EXERCISES 8: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Let X and Y be finite sets. Decide (with a proof) how many injective maps $X \rightarrow Y$ exist.

Exercise 2. Show that a set $X \neq \emptyset$ is countable if and only if there is a surjection from \mathbb{N}_{0} to X.

Exercise 3. Let X be a countable set. Show that the set of all finite subsets of X is countable.

Exercise 4. Let X be a set. Show that the following statements are equivalent.
(i) X is infinite.
(ii) For all maps $f: X \rightarrow X$ there exists $\emptyset \subsetneq A \subsetneq X$ with $f(A) \subset A$.

Hint: Take $f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, n\}, f(i)=i+1$ where $n+1$ should be considered as 0 . Does it satisfy (ii)? Moreover, show that (ii) holds for $X=\mathbb{N}_{0}$ and reduce the general case to this situation.

Submission of the exercise sheet: 11.Nov. 2019 before the lecture. Return of the exercise sheet: 14. Nov. 2019 during the exercise sessions.

