e_{i} \cdot c=\left\{\begin{array}{cl}
m \cdot e i & , \text { if } c=e ; \\
0, & \text {, otherwise }
\end{array}\right.
$$

let's check that si) fullfils the module axioms. In this case it's enoupl to only use two paths c, c ' $\in A$ since other cases follow by b-Linearity of A and sci.). let $m_{n}, m_{2} \in L \quad c, c^{\prime} \in A$ then:

$$
\begin{aligned}
& \cdot\left(m_{1} c_{i}+m_{2} c_{i}\right) \cdot c=\left(m_{1}+m_{2} \left\lvert\, c_{i} \cdot c=\left\{\begin{array}{c}
\left(m_{1}+m_{2}\right) e_{i}, \text { if } c=c_{i} \\
0 \quad \text { oflecisise }
\end{array}\right.\right.\right. \\
& m_{1} e_{i} c+m_{2} c_{i} c=\left\{\begin{array}{c}
\left.m_{1} e_{i}+m_{2} e_{i}=m_{2},+m_{2}\right) e_{i} \text { if } c=c_{i} \\
0 \quad \text { of hervise }
\end{array}\right. \\
& \left.\Rightarrow \quad m_{1} c_{i}+m_{2} e_{i}\right) c=m_{1} e_{i} c+m_{2} c_{i} c \quad
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } m_{1} e_{i}\left(c+c^{\prime}\right)=\left\{\begin{array}{l}
m_{1} e_{i}, c+c^{\prime}=c_{i} \Leftrightarrow c=e_{i}, c^{\prime}=0 \text { or } \\
2 m_{1} e_{i}, c=c^{\prime}=e_{i} \\
0 \quad, \quad 0+h e w^{\prime}=c_{i}
\end{array}\right. \\
& m_{n} e: c+m e_{i} c^{\prime}= \begin{cases}m_{1} c_{i}, & c=0, c^{\prime}=e_{i} \text { or } c=e_{i}, c^{\prime}=0 \\
2 m_{1} e_{i}, & c=c=c i \\
0, & 0+\text { Lerwise }\end{cases} \\
& \Rightarrow m_{n} e_{i}\left(c+c^{\prime}\right)=m_{1} e_{i} c+m_{n} e_{i} c^{\prime} \\
& \text { - } m_{1} e_{i}\left(c \cdot c^{\prime}\right)=\left\{\begin{array}{cc}
m_{1} e_{i}, & \text { if } c \cdot c^{\prime}=e_{i} \Leftrightarrow c=c^{\prime}=e_{i} \\
0,
\end{array}\right. \\
& (m, c: c) c^{\prime}=\left\{\begin{array}{cc}
(m, c i) c^{\prime}, & \text { if } c=e^{\prime} \\
0, & \text { ot hernise }
\end{array}=\left\{\begin{array}{cc}
m, c i, & \text { if } c^{\prime}=c_{i} \\
0, & \text { otherwise }
\end{array}\right.\right. \\
& \Rightarrow m+c \cdot\left(c \cdot c^{\prime}\right)=\left(m_{1} e_{i} c\right) c^{\prime} \\
& \cdot m_{1} e_{i} \cdot 1=m_{1} e_{i} \sum_{j \in Q_{0}} e_{j}=m_{1}\left(\sum_{j \in Q_{j}} e_{i} e_{j}\right)=m_{1} e_{j}
\end{aligned}
$$

(3) If Q is a quiver and $A=k Q$ is its path algebra then for any arrow i $\xrightarrow{\alpha}$; in Q_{1}, we can define an A-module $\mu(\alpha)$ whose cabelian goop is equal to the two dimensional k-vector space generated by $\left\{e_{i, \alpha}\right\}$ and whose right A -action is given by:
$\forall d_{i}, d_{\alpha} \in k \quad \forall<$ apath in A

$$
\left(\lambda_{i} c_{i}+\lambda_{\alpha} \alpha\right) c=\lambda_{i} e_{i} c+\lambda_{\alpha} \alpha c= \begin{cases}1_{i} c_{i}, & \text { if } c=e_{i} \\ \lambda_{\alpha} \alpha, & \text { if } c=e_{j} \\ \lambda_{i} \alpha, & \text { if } c=\alpha \\ 0, & \text { otherwise }\end{cases}
$$

we see that this right action coincides with the multiplication we defined on the path algebra. For example: $d_{i} e, \cdot \alpha:=1, \alpha$ makes sense since c i is the constant path at: and α is an arrow from ito; which means their concatenation $i \stackrel{\alpha}{\mu} ;$ is a ain α.
showing that Mra) fulfills the module axioms is very similar to how we proceeded in (2) so we won't go into further detail here.
$S(i)$ and $M(\alpha)$ might seem familiar to you. You may have seen them as soil. the simple quiver rep. and $a_{s} j$. This is no coincidence. They u Likely appear later on again.

Def (A.9) A module M is said to be generated by the elements $m, m_{2}, \ldots m s$ if tor every $m \in M$ there exist $a_{i} \in 12$ st. $m=a_{1} m_{1}+a_{2} m_{2}+\ldots+a_{5} m_{s}$ M is called finitely generated if it is generated by a finite set of elements.

Remark If M is generated by mom z.... ms then

$$
M=m_{1} \cdot R+m_{2} \cdot R+\ldots+m_{5} R
$$

for example: the ideal $a \cdot R$ is finitely generated by only one element $a \in R$.

1 Def (4.10) let M, N be two 12 -modules.
A mop $h: M \rightarrow N$ is called amorphism of R-modules if $\forall m, w^{\prime} \in M, \forall a \in R$ we lave:

$$
\begin{aligned}
& -h(m+n \prime)=h(m)+h(m \prime) \\
& \cdot h(m a)=h(m) \cdot a
\end{aligned}
$$

The kernel of h is the set $k e r(h)=\{m \in M / h / m)=0\}$ $t L_{e}$ image of L is the set $\operatorname{Im}(L)=\{L(m) / m \in M\}$ and $t L_{e}$ cokernel of h is coker $(h)=N / I_{m}(h)$

Remark If A is a k-algebra then a morphism of two A-modules is also a homomorphism of the under ty ing k-vector spaces and thus a Linear map.

Prop (4.8) If $L: N \rightarrow N$ is a morphism of A-modules. then KerCh), Imイhl, coker (h) are A-modulos.

Proof let $m_{1}, m_{2} \in K_{c}(h) \quad J_{1}, l_{2} \in A \quad$ then:

$$
\begin{aligned}
& \cdot h\left(m_{1}+m_{2}\right)=h\left(n_{1}\right)+h\left(m_{2}\right)=0+0=0 \quad \Rightarrow \quad m_{1}+m_{2} \in \operatorname{Ker}(L) \\
& \cdot h\left(D_{1} m_{1}\right)=D_{1} h\left(m_{1}\right)=d_{1} \cdot 0=0 \quad \Rightarrow 1_{1} \cdot m_{1} \in \operatorname{Rer}(h)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\cdot\left(m_{1}+m_{2}\right) d_{1}=m_{1} 1_{1}+m_{2} d_{2} \\
\cdot m_{1}\left(\lambda_{1}+\lambda_{2}\right)=m_{1} 1_{1}+m_{-} d_{2} \\
\cdot m_{1}\left(\lambda_{1} \cdot 1_{2}\right)=\left(m_{1} \cdot d_{1} \mid d_{2}\right. \\
\cdot m_{1} \cdot 1=m
\end{array}\right\}
$$

follows directly from the
fact that $k e r(L) \leq M$ an A-module
\Rightarrow Kerr (h) is an A.module
the proofs for $I_{n} / L /$ and Coker(h) are very similar and easy. So we won't bore you with this here.
example (4.6) let $A=k Q$ be a path c/febra. And let $S(j)$ and $\mu(\alpha)$ be A-modules as defined in examples $(9,5)(2)$ and (3), where $j \in Q_{0}$ and $\alpha \in Q_{n}$ with $t(\alpha)=j$. Then there is a morplism:

$$
\begin{aligned}
L: S(j) & \longrightarrow M(\alpha) \\
m c_{j} & \longmapsto m \alpha
\end{aligned}
$$

let's check that h is indeed a mo polish of modules:
$l e t m_{n}, m_{2} \in k \quad d \in k \quad c \in A$

- $h\left(1 m_{1} c_{j}+m_{2} e_{j}\right)=h\left(\left(\lambda m_{1}+m_{2}\right) e_{j}\right)=\left(\lambda m_{n}+m_{2}\right) \alpha=3 m_{1} \alpha+m_{2} \alpha$
$=f \cdot h\left(a_{1} e_{j}\right)+h\left(m_{2} e_{j}\right) \quad \Rightarrow L$ is k linear

$$
\begin{aligned}
& \cdot h\left(m_{1} c_{j} c\right)= \begin{cases}h\left(m_{1} e_{j}\right)=m_{1} \alpha, & , \text { if } c=e_{j} \\
h(0)=0, & \text { ot }=\text { e-vise }\end{cases} \\
& h\left(m_{1} e_{j}\right) \cdot c=m_{1} \alpha \cdot c \begin{cases}m_{1} \alpha, & \text { if } c=c_{j} \\
0, & \text { of Lerwise }\end{cases} \\
& \Rightarrow h\left(m_{1} c_{j} c\right)=h\left(m_{1} e_{j}\right) c
\end{aligned}
$$

therefore h is amorphism of modules

