Cyclotomic quiver Hecke algebras IV

Applications and other types

Andrew Mathas

University of Sydney

Categorification, representation theory and symplectic geometry Hausdorff Research Institute for Mathematics November 2017

Ariki-Brundan-Kleshchev categorification theorem

Let C be a generalised Cartan matrix of type $A_e^{(1)}$ or A_{∞} :

Last lecture we saw that

Theorem (Ariki, Brundan-Kleshchev, Brundan-Stroppel, Rouquier)

Let C be a Cartan matrix of type $A_e^{(1)}$ or A_{∞} and let \Bbbk be a field. Then $L_{\mathbb{A}}(\Lambda) \cong \bigoplus_{\substack{n \ge 0 \\ n \ge 0}} \operatorname{Proj}(\mathscr{R}_n^{\Lambda})$ and $L_{\mathbb{A}}(\Lambda)^{\vee} \cong \bigoplus_{\substack{n \ge 0 \\ n \ge 0}} \operatorname{Rep}(\mathscr{R}_n^{\Lambda})$

Moreover, if $\mathbf{k} = \mathbf{C}$ then

- The canonical basis of $L_{\mathbb{A}}(\Lambda)$ is $\{ [Y^{\mu}] | \mu \in \mathcal{K}^{\Lambda} \}$
- The dual canonical basis of $L_{\mathbb{A}}(\Lambda)$ is $\{ [D^{\mu}] | \mu \in \mathcal{K}^{\Lambda} \}$

If $\mu \in \mathcal{K}^{\Lambda}$ then $(D^{\mu})^{\circledast} \cong D^{\mu}$ and $(Y^{\mu})^{\#} \cong Y^{\mu}$, where if M is an $\mathscr{R}^{\Lambda}_{n}$ -module then $M^{\circledast} = \operatorname{Hom}_{\Bbbk}(M, \Bbbk)$ and $M^{\#} = \operatorname{Hom}_{\mathscr{R}^{\Lambda}_{n}}(M, \mathscr{R}^{\Lambda}_{n})$

Outline of lectures

- Quiver Hecke algebras and categorification
 - Basis theorems for quiver Hecke algebras
 - Categorification of $U_q(\mathfrak{g})$
 - Categorification of highest weight modules
- In Brundan-Kleshchev graded isomorphism theorem
 - Seminormal forms and semisimple KLR algebras
 - Lifting idempotents
 - Cellular algebras
- In Ariki-Brundan-Kleshchev categorification theorem
 - Dual cell modules
 - Graded induction and restriction
 - The categorification theorem
- e Recent developments
 - Consequences of the categorification theorem
 - Webster diagrams and tableaux
 - Content systems and seminormal forms

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

2 / 28

Categorification of the canonical basis of $U_{ extsf{A}}(\mathfrak{sl}_{e})$

Set $\operatorname{Proj}(\mathscr{R}) = \bigoplus_{n \ge 0} \operatorname{Proj}(\mathscr{R}_n)$ and let # be the automorphism of $\operatorname{Proj}(\mathscr{R})$ induced by $M^{\#} = \operatorname{Hom}_{\mathscr{R}_n}(M\mathscr{R}_n)$

Theorem (Brundan-Kleshchev, Brundan-Stroppel, Rouquier)

Let C be a Cartan matrix of type $A_e^{(1)}$ or A_∞ and let $\mathbb{k} = \mathbb{C}$. Then $U_A^-(\widehat{\mathfrak{sl}}_e) \cong \operatorname{Proj}(\mathscr{R})$ and the canonical basis of $U_A(\widehat{\mathfrak{sl}}_e)$ coincides with the basis of $\operatorname{Proj}(\mathscr{R})$ of #-self-dual projective indecomposable \mathscr{R}_n -modules

Proof Let B be the canonical basis of $U_{\mathbb{A}}^{-}(\widehat{\mathfrak{sl}}_{e})$ and \mathbb{B}_{Λ} be the canonical basis of $L_{\mathbb{A}}(\Lambda) = U_{\mathbb{A}}(\widehat{\mathfrak{sl}}_{e})v_{\Lambda}$, for $\Lambda \in P^{+}$. Then B is the unique weight basis of $U_{\mathbb{A}}^{-}(\widehat{\mathfrak{sl}}_{e})$ such that if $b \in \mathbb{B}$ then $bv_{\Lambda} \in \mathbb{B}_{\Lambda} \cup \{0\}$

As $\mathbf{B}_{\Lambda} = \{ [Y^{\mu}] | \mu \in \mathcal{K}_{n}^{\Lambda} \}$, it is enough to show that if Y is a self-dual \mathscr{R}_{n} -module then $[Y]_{V_{\Lambda}}$ is either zero or equal to $[Y^{\mu}]$, for some $\mu \in \mathcal{K}^{\Lambda}$ Define a functor $\operatorname{pr}_{\Lambda} : \mathscr{R}_{n}$ -Mod $\longrightarrow \mathscr{R}_{n}^{\Lambda}$ -Mod by $\operatorname{pr}_{\Lambda} M = \mathscr{R}_{n}^{\Lambda} \otimes_{\mathscr{R}_{n}} M$

 \implies pr_{Λ} sends projectives to projectives and pr_{Λ} \circ # \cong # \circ pr_{Λ}

This implies the result

Simple modules

By definition, $\mathcal{K}_n^{\Lambda} = \{ \mu \in \mathcal{P}_n^{\Lambda} | D^{\mu} \neq 0 \}$ but we did not describe this set Given *i*-nodes A < C, for $i \in I$, define

 $d_A^C(\mu) = \#\{B \in \mathsf{Add}_i(\mu) \mid A < B < C\} - \#\{B \in \mathsf{Rem}_i(\mu) \mid A < B < C\}$

A removable *i*-node A is normal if $d_A(\mu) \leq 0$ and $d_A^C(\mu) < 0$ whenever $C \in \text{Rem}_i(\mu)$ and A < C.

A normal *i*-node A is good if $A \leq B$ whenever B is a normal *i*-node.

Write $\lambda \xrightarrow{i-\text{good}} \mu$ if $\mu = \lambda + A$ for some good *i*-node *A*.

Misra and Miwa showed that the crystal graph of $L_A(\Lambda)$, considered as a submodule \mathscr{P}_A^{Λ} , is the graph with vertex set

 $\mathscr{L}_0^{\Lambda} = \{ \mu \in \mathcal{P}^{\Lambda} | \mu = \mathbf{0}_{\ell} \text{ or } \lambda \xrightarrow{i \text{-good}} \mu \text{ for some } \lambda \in \mathscr{L}_0^{\Lambda} \},$ and labelled edges $\lambda \xrightarrow{i \text{-good}} \mu$, for $i \in I$

Corollary (Ariki)

Suppose that \Bbbk is an arbitrary field and that $\mu \in \mathcal{P}_n^{\wedge}$. Then $\mathcal{K}^{\wedge} = \mathscr{L}_0^{\wedge}$. That is, if $\mu \in \mathcal{P}_n^{\wedge}$ then $D_{\Bbbk}^{\mu} \neq 0$ if and only if $\mu \in \mathscr{L}_0^{\wedge}$.

Proof Immediate because $[D^{\mu}] = [S^{\mu}]$ +lower terms, for $\mu \in \mathcal{K}^{\Lambda}$ Andrew Mathas— Cyclotomic quiver Hecke algebras IV

Almost simple modules

The quiver Hecke algebra $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is defined over \mathbb{Z} (but $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \not\cong \mathscr{H}_{n}^{\Lambda}(\mathbb{Z})$!) $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is a \mathbb{Z} -graded \mathbb{Z} -free cellular algebra $\implies S_{\mathbb{Z}}^{\lambda}$ is defined over \mathbb{Z} with a \mathbb{Z} -valued bilinear form \langle , \rangle

Define rad $S_{\mathbb{Z}}^{\lambda} = \{ x \in S_{\mathbb{Z}}^{\lambda} | \langle x, y \rangle = 0 \text{ for all } y \in S_{\mathbb{Z}}^{\lambda} \}$ \implies rad $S_{\mathbb{Z}}^{\lambda}$ is a \mathbb{Z} -graded \mathbb{Z} -free submodule of $S_{\mathbb{Z}}^{\lambda}$

Definition

Let $E_{\mathbb{Z}}^{\mu} = S_{\mathbb{Z}}^{\mu} / \operatorname{rad} S_{\mathbb{Z}}^{\mu}$. For a field \Bbbk , let $E_{\Bbbk}^{\mu} = E_{\mathbb{Z}}^{\mu} \otimes_{\mathbb{Z}} \Bbbk$, an $\mathscr{R}_{n}^{\Lambda}(\Bbbk)$ -module

Theorem (M., Brundan-Kleshchev)

- The module $E_{\mathbb{Z}}^{\mu}$ is a \mathbb{Z} -graded \mathbb{Z} -free $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ -module
- If $\mathbb{k} = \mathbb{Q}$ then $E_{\mathbb{Q}}^{\mu}$ is self-dual and, moreover, $E_{\mathbb{Q}}^{\mu} \cong D_{\mathbb{Q}}^{\mu}$ is an absolutely irreducible graded $\mathscr{R}_{n}^{\Lambda}(\mathbb{Q})$ -module adjustment matrix

3 For any
$$\lambda \in \mathcal{P}_n^{\Lambda}$$
 and $\mu \in \mathcal{K}_n^{\Lambda}$,
 $[S_{\mathbb{K}}^{\lambda} : D_{\mathbb{K}}^{\mu}]_q = \sum_{\nu} [S_{\mathbb{Q}}^{\lambda} : E_{\mathbb{Q}}^{\nu}]_q [E_{\mathbb{K}}^{\nu} : D_{\mathbb{K}}^{\mu}]_q = \sum_{\nu} d_{\lambda\nu}(q) [E_{\mathbb{K}}^{\nu} : D_{\mathbb{K}}^{\mu}]_q$

Categorification of highest weight modules

The categorification of $L(\Lambda)^{\vee}$ and $L(\Lambda)$ by the algebras \mathscr{R}_n^{Λ} is extensive:

- Multiplication by q corresponds to the grading shift functor
- $E_i \leftrightarrow i$ -Res and $F_i \leftrightarrow q i$ -Ind K_i^{-1}
- The weight spaces of $L(\Lambda)$ are the blocks of \mathscr{R}_n^{Λ}
- The Shapovalov form on $L(\Lambda)$ is the Cartan pairing on $\operatorname{Rep}(\mathscr{R}_n^{\Lambda})$
- The standard basis of $L(\Lambda)$ corresponds to the graded Specht modules
- The costandard basis of $L(\Lambda)$ corresponds to the dual graded Specht modules
- The vertices of the crystal graph label the simple modules
- The crystal graph gives the modular branching rules
- The action of the affine Weyl group corresponds to the derived equivalences of Chuang and Rouquier
- If $F = \mathbb{C}$ the dual canonical basis is the basis of irreducible modules
- If $F = \mathbb{C}$ the canonical basis is the basis of projective indecomposable modules

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

The James conjecture

James conjecture (1990)

5 / 28

7 / 28

Let \Bbbk be a field of characteristic p and $\alpha \in Q^+$ such that def $\alpha < p$. Then the adjustment matrix for $\mathscr{R}^{\Lambda_0}_{\alpha} \cong \mathscr{H}_{\xi}(\mathfrak{S}_n)_{\alpha}$ is the identity matrix.

Proving the James and Lusztig conjectures motivated developments in representation theory for the last twenty years.

Evidence for James and Lusztig conjectures

- (Andersen-Jantzen-Soergel) True for almost all primes
- True for $n \leq 30$ (James, M., ...)
- True for blocks of defect/weight 1, 2 (Richards) and 3 and 4 (Fayers)
- True for the Rouquier Blocks, which have arbitrary weight (Chuang-Tan, James-Lyle-M.)

Williamson (2013)

The James and Lusztig conjectures are both wrong!!!

The smallest known counter-example to the James conjecture occurs in a block of defect 561 in characteristic 839 for the symmetric group $\mathfrak{S}_{467,874}$

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

Loadings and Webster tableaux

Recall that $\Lambda \in P^+$ is a dominant weight of level ℓ . A loading is a sequence $\theta = (\theta_1, \dots, \theta_\ell) \in \mathbb{Z}^\ell$ such that $\theta_1 < \theta_2 < \cdots < \theta_\ell$ and $\theta_k \not\equiv \theta_l \pmod{\ell}$ for $1 \le k < l \le \ell$ Extend θ to the set of nodes by defining $\theta(l, r, c) = N\theta_l + L(c - r) + r + c - 1$ where $L = N\ell$ and $N \gg (2n-1)$ — different nodes have different loadings The loading of $\lambda \in \mathcal{P}_n^{\Lambda}$ is $L_{\theta}(\lambda) = \{ \theta(\alpha) \mid \alpha \in [\lambda] \}$ Define the θ -dominance order on \mathcal{P}_n^{Λ} by $\lambda \succ_{\theta} \mu$ if for all nodes (l, r, c) $#\{\alpha \in [\boldsymbol{\lambda}] | \theta(\alpha) > \theta(l, s, d) \} > #\{(\alpha) \in [\boldsymbol{\mu}] | \theta(\alpha) > \theta(l, s, d) \}$ A Webster λ -tableau of type μ is a bijection $T: [\lambda] \longrightarrow L_{\theta}(\mu)$ such that • If $1 \le k \le \ell$ and $\lambda^{(k)} \ne (0)$ then $T(k, 1, 1) \le N\theta_k$ **2** If $(k, r-1, c), (k, r, c) \in \lambda$ then T(k, r-1, c) < T(k, r, c) + L**3** If $(k, r, c - 1), (k, r, c) \in \lambda$ then T(k, r, c - 1) < T(k, r, c) - LLet $SStd_{\theta}(\lambda, \mu)$ be the set of Webster λ -tableau of type μ and let $SStd_{\theta}(\lambda) = \bigcup_{\mu} SStd_{\theta}(\lambda, \mu)$. Let $\omega_n = (0| \dots |0|1^n)$. Then $\operatorname{Std}_{\theta}(\lambda) = \operatorname{SStd}_{\theta}(\lambda, \omega_n)$ is the set of standard Webster tableau

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

Graded decomposition example

Example (Bowman) Take e = 2, n = 2, $\Lambda = \Lambda_0 + \Lambda_1$ and $\kappa = (0, 1)$. Then \mathscr{R}^{Λ}_2 has two one dimensional self-dual simple modules, D(01) and D(10), such that 1_i acts as δ_{ii} on D(j)

$\theta = (0, 1)$)		$\theta =$	(0,3)		
	D(10)	D(01)			D(10)	D(01)
(1 ² 0) 1			$(0 1^2)$	1	
(0 12) .	1		(0 2)	q	
(1 1]) q	q		(1 1)	q^2	1
(2 0]) q^2	•		$(1^2 0)$	•	q
(0 2)) ·	q^2		(2 0)	•	q^2

Before we can define the $\{c_{st}^{\theta}\}$ basis we need to introduce a new algebra

Many cellular bases

Theorem (Bowman, Webster, 2017)

Let θ be a loading. Then \mathscr{R}_n^{\wedge} has a graded cellular basis $\{ c_{st}^{\theta} | s, t \in Std_{\theta}(\lambda), \lambda \in \mathcal{P}_n^{\wedge} \}$ with respect to the poset $(\mathcal{P}_n^{\wedge}, \triangleright_{\theta})$

Let C_{λ}^{θ} be the cell module indexed by $\lambda \in \mathcal{P}_{n}^{\Lambda}$ determined by the θ -cellular basis $\{c_{st}^{\theta}\}$ and let $D_{\mu}^{\theta} = C_{\mu}^{\theta} / \operatorname{rad} C_{\mu}^{\theta}$. Define $d^{\theta} \quad (q) = [C^{\theta} : D^{\theta}] = \sum [C^{\theta} : D^{\theta} / k] q^{k}$

$$d^{\theta}_{\boldsymbol{\lambda}\boldsymbol{\mu}}(q) = [C^{\theta}_{\boldsymbol{\lambda}}:D^{\theta}_{\boldsymbol{\mu}}]_q = \sum_{k\in\mathbb{Z}} [C^{\theta}_{\boldsymbol{\lambda}}:D^{\theta}_{\boldsymbol{\mu}}\langle k\rangle] q^{\kappa}$$

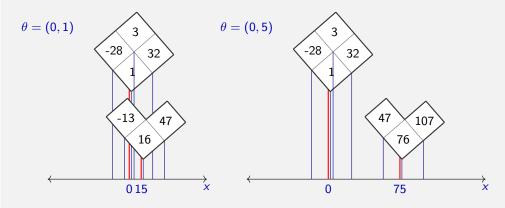
The θ -cellular bases genuinely depend on θ and they are in general different from the ψ and ψ' -bases. In fact, the graded dimensions of the θ -cell modules and the graded decomposition numbers depend on θ

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

Webster tableau

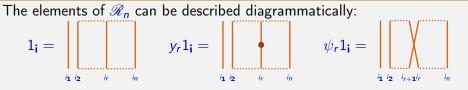
For any λ there is always a unique Webster λ -tableau of type λ . Rather than drawing this "normally" we want to draw Webster tableau using the Russian notation

Example Take $\lambda = (2^2|2, 1)$, so that N = 15 and L = 30, for the two loadings $\theta = (0, 1)$ and $\theta = (0, 5)$, respectively:



10 / 28

Webster diagrams



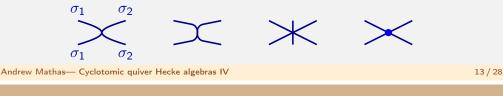
We want similar, but more complicated diagrams, to define an algebra \mathscr{W}_n^{Λ}

Webster diagrams have three types of strings:

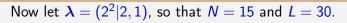
- Thick red vertical strings with x-coordinates $N\theta_1, \ldots, N\theta_\ell$
- Solid strings of residues i_1, \ldots, i_n , for some $\mathbf{i} \in I^n$
- Dashed grey ghost strings that are translates, *L*-units to the left, of the solid strings. A ghost string has the same residue as the corresponding solid string

Diagrams are defined up to isotopy and solid strings can have dots

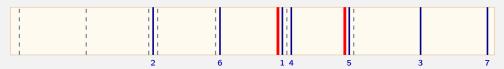
The following crossings are **not** allowed for red, solid or ghost strings):



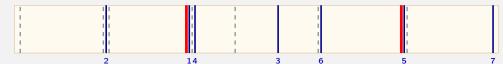
Examples of Webster diagrams



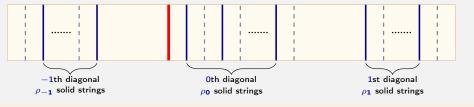
If $\theta = (0, 1)$ then 1_{λ}^{i} is the diagram



If $\theta = (0, 5)$ then 1^{i}_{λ} looks like:



Strings in diagrams from ℓ -partitions "cluster" according to the diagonals:

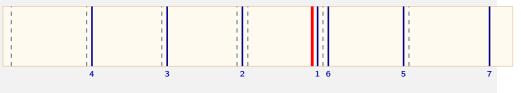


Andrew Mathas— Cyclotomic quiver Hecke algebras IV

Examples of Webster diagrams

Example Let $\ell = 1$, $\theta = (0)$ and $\lambda = (4, 2, 1)$. Then N = 15 = L and $SStd_{\theta}(\lambda, \lambda)$ contains the tableau:

The corresponding Webster diagram 1_{λ} is:



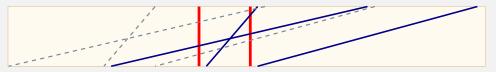
Andrew Mathas— Cyclotomic quiver Hecke algebras IV

14 / 28

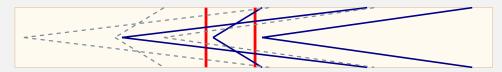
Composing Webster diagrams

We compose Webster diagrams in the usual way: if D and E are Webster diagrams then the diagram $D \circ E$ is 0 if their residues are different and when their residues are the same we put D on top of E and apply isotopy.

For example if D is the diagram

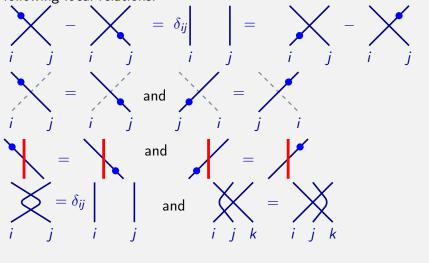


Let *E* be the diagram obtained by reflecting *D* in the line y = 0. Then $D \circ E$ is the diagram



Relations for Webster algebras

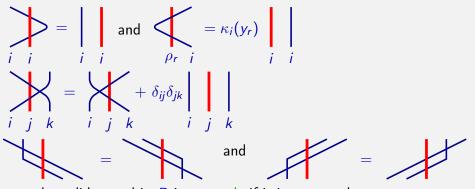
The Webster algebra \mathscr{W}_n^{Λ} is the k-algebra spanned by isotopy classes of Webster diagrams with multiplication given composition and subject to the following local relations:



Andrew Mathas— Cyclotomic quiver Hecke algebras IV

17 / 28

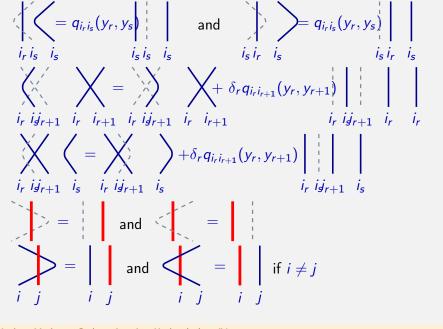
Relations for Webster algebras II



... and a solid strand in *D* is unsteady if it intersects the region $(\infty, LN] \times [0, L]$, in which case D = 0

These relations are homogeneous, so \mathscr{W}_n^{Λ} is a graded algebra

Relations for Webster algebras II



Andrew Mathas— Cyclotomic quiver Hecke algebras IV

18 / 28

The cellular basis

Inside $\mathscr{W}_{n}^{\Lambda}$, for $T \in SStd_{\theta}(\lambda, \mu)$ define the diagram C_{T} to be a Webster diagram with a minimal number of crossings such that for each node $(l, r, c) \in [\lambda]$ there is a solid string of residue $\kappa_{l} + c - r + e\mathbb{Z}$ that starts with x-coordinate $T(l, r, c) \in L_{\theta}(\mu)$ at the top of the diagram and that finishes with x-coordinate $\theta(l, r, c) \in L_{\theta}(\lambda)$ at the bottom of the diagram.

The diagram $C_{\rm T}$ is not unique, in general.

Let C_T^* be the diagram obtained from C_T by reflecting it in the line y = 0. Define $C_{ST}^{\theta} = C_S C_T^*$

Theorem (Bowman, Webster)

The algebra \mathscr{W}_n^{\wedge} is spanned by the diagrams $\{ C_{ST}^{\theta} | S, T \in SStd_{\theta}(\lambda) \text{ for } \lambda \in \mathcal{P}_n^{\wedge} \}$

Idea of proof First push all strings to the left so that they are concave, turning at the equator. This shows that if D is a Webster diagram then $D \in \mathscr{W}_{n}^{\wedge} 1_{\lambda} \mathscr{W}_{n}^{\wedge}$, for some $\lambda \in \mathcal{P}_{n}^{\wedge}$.

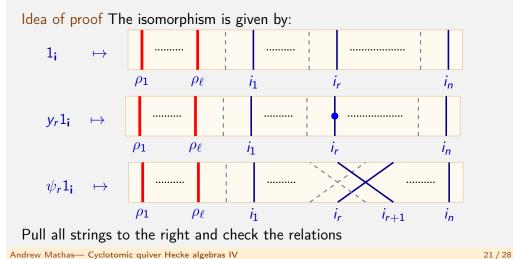
By resolving crossing it now follows that \mathscr{W}_n^{Λ} is spanned by the $\{C_{ST}^{\theta}\}$

Connection to KLR

Recall that $\boldsymbol{\omega}_n = (0|\dots|0|1^n)$ and that $\mathsf{Std}_{\theta}(\boldsymbol{\lambda}) = \mathsf{SStd}_{\theta}(\boldsymbol{\lambda}, \boldsymbol{\omega}_n)$

Theorem (Bowman, Webster)

There is an isomorphism of graded algebras $\mathscr{R}_n^{\wedge} \xrightarrow{\simeq} 1_{\omega_n} \mathscr{W}_n^{\wedge} 1_{\omega_n}$



Content systems

In the most general set up, the cyclotomic quiver Hecke algebra depends on choice of polynomials $\mathbf{Q}_I = (Q_{ij}(u, v))$ and $\mathbf{K}_I = (\kappa_i(u))$, so write $\mathscr{R}_n^{\Lambda} = \mathscr{R}_n^{\Lambda}(\mathbf{Q}_I, \mathbf{K}_I)$

Fix $\rho \in I^{\ell}$ such that $\Lambda = \sum_{I} \Lambda_{\rho_{I}}$

Let Γ_{ℓ} be the quiver of type $A_{\infty} \times \cdots \times A_{\infty}$, with ℓ factors. More explicitly, Γ_{ℓ} has vertex set $J_{\ell} = [1, \ell] \times \mathbb{Z}$ and edges $(I, a) \longrightarrow (I, a + 1)$, for all $(I, a) \in J_{\ell}$

Definition (Evseev-M.)

A content system for $\mathscr{R}_{n}^{\wedge}(\mathbf{Q}_{I}, \mathbf{K}_{I})$ is a pair of maps $\mathbf{r}: J_{\ell} \longrightarrow I$ and $\mathbf{c}: J_{\ell} \longrightarrow \mathbb{k}$ such that • $\mathbf{r}(I, 0) = \rho_{I}$ and $\kappa_{i}(u) = \prod_{l \in [1, \ell], \rho_{l} \equiv i} (u - \mathbf{c}(I, 0))$ • If $i = \mathbf{r}(k, a)$ then $Q_{ij}(\mathbf{c}(k, a), \mathbf{v}) \simeq \prod_{b} (\mathbf{v} - \mathbf{c}(k, b))$, where $b = a \pm 1$ and $\mathbf{r}(k, b) = j$ • If $(k, a), (I, b) \in J_{\ell}$ then $\mathbf{r}(k, a) = \mathbf{r}(I, b)$ and $\mathbf{c}(k, a) = \mathbf{c}(I, b)$ if and only if (k, a) = (I, b)• Plus one more technical constraint

The loaded cellular basis

For $\mathbf{s}, \mathbf{t} \in \operatorname{Std}_{\theta}(\lambda)$ define c_{st}^{θ} to be the element of \mathscr{R}_{n}^{\wedge} that is sent to C_{st}^{θ} under the previous isomorphism.

Corollary (Bowman, Webtser)

The elements $\{ c_{\mathtt{st}}^{\theta} | (\mathtt{s}, \mathtt{t}) \in Std^{2}(\mathcal{P}_{n}^{\Lambda}) \}$ span $\mathscr{R}_{n}^{\Lambda}$

Theorem (Bowman, Webster)

The algebra \mathscr{W}_n^{\wedge} is quasi-heredity over \Bbbk with graded cellular basis $\{ C_{ST}^{\theta} | S, T \in SStd_{\theta}(\lambda) \text{ for } \lambda \in \mathcal{P}_n^{\wedge} \}$

Bowman calls \mathscr{W}_n^{Λ} a diagrammatic Cherednik algebra. These algebras include, as a special case, the quiver Schur algebras of type *A* introduced by Stroppel and Webster (and Hu and Mathas in type A_{∞}). Webster proves that \mathscr{W}_n^{Λ} categorifies Uglov's generalised Fock spaces

The last theorem provides us with a quotient functor, or Schur functor:

 $E_{\omega_n}: \mathscr{W}_n^{\wedge} \operatorname{-Mod} \longrightarrow \mathscr{R}_n^{\wedge} \operatorname{-Mod}; M \mapsto 1_{\omega_n} M$

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

22 / 28

Examples of content systems

If Γ = A_∞ ⊔ · · · ⊔ A_∞, so that I = J_ℓ, then r(k, a) = (k, a) and c(k, a) = 0 is a content system with coefficients in Z
If Γ is a quiver of type A⁽¹⁾_{e+1} then a content system is given by:

> r 0 1 2 ... e 0 1 ... c 0 x 2x ... ex (e+1)x (e+2)x ...

• If Γ is a quiver of type $C_e^{(1)}$ then

r 0 1 ... e-1 e e-1 ... 1 0 1 ... c 0 x ... (e-1)x $(ex)^2$ -(e+1)x ... -(2e-1)x $(2x)^2$ (2e+1)x ... Content systems are not unique – the most generic content systems are

defined over $\mathbb{Z}[x, x_1, \dots, x_{\ell}]$

All of these content systems, and hence the algebras $\mathscr{R}_n^{\wedge}(\mathbf{Q}_I, \mathbf{K}_I)$ are defined over $\mathbb{Z}[x]$. There is a natural (homogeneous) specialisation map $\mathscr{R}_n^{\wedge}(\mathbf{Q}_I, \mathbf{K}_I) \longrightarrow \mathscr{R}_n^{\wedge}$) given by tensoring with $\mathbb{Z}[x]/x\mathbb{Z}[x]$

Seminormal representations

Proposition

Let $\lambda \in \mathcal{P}_n^{\wedge}$ and let V be the \mathbb{K} -vector space with a basis $\{v_t \mid t \in Std(\lambda)\}$ and set $v_s = 0$ if s is not standard. Suppose that there exist scalars

 $\{\beta_r(t) \in \mathbb{K} \mid 1 \leq r < n \text{ and } t, s_r t \in Std(\lambda)\}$

satisfying certain technical conditions. Then V has the structure of an irreducible $\mathscr{R}_n^{\wedge}(Q_I, K_I)$ -module where the $\mathscr{R}_n^{\wedge}(Q_I, K_I)$ -action is determined by:

$$\begin{split} \mathbf{1}_{\mathbf{i}} \mathbf{v}_{\mathbf{t}} &= \delta_{\mathbf{i},\mathbf{i}^{\mathbf{t}}} \mathbf{v}_{\mathbf{t}} \\ y_{r} \mathbf{v}_{\mathbf{t}} &= c_{r}(\mathbf{t}) \mathbf{v}_{\mathbf{t}} \\ \psi_{r} \mathbf{v}_{\mathbf{t}} &= \beta_{r}(\mathbf{t}) \mathbf{v}_{s_{r}\mathbf{t}} + \frac{\delta_{i_{r}^{\mathbf{t}},i_{r+1}^{\mathbf{t}}}}{c_{r+1}(\mathbf{t})-c_{r}(\mathbf{t})} \mathbf{v}_{\mathbf{t}} \\ \text{for all } \mathbf{i} \in I^{n}, \text{ all admissible } r \text{ and all } \mathbf{t} \in Std(\boldsymbol{\lambda}). \end{split}$$

Idea of Proof Check the relations - the result comes from the normal machinery from seminormal forms

```
Andrew Mathas— Cyclotomic quiver Hecke algebras IV
```

25 / 28

Further reading I

- C. Bowman, The many graded cellular bases of Hecke algebras, 2017.
- C. Bowman and A. G. Cox, *Modular decomposition numbers of cyclotomic Hecke and diagrammatic Cherednik algebras: A path theoretic approach*, 2017.
- J. Brundan and A. Kleshchev, *Graded decomposition numbers for cyclotomic Hecke algebras*, Adv. Math., **222** (2009), 1883–1942.
- A. Evseev and A. Mathas, *Deformed quiver Hecke algebras*, 2017, in preparation.
- J. Hu and A. Mathas, *Quiver Schur algebras for linear quivers*, Proc. Lond. Math. Soc. (3), **110** (2015), 1315–1386. arXiv:1110.1699.
- G. James, S. Lyle, and A. Mathas, *Rouquier blocks*, Math. Z., **252** (2006), 511–531.
- P. Shan, M. Varagnolo, and E. Vasserot, *Koszul duality of affine Kac-Moody algebras and cyclotomic rational DAHA*, 2011, preprint. arXiv:1107.0146.
- C. Stroppel and B. Webster, *Quiver Schur algebras and q-Fock space*, 2011, preprint. arXiv:1110.1115.

Semisimplicity and cellularity

Theorem (Evseev-M.)

Suppose that $\mathscr{R}_n^{\Lambda}(\mathbf{Q}_I, \mathbf{K}_I)$ has a content system over \Bbbk and let \mathbb{K} be the field of fractions of \Bbbk . Then $\mathscr{R}_n^{\Lambda}(\mathbf{Q}_I, \mathbf{K}_I)$ is a split semisimple graded \mathbb{K} -algebra that is canonically isomorphic to a cyclotomic quiver Hecke algebra for the quiver $A_{\infty} \sqcup \cdots \sqcup A_{\infty}$ with vertex set J_{ℓ} .

The algebra $\mathscr{R}_n^{\wedge}(\mathbf{Q}_I, \mathbf{K}_I)$ has "integral" analogues of the ψ and ψ -bases. Unfortunately, it is not at all clear that these elements span the algebra.

Using a variation of the algebras \mathscr{W}_n^{\wedge} we can prove:

Theorem (Evseev-M.)

Suppose that $\mathscr{R}_n^{\Lambda}(Q_I, K_I)$ has a content system over \Bbbk . The $\mathscr{R}_n^{\Lambda}(Q_I, K_I)$ is a graded cellular algebra

Corollary (Evseev-M.)

Let \mathscr{R}_n^{\wedge} be a quiver Hecke algebra of type $C_e^{(1)}$. Then \mathscr{R}_n^{\wedge} is a graded cellular algebra:

Andrew Mathas— Cyclotomic quiver Hecke algebras IV

26 / 28

Further reading II

- M. Varagnolo and E. Vasserot, *Canonical bases and KLR-algebras*, J. Reine Angew. Math., **659** (2011), 67–100.
- B. Webster, Weighted Khovanov-Lauda-Rouquier algebras, 2012.
- ——, *Rouquier's conjecture and diagrammatic algebra*, Forum of Mathematics, Sigma, **5** (2013).
- G. Williamson, *On an analogue of the James conjecture*, Represent. Theory, **18** (2014), 15–27. arXiv:1212.0794.