EXERCISES 2: LECTURE FOUNDATIONS OF MATHEMATICS

Exercise 1. Let $X, Y \neq \emptyset$ be sets. Show that $(X \times Y = Y \times X) \Rightarrow X = Y$ holds.

Exercise 2. Let X be a set, and let $\mathfrak{P}(X)$ be its power set. Show that

$$\bigcup_{A\in\mathfrak{P}(X)}A=X,\qquad \bigcap_{A\in\mathfrak{P}(X)}A=\emptyset.$$

Exercise 3. Let X, Y, A, B be sets. Prove or disprove:

- (a) $(A \times B \subset X \times Y) \Leftrightarrow (A \subset X) \land (B \subset Y)$ holds.
- (b) $(X \times Y) \cup (A \times Y) = (X \cup A) \times Y$ holds.
- (c) $(X \times Y) \cap (X \times B) = X \times (Y \cap B)$ holds.
- (d) $(X \times Y) \cup (A \times B) = (X \cup A) \times (Y \cup B)$ holds.
- (e) $(X \times Y) \cap (A \times B) = (X \cap A) \times (Y \cap B)$ holds.

Are some of these statements true assuming that X, Y, A, B are non-empty?

Exercise 4. Prove the De Morgan laws: Let $\{A_i \mid i \in I\}$ be a system of sets such that $A_i \subset X$ for all $i \in I$. Then

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} (A_i)^c, \qquad \left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} (A_i)^c,$$

hold, where c denotes the complement in X.

Submission of the exercise sheet: 30.Sep.2019 before the lecture. Return of the exercise sheet: 03.Oct.2019 during the exercise classes.