Cyclotomic quiver Hecke algebras III

The Ariki-Brundan-Kleshchev categorification theorem

Andrew Mathas

University of Sydney

Categorification, representation theory and symplectic geometry
Hausdorff Research Institute for Mathematics
November 2017

Ariki-Brundan-Kleshchev categorification theorem

Let C be a generalised Cartan matrix of type $A_{e}^{(1)}$ or A_{∞} :

The aim for this lecture is to explain and understand:

Theorem (Ariki, Brundan-Kleshchev, Brundan-Stroppel, Rouquier)

Let C be a Cartan matrix of type $A_{e}^{(1)}$ or A_{∞} and let \mathbb{k} be a field. Then

$$
L_{\mathbb{A}}(\Lambda) \cong \bigoplus_{n \geq 0} \operatorname{Proj}\left(\mathscr{R}_{n}^{\Lambda}\right) \quad \text { and } \quad L_{\mathbb{A}}(\Lambda)^{\vee} \cong \bigoplus_{n \geq 0} \operatorname{Rep}\left(\mathscr{R}_{n}^{\Lambda}\right)
$$

Moreover, if $\mathbb{k}=\mathbb{C}$ then

- The canonical basis of $L_{\mathbb{A}}(\Lambda)$ coincides with
$\left\{[P] \mid\right.$ self dual projective indecomposable $\mathscr{R}_{n}^{\Lambda}$-module, $\left.n \geq 0\right\}$
- The dual canonical basis of $L_{\mathbb{A}}(\Lambda)$ coincides with
$\left\{[D] \mid\right.$ self dual irreducible $\mathscr{R}_{n}^{\Lambda}$-modules, $\left.n \geq 0\right\}$
Ariki proved the ungraded analogue of this result in 1996, establishing and generalising the LLT conjecture. This result motivated Chuang-Rouquier's $\mathfrak{s l}_{2}$-categorification paper and the introduction of quiver Hecke algebras
(1) Quiver Hecke algebras and categorification
- Basis theorems for quiver Hecke algebras
- Categorification of $U_{q}(\mathfrak{g})$
- Categorification of highest weight modules
(2) The Brundan-Kleshchev graded isomorphism theorem
- Seminormal forms and semisimple KLR algebras
- Lifting idempotents
- Cellular algebras
(3) The Ariki-Brundan-Kleshchev categorification theorem
- Dual cell modules
- Graded induction and restriction
- The categorification theorem
(4) Recent developments
- Consequences of the categorification theorem
- Webster diagrams and tableaux
- Content systems and seminormal forms

Andrew Mathas- Cyclotomic quiver Hecke algebras III

Multipartitions and dominance

A multipartition, or ℓ-partition, of n is an ordered ℓ-tuple of partitions $\boldsymbol{\lambda}=\left(\lambda^{(1)}\left|\lambda^{(2)}\right| \ldots \mid \lambda^{(\ell)}\right)$ such that $|\boldsymbol{\lambda}|=\left|\lambda^{(1)}\right|+\cdots+\left|\lambda^{(\ell)}\right|=n$
Let \mathcal{P}_{n}^{\wedge} be the set of ℓ-partitions of n
We identify ℓ-partitions and their diagrams:

$$
[\lambda]=\left\{(I, r, c) \mid 1 \leq I \leq \ell, 1 \leq c \leq \lambda_{r}^{(I)}\right\}
$$

For example, if $\boldsymbol{\lambda}=\left(3,1|2,2| \emptyset \mid 1^{2}\right)$ then

A node is any triple (I, r, c) in a diagram. The $\operatorname{set}\{1, \ldots, \ell\} \times \mathbb{N}^{2}$ of nodes is totally ordered by the lexicographic order
The set \mathcal{P}_{n}^{\wedge} is a post under dominance, where if $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \mathcal{P}_{n}^{\wedge}$ then

$$
\boldsymbol{\lambda} \triangleright \boldsymbol{\mu} \text { if } \sum_{k=1}^{I-1}\left|\lambda^{(k)}\right|+\sum_{j=1}^{i} \lambda_{j}^{(I)} \geq \sum_{k=1}^{I-1}\left|\mu^{(k)}\right|+\sum_{j=1}^{i} \mu_{j}^{(I)}
$$

Dominance corresponds to moving nodes in the diagrams up and to the left

Addable and removable nodes

Recall from last lecture that we fixed integers $\kappa_{1}, \ldots, \kappa_{\ell}$ such that

$$
\#\left\{1 \leq I \leq \ell \mid \kappa_{l} \equiv i(\bmod e)\right\}=\left(h_{i}, \Lambda\right), \quad \text { for } i \in I
$$

An addable node of $\boldsymbol{\lambda}$ is a node $B \notin \boldsymbol{\lambda}$ such that $\boldsymbol{\lambda}+A:=\boldsymbol{\lambda} \cup\{B\} \in \mathcal{P}_{n+1}^{\wedge}$
A removable node of $\boldsymbol{\lambda}$ is a node $B \in \boldsymbol{\lambda}$ with $\boldsymbol{\lambda}-A:=\boldsymbol{\lambda} \backslash\{B\} \in \mathcal{P}_{n-1}^{\wedge}$ A node $(I, r, c) \in\{1,2, \ldots, \ell\} \times \mathbb{N}^{2}$ is an i-node if it has residue

$$
i=\kappa_{l}+c-r+e \mathbb{Z} \in I=\mathbb{Z} / e \mathbb{Z}
$$

Let $\operatorname{Add}_{i}(\boldsymbol{\lambda})$ and $\operatorname{Rem}_{i}(\boldsymbol{\lambda})$ be the sets of addable and removable i-nodes

Definition (Brundan-Kleshchev-Wang)

If A is an addable or removable i-node of μ define:

$$
\begin{aligned}
& d^{A}(\boldsymbol{\mu})=\#\left\{B \in \operatorname{Add}_{i}(\boldsymbol{\mu}) \mid A>B\right\}-\#\left\{B \in \operatorname{Rem}_{i}(\boldsymbol{\mu}) \mid A>B\right\} \\
& d_{A}(\boldsymbol{\mu})=\#\left\{B \in \operatorname{Add}_{i}(\boldsymbol{\mu}) \mid A<B\right\}-\#\left\{B \in \operatorname{Rem}_{i}(\boldsymbol{\mu}) \mid A<B\right\} \\
& d_{i}(\boldsymbol{\mu})=\# \operatorname{Add}_{i}(\boldsymbol{\mu})-\# \operatorname{Rem}_{i}(\boldsymbol{\mu})
\end{aligned}
$$

Cellular bases

The algebra \mathscr{R}_{n}^{\wedge} has two natural "dual" graded cellular bases
For $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge}$ define polynomials $y^{\boldsymbol{\lambda}}=y\left(\mathrm{t}^{\boldsymbol{\lambda}}\right)$ and $y_{\lambda}=y\left(\mathrm{t}_{\boldsymbol{\lambda}}\right)$ inductively by $y^{\boldsymbol{\lambda}}=y\left(\mathrm{t}_{\downarrow(n-1)}^{\lambda}\right) y_{n}^{d^{A}(\lambda)} \quad$ and $\quad y_{\lambda}=y\left(\mathrm{t}_{\boldsymbol{\lambda} \downarrow(n-1)}\right) y_{n}^{d_{A}(\lambda)}$
Then these two cellular bases have the following properties

Poset	$\left(\mathcal{P}_{n}^{\wedge}, \unrhd\right)$	$\left(\mathcal{P}_{n}^{\wedge}, \unlhd\right)$
Basis	$\left\{\psi_{\text {st }} \mid(\mathrm{s}, \mathrm{t}) \in \operatorname{Std}^{2}\left(\mathcal{P}_{n}^{\wedge}\right)\right\}$	$\left\{\psi_{\text {st }}^{\prime} \mid(\mathrm{s}, \mathrm{t}) \in \operatorname{Std}^{2}\left(\mathcal{P}_{n}^{\wedge}\right)\right\}$
Definition	$\psi_{\text {st }}=\psi_{d(\mathrm{~s})}^{*} i^{\prime} y^{\lambda} \psi_{d(\mathrm{t})}$	$\psi_{\text {st }}=\psi_{d^{\prime}(\mathrm{s})} i_{\lambda} y_{\boldsymbol{\lambda}} \psi_{\boldsymbol{d}^{\prime}(\mathrm{t})}$
Degree	$\operatorname{deg} \psi_{\text {st }}=\operatorname{deg} \mathrm{s}+\operatorname{deg} \mathrm{t}$	$\operatorname{deg}^{\prime} \psi_{\text {st }}=\operatorname{deg}^{\prime} \mathrm{s}+\operatorname{deg}^{\prime} \mathrm{t}$
Residues	i^{s} and i^{t}	i^{s} and i^{t}
Cell modules	S^{λ}	S_{λ}
Simple modules	D^{μ}	D_{μ}

Let $\mathcal{K}_{n}^{\wedge}=\left\{\boldsymbol{\mu} \in \mathcal{P}_{n}^{\wedge} \mid D^{\mu} \neq 0\right\}$ and $\mathcal{K}_{\Lambda}^{n}=\left\{\boldsymbol{\mu} \in \mathcal{P}_{n}^{\wedge} \mid D_{\mu} \neq 0\right\}$. Then $\left\{D^{\mu}\langle k\rangle \mid \boldsymbol{\mu} \in \mathcal{K}_{n}^{\Lambda}, k \in \mathbb{Z}\right\} \quad$ and $\quad\left\{D_{\mu}\langle k\rangle \mid \boldsymbol{\mu} \in \mathcal{K}_{\Lambda}^{n}, k \in \mathbb{Z}\right\}$
are both complete sets of pairwise non-isomorphic irreducible \mathscr{R}_{n}^{\wedge}-modules
For symmetric groups, the Specht modules and simple modules are interchanged by tensoring with the sign representation

Andrew Mathas- Cyclotomic quiver Hecke algebras III

Standard tableaux

A $\boldsymbol{\lambda}$-tableau is a map $\mathrm{t}:[\boldsymbol{\lambda}] \longrightarrow\{1,2, \ldots, n\}$, which we identify with a labelling of $[\lambda]$. A tableau t is standard if its entries increase along rows and down columns in each component

Let $\operatorname{Std}(\boldsymbol{\lambda})$ be the set of standard $\boldsymbol{\lambda}$-tableaux
Example Let $\boldsymbol{\lambda}=\left(3,2\left|2^{2}\right|(2,1)\right.$. Then two standard $\boldsymbol{\lambda}$-tableau are:

These are the initial and final $\boldsymbol{\lambda}$-tableau, respectively
If $\mathrm{t} \in \operatorname{Std}(\boldsymbol{\lambda})$ define permutations $d(\mathrm{t})$ and $d^{\prime}(\mathrm{t}) \in \mathfrak{S}_{n}$ by

$$
\mathrm{t}^{\lambda} d(\mathrm{t})=\mathrm{t}=\mathrm{t}_{\lambda} d^{\prime}(\mathrm{t})
$$

The residue sequence of $\mathrm{t} \in \operatorname{Std}\left(\mathcal{P}_{n}^{\wedge}\right)$ is $\mathrm{i}^{\mathrm{t}} \in I^{n}$ where $\mathrm{t}^{-1}(m)$ is an i_{m}^{t}-node Let $A=\mathrm{t}^{-1}(n)$. Define the degree and codegree, respectively, of t by:
$\operatorname{deg} t=\operatorname{deg}_{\downarrow(n-1)}+d^{A}(\boldsymbol{\mu}) \quad$ and $\quad \operatorname{deg}^{\prime} \mathrm{t}=\operatorname{deg}^{\prime} \mathrm{t}_{\downarrow(n-1)}+d_{A}(\boldsymbol{\mu})$ such that "empty ($0|\ldots|$,0)-tableau" has degree and codegree 0
By definition, $\operatorname{deg} t, \operatorname{deg}^{\prime} t \in \mathbb{Z}$. They can be positive, negative or zero
Andrew Mathas- Cyclotomic quiver Hecke algebras III

Graded decomposition matrices

For $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge}$ and $\boldsymbol{\mu} \in \mathcal{K}_{n}^{\wedge}$ define graded decomposition numbers

$$
d_{\lambda \mu}(q)=\left[S^{\lambda}: D^{\mu}\right]_{q}=\sum_{k \in \mathbb{Z}}\left[S^{\lambda}: D^{\mu}\langle k\rangle\right] q^{k} \quad \in \mathbb{N}\left[q, q^{-1}\right]
$$

Let $\mathbf{d}_{q}=\left(d_{\lambda \mu}(q)\right)$ be the graded decomposition matrix
Let Y^{μ} be the (graded) projective cover of D^{μ}
Let $\mathbf{c}_{q}=\left(\left[Y^{\mu}: D^{\nu}\right]_{q}\right)_{\mu, \boldsymbol{\nu} \in \mathcal{K}_{n}^{\lambda}}$ be the graded Cartan matrix

Theorem

Suppose that $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge}$ and $\boldsymbol{\mu} \in \mathcal{K}_{n}^{\wedge}$. Then

$$
d_{\mu \mu}(q)=1 \text { and } d_{\lambda \mu}(q) \neq 0 \text { only if } \lambda \unrhd \mu
$$

Moreover, Y^{μ} has a filtration by graded Specht modules in which S^{λ} appears with multiplicity $d_{\lambda \mu}(q)$

$$
\Longrightarrow \quad \mathbf{c}_{q}=\mathbf{d}_{q}^{T} \mathbf{d}_{q}
$$

Proof This follows from the general theory of (graded) cellular algebras Remark Specht filtration multiplicities are not well-defined, but the import of the theorem is that $\left[Y^{\mu}: S^{\lambda}\right]_{q}=\left[S^{\lambda}: D^{\mu}\right]_{q}$

Induction and restriction

For $i \in I$ define $1_{n, i}=\sum_{\mathbf{j} \in I^{n}} \mathbf{1}_{\mathbf{j} i} \in \mathscr{R}_{n+1}^{\wedge}$

Lemma

Let $i \in I$. There is an embedding of graded algebras $\mathscr{R}_{n}^{\wedge} \hookrightarrow \mathscr{R}_{n+1}^{\wedge}$ given by

$$
1_{\mathbf{j}} \mapsto 1_{\mathbf{j}}, \quad y_{r} \mapsto y_{r} 1_{n, i} \quad \text { and } \quad \psi_{s} \mapsto \psi_{s} 1_{n, i}
$$

This induces an exact functor

$$
i \text {-Ind : } \mathscr{R}_{n}^{\wedge} \text {-Mod } \longrightarrow \mathscr{R}_{n+1}^{\wedge}-\text { Mod; } M \mapsto M \otimes_{\mathscr{R}_{n}^{\wedge}} 1_{n, i} \mathscr{R}_{n+1}^{\wedge}
$$

Moreover, $\operatorname{Ind}=\bigoplus_{i \in I}{ }^{i-\operatorname{Ind}}$
Proof Check the KLR relations and use the KLR basis theorems
The functor i-Ind has a natural left adjoint:

$$
i-\operatorname{Res} M=M e_{1, i} \cong \operatorname{Hom}_{\mathscr{R}_{n}^{\wedge}}\left(1_{n, i} \mathscr{R}_{n}^{\wedge}, M\right)
$$

Theorem (Kashiwara)

Suppose $i \in I$. Then (i-Res, $i-\operatorname{Ind}$) is a biadjoint pair.

Graded branching rules and tableaux degrees

$\Longrightarrow\left[\operatorname{Res} S^{(3,1)}\right]=q\left[S^{(3)}\right]+\left[S^{(2,1)}\right] \quad$ and $\left[\operatorname{lnd} S_{\left(1^{3}\right)}\right]=\left[S_{\left(2,1^{2}\right)}\right]+q\left[S_{\left(1^{4}\right)}\right]$ (Brundan, Kleshchev and Wang) (Hu and M.)
Paths still index a basis $\Longrightarrow \operatorname{dim}_{q} S_{(3,1)}=q+q^{-1}+q$
$\Longrightarrow \operatorname{dim}_{q} D_{(3,1)}=q+q^{-1}$

Induction and restriction of Specht modules

Theorem (Brundan-Kleshchev-Wang, Hu-Mathas)

Suppose that \mathbb{k} is an integral domain and $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge}$.
(1) Let $B_{1}>B_{2}>\cdots>B_{y}$ be the removable i-nodes of $\boldsymbol{\lambda}$. Then i-Res $S^{\boldsymbol{\lambda}}$ and i-Res S_{λ} have graded Specht filtrations

$$
\begin{aligned}
& 0=R_{0} \subset R_{1} \subset \cdots \subset R_{y}=i-\operatorname{Res} S^{\lambda} \\
& 0=R_{y+1} \subset R_{y} \subset \cdots \subset R_{1}=i-\operatorname{Res} S_{\lambda}
\end{aligned}
$$

such that $R_{j} / R_{j-1} \cong q^{d_{B_{j}}(\lambda)} S^{\lambda-B_{j}}$ and $R_{j} / R_{j+1} \cong q^{d^{B_{j}}(\lambda)} S_{\lambda-B_{j}}$
(2) Let $A_{1}>A_{2} \cdots>A_{z}$ be the addable i-nodes of λ.

Then i-Ind S^{λ} and $i-\operatorname{Ind} S_{\lambda}$ have graded Specht filtrations

$$
\begin{aligned}
& 0=I_{z+1} \subset I_{z} \subset \cdots \subset I_{1}=i-\operatorname{lnd} S^{\lambda} \\
& 0=I_{0} \subset I_{1} \subset \cdots \subset I_{z}=i-\operatorname{lnd} S_{\lambda}
\end{aligned}
$$

such that $I_{j} / I_{j+1} \cong q^{d_{A_{j}}(\lambda)} S^{\lambda+A_{j}}$ and $I_{j} / I_{j-1} \cong q^{d^{A_{j}}(\lambda)} S_{\lambda+A_{j}}$
Proof Reduce to the semisimple case and then use the seminormal form

Defect and duality

Let $*$ be the unique (homogeneous) anti-isomorphism of \mathscr{R}_{n}^{\wedge} that fixes each of the KLR generators
$\Longrightarrow\left(\psi_{\mathbf{s t}}\right)^{*}=\psi_{\mathrm{ts}}$ and $\left(\psi_{\mathrm{st}}^{\prime}\right)^{*}=\psi_{\mathrm{ts}}^{\prime}$, so $*$ is the cellular basis involution for both the ψ and ψ^{\prime}-bases
If M is an \mathscr{R}_{n}^{\wedge}-module then $M^{\circledast}=\operatorname{Hom}_{\mathbb{k}}(M, \mathbb{k})$ is an \mathscr{R}_{n}^{\wedge}-module with action: $\quad(h \cdot f)(m)=f\left(h^{*} m\right), \quad$ for $h \in \mathscr{R}_{n}^{\wedge}, f \in M^{\circledast}$ and $m \in M$

$$
\Longrightarrow \operatorname{dim}_{q} M^{\circledast}=\overline{\operatorname{dim}_{q} M}
$$

where $\overline{f(q)}=f\left(q^{-1}\right)$ is the \mathbb{Z}-linear bar involution on $\mathbb{Z}\left[q, q^{-1}\right]$
Previously, we noted that $\left(D^{\mu}\right)^{\circledast} \cong D^{\mu}$ and $\left(D_{\nu}\right)^{\circledast} \cong D_{\nu}$
To describe duality on the Specht modules define the defect of $\beta \in Q^{+}$

$$
\operatorname{def} \beta=(\Lambda, \beta)-\frac{1}{2}(\beta, \beta)=\frac{1}{2}((\Lambda, \Lambda)-(\Lambda-\beta, \Lambda-\beta)) \in \mathbb{N}
$$

For $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\Lambda}$ set $\beta_{\boldsymbol{\lambda}}=\sum_{k=1}^{n} \alpha_{i_{k} t} \in Q^{+}$, for any $\mathrm{t} \in \operatorname{Std}(\boldsymbol{\lambda})$.
The defect of $\boldsymbol{\lambda}$ is $\operatorname{def} \boldsymbol{\lambda}=\operatorname{def} \beta_{\boldsymbol{\lambda}}$

Symmetrizing form

A graded \mathbb{k}-algebra A is a graded symmetric algebra if there exists a homogeneous non-degenerate trace form $\tau: A \longrightarrow \mathbb{k}$, where \mathbb{k} is in degree zero. That is, $\tau(a b)=\tau(b a)$ and if $0 \neq a \in A$ then there exists $b \in A$ such that $\tau(a b) \neq 0$.

Theorem (Hu-M., Kang-Kasiwara, Webster)

Suppose that $\beta \in Q_{n}^{+}$. Then $\mathscr{R}_{\beta}^{\wedge}$ a graded symmetric algebra with homogeneous trace form τ_{β} of degree $-2 \operatorname{def} \beta$.

Proof Our proof reduces to the trace-form on \mathscr{H}_{n}^{\wedge}. A key part of the argument is the observation that

$$
\tau_{\beta}\left(\psi_{\mathbf{s t}} \psi_{\mathrm{uv}}^{\prime}\right) \neq 0 \text { only if } \mathrm{u} \unrhd \mathrm{t} \text { and that } \tau_{\beta}\left(\psi_{\mathbf{s t}} \psi_{\mathrm{ts}}^{\prime}\right) \neq 0
$$

Corollary (Hu-M.)

Let $\boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge}$. Then $S^{\boldsymbol{\lambda}} \cong q^{\operatorname{def} \lambda} S_{\lambda}^{\circledast}$ and $S_{\lambda}=q^{\operatorname{def} \lambda}\left(S^{\boldsymbol{\lambda}}\right)^{\circledast}$
Proof By the remarks above, an isomorphism is given by sending $\psi_{\mathrm{t}} \in S^{\lambda}$ to the map $\theta_{\mathrm{t}} \in q^{\operatorname{def} \lambda} S_{\lambda}^{\circledast}$ that is given by $\theta_{\mathrm{t}}\left(\psi_{\mathrm{u}}^{\prime}\right)=\tau_{\beta}\left(\psi_{\mathrm{t} \lambda_{\mathrm{t}}} \psi_{\mathrm{ut} \lambda}^{\prime}\right)$
Andrew Mathas- Cyclotomic quiver Hecke algebras III

The quantum group $U_{q}\left(\widehat{\mathfrak{s l}}_{e}\right)$

Given our choice of Cartan matrix, we need to work with $U_{q}(\widehat{\mathfrak{s l}})$
The quantum group $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$ associated with the Cartan matrix C is the
$\mathbb{Q}(q)$-algebra generated by $\left\{E_{i}, F_{i}, K_{i}^{ \pm} \mid i \in I\right\}$, subject to the relations:

$$
\begin{gathered}
K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} K_{i}^{-1}=1, \quad K_{i} E_{j} K_{i}^{-1}=q^{c_{i j}} E_{j} \\
K_{i} F_{j} K_{i}^{-1}=q^{-c_{i j}} F_{j}, \quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{-}^{-1}}{q-q^{-1}}, \\
\sum_{0 \leq c \leq 1-c_{i j}}(-1)^{c} \llbracket^{1-c c_{i j}} \rrbracket_{i} E_{i}^{1-c_{i j}-c} E_{j} E_{i}^{c}=0 \\
\left.\sum_{0 \leq c \leq 1-c_{i j}}(-1)^{c} \llbracket^{1-c c_{i j}}\right]_{i} F_{i}^{1-c_{i j}-c} F_{j} F_{i}^{c}=0
\end{gathered}
$$

where $\llbracket \begin{aligned} & d \\ & c\end{aligned} \rrbracket_{i}=\frac{\llbracket d \| \rrbracket_{i}!}{\llbracket d]_{i}!\llbracket d-c \rrbracket_{i}!}$ and $\llbracket m \rrbracket_{i}!=\prod_{k=1}^{m} \frac{q^{k}-q^{-k}}{q-q^{-1}}$
Recall that $\mathbb{A}=\mathbb{Z}\left[q, q^{-1}\right]$
Let $U_{\mathbb{A}}\left(\widehat{\mathfrak{s l}}_{e}\right)$ be Lusztig's \mathbb{A}-form of $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$, which is the \mathbb{A}-subalgebra of $U_{q}\left(\widehat{\mathfrak{s l}}_{e}\right)$ generated by the quantised divided powers

$$
E_{i}^{(k)}=E_{i}^{k} / \llbracket k \rrbracket_{i}!\quad \text { and } \quad F_{i}^{(k)}=F_{i}^{k} / \llbracket k \rrbracket_{i}!
$$

For each $\Lambda \in P^{+}$there is a irreducible integrable highest weight module $L(\Lambda)$ of highest weight Λ.

The Hom-dual

Define $\#$ to be the graded endofunctor of $\operatorname{Rep}\left(\mathscr{R}_{n}^{\Lambda}\right)$ and $\operatorname{Proj}\left(\mathscr{R}_{n}^{\Lambda}\right)$ given by

$$
M^{\#}=\operatorname{Hom}_{\mathscr{R}_{n}}\left(M, \mathscr{R}_{n}^{\Lambda}\right)
$$

In particular, note that $\left(Y^{\mu}\right)^{\#} \cong Y^{\mu}$ since Y^{μ} is a summand of $\mathscr{R}_{n}^{\Lambda}$
A straightforward argument using the adjointness of \otimes and Hom gives:

Lemma

Let $\beta \in Q^{+}$. As endofunctors of $\operatorname{Rep}\left(\mathscr{R}_{\beta}^{\Lambda}\right)$, there is an isomorphism of functors $\# \cong q^{2 \operatorname{def} \beta} \circ \circledast$.

We use will \circledast as the duality for the dual canonical bases and \# for the canonical basis

The combinatorial Fock space

The combinatorial Fock space $\mathscr{F}_{\mathbb{A}}^{\wedge}$ is the free \mathbb{A}-module with basis the set of symbols $\left\{|\boldsymbol{\lambda}\rangle \mid \boldsymbol{\lambda} \in \mathcal{P}^{\wedge}\right\}$, where $\mathcal{P}^{\wedge}=\bigcup_{n \geq 0} \mathcal{P}_{n}^{\wedge}$. For future use, let $\mathcal{K}^{\wedge}=\bigcup_{n \geq 0} \mathcal{K}_{n}^{\wedge}$. Set $\mathscr{F}_{\mathbb{Q}(q)}^{\wedge}=\mathscr{F}_{\mathbb{A}}^{\wedge} \otimes_{\mathbb{A}} \mathbb{Q}(q)$. Then, $\mathscr{F}_{\mathbb{Q}(q)}^{\wedge}$ is an infinite dimensional $\mathbb{Q}(q)$-vector space. We consider $\left\{|\boldsymbol{\lambda}\rangle \mid \boldsymbol{\lambda} \in \mathcal{P}^{\wedge}\right\}$ as a basis of $\mathscr{F}_{\mathbb{Q}(q)}^{\wedge}$ by identifying $|\boldsymbol{\lambda}\rangle$ and $|\boldsymbol{\lambda}\rangle \otimes 1_{\mathbb{Q}(q)}$.

Theorem (Hayashi, Misra-Miwa)

Suppose that $\Lambda \in P^{+}$. Then $\mathscr{F}_{\mathbb{Q}(q)}^{\wedge}$ is an integrable $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$-module with $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$-action determined by

$$
\begin{aligned}
& E_{i}|\boldsymbol{\lambda}\rangle=\sum_{B \in \operatorname{Rem}_{i}(\boldsymbol{\lambda})} q^{d_{B}(\lambda)}|\boldsymbol{\lambda}-B\rangle, \quad F_{i}|\boldsymbol{\lambda}\rangle=\sum_{A \in \operatorname{Add}_{i}(\lambda)} q^{-d^{A}(\lambda)}|\boldsymbol{\lambda}+A\rangle \\
& \text { and } K_{i}|\boldsymbol{\lambda}\rangle=q^{d_{i}(\lambda)}|\boldsymbol{\lambda}\rangle \text {, for } i \in I \text { and } \boldsymbol{\lambda} \in \mathcal{P}_{n}^{\wedge} .
\end{aligned}
$$

Proof A tedious check of the relations
It follows from the theorem that $L(\Lambda) \cong U_{q}\left(\widehat{\mathfrak{s l}}_{e}\right)\left|\mathbf{0}_{\ell}\right\rangle$, where $\mathbf{0}_{\ell}$ is the zero ℓ-partition. Define $L_{A}(\Lambda)=U_{A}\left(\widehat{\mathfrak{s}}_{e}\right)\left|0_{\ell}\right\rangle$

The CDE triangle in the Fock space

Recall that $\operatorname{Rep}\left(\mathscr{R}^{\wedge}\right)=\bigoplus_{n \geq 0} \operatorname{Rep}\left(\mathscr{R}_{n}^{\wedge}\right)$ and $\operatorname{Proj}\left(\mathscr{R}^{\wedge}\right)=\bigoplus_{n \geq 0} \operatorname{Proj}\left(\mathscr{R}_{n}^{\wedge}\right)$

Proposition

Suppose that $\wedge \in P^{+}$. Then the i-induction and i-restriction functors induce a $U_{q}\left(\widehat{\mathfrak{s}}{ }_{e}\right)$-module structure on $\operatorname{Proj}\left(\mathscr{R}^{\wedge}\right) \otimes_{\mathbf{A}} \mathbb{Q}(q)$ and
$\operatorname{Rep}\left(\mathscr{R}^{\wedge}\right) \otimes_{\mathbb{A}} \mathbb{Q}(q)$ so that, as $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$-modules,

$$
\operatorname{Proj}\left(\mathscr{R}^{\wedge}\right) \otimes_{\mathrm{A}} \mathbb{Q}(q) \cong L(\Lambda) \cong \operatorname{Rep}\left(\mathscr{R}^{\wedge}\right) \otimes_{\mathrm{A}} \mathbb{Q}(q)
$$

Proof The decomposition matrix defines the linear maps shown. As vector space homomorphisms, \mathbf{d}_{q}^{T} is injective and \mathbf{d}_{q} is surjective. Using the graded induction and restriction formulas it remains to observe that E_{i} coincides with i-Res and
 that $q^{-1} F_{i} K_{i}$ coincides with i-Ind.

Cartan pairing

A semilinear map of \mathbb{A}-modules is a \mathbb{Z}-linear map $\theta: M \longrightarrow N$ such that $\theta(f(q) m)=\overline{f(q)} \theta(m)$, for all $f(q) \in \mathbb{A}$ and $m \in M$.
A sesquilinear map $f: M \times N \longrightarrow \mathbb{A}$, where M and N are \mathbb{A}-modules, is a function that is semilinear in the first variable and linear in the second.
Define the Cartan pairing $\langle[P],[M]\rangle=\operatorname{dim}_{q} \operatorname{Hom}_{\mathscr{R}_{n}^{\wedge}}(P, M)$, for $P \in \operatorname{Proj}\left(\mathscr{R}_{n}^{\wedge}\right)$ and $M \in \operatorname{Rep}\left(\mathscr{R}_{n}^{\wedge}\right)$. This is a sesquilinear form because

$$
\operatorname{Hom}_{\mathscr{R}_{n}^{\lambda}}(P\langle k\rangle, M) \cong \operatorname{Hom}_{\mathscr{R}_{n}^{\Lambda}}(P, M\langle-k\rangle)
$$

$\Longrightarrow\left\langle\left[Y^{\mu}\right],\left[D^{\nu}\right]\right\rangle=\delta_{\mu \nu}$
The biadjointness of $\left(E_{i}, F_{i}\right)$ implies that
$\langle i-\operatorname{Ind} x, y\rangle=\langle x, i$-Res $y\rangle$ and $\langle i-\operatorname{Res} x, y\rangle=\langle x, i-\operatorname{Ind} y\rangle$
Using the uniqueness of the Shapovalov form, we obtain:

$$
\Longrightarrow \text { If } x \in \operatorname{Proj}\left(\mathscr{R}^{\wedge}\right) \text { and } y \in \operatorname{Rep}\left(\mathscr{R}^{\wedge}\right) \text { then }\left\langle\mathbf{d}_{q}^{T}(x), y\right\rangle=\left\langle x, \mathbf{d}_{q}(y)\right\rangle
$$

Corollary

As $U_{\mathrm{A}}\left(\widehat{\mathfrak{s}}_{e}\right)$-modules, $\operatorname{Proj}\left(\mathscr{R}^{\wedge}\right)=L_{\mathrm{A}}(\Lambda)$ and

$$
\operatorname{Rep}\left(\mathscr{R}^{\Lambda}\right)=L_{\mathbb{A}}(\Lambda)^{\vee}=\left\{x \in L_{\mathbb{Q}(q)}(\Lambda) \mid\langle x, y\rangle \in \mathbb{A} \text { for all } y \in \mathbb{L}_{\mathbb{A}}(\Lambda)\right\}
$$

Andrew Mathas- Cyclotomic quiver Hecke algebras III
$18 / 26$

Lusztig's Lemma

Proposition (Lusztig's lemma)

There exists a unique basis $\left\{B^{\mu} \mid \boldsymbol{\mu} \in \mathcal{K}^{\wedge}\right\}$ of $\operatorname{Rep}\left(\mathscr{R}^{\wedge}\right)$ such that

$$
\left(B^{\mu}\right)^{\circledast}=B^{\mu} \quad \text { and } \quad B^{\mu}=\left[S^{\mu}\right]+\sum_{\mu \triangleright \tau \in \mathcal{K}_{n}^{\lambda}} b^{\mu \tau}(q)\left[S^{\tau}\right]
$$

where $b^{\mu \tau}(q) \in \delta_{\mu \tau}+q \mathbb{Z}[q]$
Proof
Uniqueness If B^{μ} and \dot{B}^{μ} are two such elements then

$$
B^{\mu}-\dot{B}^{\mu}=\sum_{\mu \triangleright \tau} c^{\mu \tau}(q)\left[S^{\tau}\right], \quad \text { for } c^{\mu \tau}(q) \in q \mathbb{Z}[q] .
$$

The left-hand side is \circledast-invariant and $\overline{c^{\mu \tau}(q)} \in q^{-1} \mathbb{Z}\left[q^{-1}\right]$. If $\tau \neq \mu$ is maximal such that $c^{\mu \tau}(q) \neq 0$ then the last lemma forces

$$
c^{\mu \tau}(q) \in q \mathbb{Z}[q] \cap q^{-1} \mathbb{Z}\left[q^{-1}\right]=\{0\}
$$

a contradiction! Hence, $B^{\mu}=\dot{B}^{\mu}$

Lusztig's lemma - existence

Existence: argue by induction on dominance
If $\mu \in \mathcal{K}_{n}^{\wedge}$ is minimal in \mathcal{K}_{n}^{\wedge} then $B^{\mu}=\left[S^{\mu}\right]=\left[D^{\mu}\right]=\left(B^{\mu}\right)^{\circledast}$.
If $\boldsymbol{\mu} \in \mathcal{K}_{n}^{\wedge}$ is not minimal set $C^{\mu}=\left[D^{\mu}\right]$

$$
\Longrightarrow \quad\left(C^{\mu}\right)^{\circledast}=C^{\mu} \text { and } C^{\mu}=\left[S^{\mu}\right]+\sum_{\mu \triangleright \tau} c^{\mu \tau}(q)\left[S^{\tau}\right],
$$

$$
\text { for } c^{\mu \tau}(q) \in \mathbb{A}
$$

If $c^{\mu \tau}(q) \in q \mathbb{Z}[q]$ for all τ, set $B^{\mu}=C^{\mu}$ - we're done
If not, let ν be maximal such that $c^{\mu \nu}(q) \notin q \mathbb{Z}[q]$
Replace C^{μ} with the element $C^{\mu}-a^{\mu \nu}(q) B^{\nu}$, where $a^{\mu \nu}(q)$ is the unique Laurent polynomial such that $a^{\mu \nu}(q)=a^{\mu \nu}(q)$ and $c^{\mu \nu}(q)-a^{\mu \nu}(q) \in q \mathbb{Z}[q]$.
$\Longrightarrow\left(C^{\mu}\right)^{\circledast}=C^{\mu}$ and the coefficient of $\left[S^{\nu}\right]$ in C^{μ} belongs to $q \mathbb{Z}[q]$.
Repeating this process, after finitely many steps we construct an element B^{μ} with the required properties.

Andrew Mathas- Cyclotomic quiver Hecke algebras III

Ariki's categorification theorem

Let $\operatorname{Proj}\left(\mathscr{H}^{\wedge}\right)=\bigoplus_{n \geq 0} \operatorname{Proj}\left(\mathscr{H}_{n}^{\Lambda}\right)$ be the Grothendieck group of the ungraded algebras \mathscr{H}_{n}^{\wedge}, for $n \geq 0$.
$\Longrightarrow \operatorname{Proj}\left(\mathscr{H}^{\wedge}\right)$ is the free \mathbb{Z}-module with basis $\left\{\underline{Y}^{\mu} \mid \boldsymbol{\mu} \in \mathcal{K}^{\wedge}\right\}$, where $M \mapsto \underline{M}$ is the forgetful functor that forgets the grading
Let $L_{1}(\Lambda)$ be the irreducible integrable highest weight module with highest weight Λ when $q=1$

Theorem (Ariki's Categorification Theorem)

Suppose that \mathbb{k} is a field of characteristic zero. Then the canonical basis of $L_{1}(\Lambda)$ coincides with the basis of (ungraded) projective indecomposable $\mathscr{H}_{n}^{\Lambda}$-modules $\left\{\left[\underline{Y}^{\mu}\right] \mid \mu \in \mathcal{K}^{\wedge}\right\}$ of $\operatorname{Proj}\left(\mathscr{H}_{n}^{\wedge}\right)$.

Corollary

Suppose that \mathbb{k} is a field of characteristic zero. Then $\left\{\left[D^{\mu}\right] \mid \mu \in \mathcal{K}^{\wedge}\right\}$ is the dual canonical basis of $L_{A}(\Lambda)$

$$
\Longrightarrow \quad d_{\lambda \mu}(q) \in \delta_{\lambda \mu}+q \mathbb{N}[q]
$$

Canonical basis

Using an almost identical argument starting with

$$
X_{\mu}=\sum_{\lambda \in \mathcal{K}_{n}^{\lambda}} e_{\lambda \mu}(-q)\left[Y^{\lambda}\right] \in \operatorname{Proj}\left(\mathscr{R}^{\wedge}\right) \text { we obtain: }
$$

Proposition (Lusztig's lemma)

There exists a unique basis $\left\{B_{\mu} \mid \mu \in \mathcal{K}^{\wedge}\right\}$ of $\operatorname{Proj}\left(\mathscr{R}^{\wedge}\right)$ such that

$$
\left(B^{\mu}\right)^{\#}=B^{\mu} \quad \text { and } \quad B^{\mu}=\left[S_{\mu}\right]+\sum_{\tau \triangleright \mu \in \mathcal{K}_{n}^{\Lambda}} b^{\tau \mu}(q)\left[X_{\tau}\right]
$$

where $b^{\tau \mu}(q) \in \delta_{\tau \mu}+q \mathbb{Z}[q]$
The basis $\left\{B^{\mu}\right\}$ is the dual canonical basis of $L_{A}(\lambda)^{\vee} \cong \operatorname{Rep}\left(\mathscr{R}^{\wedge}\right)$ and $\left\{D_{\mu} \mid \boldsymbol{\mu} \in \mathcal{K}^{\wedge}\right\}$ is the canonical basis of $L_{\mathbb{A}}(\Lambda) \cong \operatorname{Proj}\left(\mathscr{R}_{n}^{\wedge}\right)$
As their names suggest, these two bases are dual under the Cartan pairing:

Corollary

Suppose that $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \mathcal{K}^{\wedge}$. Then $\left\langle B_{\mu}, B^{\boldsymbol{\lambda}}\right\rangle=\delta_{\lambda \mu}$

Andrew Mathas-Cyclotomic quiver Hecke algebras III

Further reading I

- S. Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$, J. Math. Kyoto Univ., 36 (1996), 789-808.
- _-, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series, 26, American Mathematical Society, Providence, RI, 2002. Translated from the 2000 Japanese edition and revised by the author.
- S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras of type $G(r, 1, n)$, Math. Z., 233 (2000), 601-623.
- J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222 (2009), 1883-1942.
- _ The degenerate analogue of Ariki's categorification theorem, Math. Z., 266 (2010), 877-919. arXiv:0901.0057.
- J. Brundan, A. Kleshchev, and W. Wang, Graded Specht modules, J. Reine Angew. Math., 655 (2011), 61-87. arXiv:0901.0218.
- M. Geck, Representations of Hecke algebras at roots of unity, Astérisque, 1998, Exp. No. 836, 3, 33-55. Séminaire Bourbaki. Vol. 1997/98.

Further reading II

- J. Hu and A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, Adv. Math., 225 (2010), 598-642. arXiv:0907.2985.
- __, Graded induction for Specht modules, Int. Math. Res. Not. IMRN, 2012 (2012), 1230-1263. arXiv:1008.1462.
- A. Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005.
- A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181 (1996), 205-263.
- A. Mathas, Cyclotomic quiver Hecke algebras of type A, in Modular representation theory of finite and p-adic groups, G. W. Teck and K. M. Tan, eds., National University of Singapore Lecture Notes Series, 30, World Scientific, 2015, ch. 5, 165-266. arXiv:1310.2142.

Further reading III

- __, Restricting Specht modules of cyclotomic Hecke algebras, Science China Mathematics, 2017, 1-12. Special Issue on Representation Theory, arXiv:1610.09729.
- R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq., 19 (2012), 359-410.
- M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math., 659 (2011), 67-100.
- B. Webster, Canonical bases and higher representation theory, Compos. Math., 151 (2015), 121-166. arXiv:1209.0051.

