EXERCISES 5: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Let X be a set, and let $\mathfrak{P}(X)$ denote its power set. Show:

- (a) $(\mathfrak{P}(X), \subset)$ is an ordered set.
- (b) $(\mathfrak{P}(X), \subset)$ is a totally ordered set if and only if $X = \emptyset$ or $X = \{a\}$.

Exercise 2. Let X be a set, and let $\mathfrak{A} \neq \emptyset$ be a subset of $\mathfrak{P}(X)$. Show that $\sup(\mathfrak{A}) = \bigcup \mathfrak{A}$ and $\inf(\mathfrak{A}) = \bigcap \mathfrak{A}$.

Exercise 3. Let $(\mathbb{N}_0^1, 0_1, \nu_1)$ and $(\mathbb{N}_0^2, 0_2, \nu_2)$ denote two sets for which the Peano axioms hold. That is, for $i \in \{1, 2\}$, the set \mathbb{N}_0^i has a fixed element 0_i and an injective map $\nu_i \colon \mathbb{N}_0^i \to \mathbb{N}_0^i \setminus \{0_i\}$ such that

$$(\star)\colon ((0_i \in N_i \subset \mathbb{N}_i) \land (n_i \in N_i \Rightarrow \nu_i(n_i) \in N_i)) \Rightarrow N_i = \mathbb{N}_i$$

hold. Show that there exists a bijection $\phi \colon \mathbb{N}_0^1 \to \mathbb{N}_0^2$ with $\phi(0_1) = 0_2$ and $\nu_2 \circ \phi = \phi \circ \nu_1$. (That is, \mathbb{N}_0 is unique up to isomorphism.)

Exercise 4. Let $(\mathbb{N}_0^1, 0_1, \nu_1)$ and $(\mathbb{N}_0^2, 0_2, \nu_2)$ be as in Exercise 3, but (\star) does not need to hold. Is there still a bijection as in Exercise 3? Justify your answer.

Submission of the exercise sheet: 21.Oct.2019 before the lecture. Return of the exercise sheet: 24.Oct.2019 during the exercise sessions.