EXERCISES 7: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Show that for $m, n \in \mathbb{N}_{0}$ with $m \leq n$ one has $(m!(n-m)!) \mid n!$.

Exercise 2. Show the following statements.
(a) There are infinitely many primes.
(Hint: $p_{1} p_{2} \cdots p_{r}+1$ is not divisible by $p_{1}, p_{2}, \ldots, p_{r}$.)
(b) The are arbitrarily big gaps between primes.
(Hint: which of $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+n,(n+1)!+n+1$ are primes?)

Exercise 3. Define a map $f: \mathbb{N}_{0} \backslash\{0\} \rightarrow \mathbb{N}_{0}$ recursively via

$$
f(1)=2, \quad f(n)=f(n-1)+n 2^{n}, \quad \forall n>1 .
$$

Show that $f(n)=(n-1) 2^{n+1}+2$ for all $n \in \mathbb{N}_{0} \backslash\{0\}$.

Exercise 4. Show that there exist $n!$ total orders on a set with n elements.

Submission of the exercise sheet: 04.Nov. 2019 before the lecture. Return of the exercise sheet: $07 . \mathrm{Nov} .2019$ during the exercise sessions.

