## Cyclotomic quiver Hecke algebras III The Ariki-Brundan-Kleshchev categorification theorem

### Andrew Mathas

University of Sydney

#### Categorification, representation theory and symplectic geometry Hausdorff Research Institute for Mathematics November 2017

## Ariki-Brundan-Kleshchev categorification theorem

Let C be a generalised Cartan matrix of type  $A_e^{(1)}$  or  $A_{\infty}$ :

The aim for this lecture is to explain and understand:

Theorem (Ariki, Brundan-Kleshchev, Brundan-Stroppel, Rouquier)

Let C be a Cartan matrix of type 
$$A_e^{(1)}$$
 or  $A_{\infty}$  and let  $\Bbbk$  be a field. Then  
 $L_{\mathbb{A}}(\Lambda) \cong \bigoplus_{\substack{n \ge 0 \\ n \ge 0}} \operatorname{Proj}(\mathscr{R}_n^{\Lambda})$  and  $L_{\mathbb{A}}(\Lambda)^{\vee} \cong \bigoplus_{\substack{n \ge 0 \\ n \ge 0}} \operatorname{Rep}(\mathscr{R}_n^{\Lambda})$ 

Moreover, if  $\mathbf{k} = \mathbb{C}$  then

- The canonical basis of  $L_{\mathbb{A}}(\Lambda)$  coincides with  $\{ [P] | \text{ self dual projective indecomposable } \mathscr{R}_n^{\Lambda} \text{-module, } n \ge 0 \}$
- The dual canonical basis of  $L_{\mathbb{A}}(\Lambda)$  coincides with  $\{ [D] \mid self \ dual \ irreducible \ \mathscr{R}_n^{\Lambda} modules, \ n \ge 0 \}$

Ariki proved the ungraded analogue of this result in 1996, establishing and generalising the LLT conjecture. This result motivated Chuang-Rouquier's  $\mathfrak{sl}_2$ -categorification paper and the introduction of quiver Hecke algebras

## Outline of lectures

- Quiver Hecke algebras and categorification
  - Basis theorems for quiver Hecke algebras
  - Categorification of  $U_q(\mathfrak{g})$
  - Categorification of highest weight modules
- **2** The Brundan-Kleshchev graded isomorphism theorem
  - Seminormal forms and semisimple KLR algebras
  - Lifting idempotents
  - Cellular algebras
- In Ariki-Brundan-Kleshchev categorification theorem
  - Dual cell modules
  - Graded induction and restriction
  - The categorification theorem
- Recent developments
  - Consequences of the categorification theorem
  - Webster diagrams and tableaux
  - Content systems and seminormal forms

Andrew Mathas— Cyclotomic quiver Hecke algebras III

## Multipartitions and dominance

A multipartition, or  $\ell$ -partition, of n is an ordered  $\ell$ -tuple of partitions  $\lambda = (\lambda^{(1)}|\lambda^{(2)}|...|\lambda^{(\ell)})$  such that  $|\lambda| = |\lambda^{(1)}| + \cdots + |\lambda^{(\ell)}| = n$ 

Let  $\mathcal{P}_n^{\Lambda}$  be the set of  $\ell$ -partitions of *n* 

We identify  $\ell$ -partitions and their diagrams:

$$[oldsymbol{\lambda}] = \{ (I, r, c) \, | \, 1 \leq l \leq \ell, 1 \leq c \leq \lambda_r^{(l)} \}$$

For example, if  $\lambda = (3, 1|2, 2|\emptyset|1^2)$  then

|  | Ø   |  |
|--|-----|--|
|  | 111 |  |

A node is any triple (I, r, c) in a diagram. The set $\{1, \ldots, \ell\} \times \mathbb{N}^2$  of nodes is totally ordered by the lexicographic order

The set  $\mathcal{P}_n^{\wedge}$  is a post under dominance, where if  $\lambda, \mu \in \mathcal{P}_n^{\wedge}$  then

$$oldsymbol{\lambda} arprop oldsymbol{\mu} ext{ if } \sum_{k=1}^{l-1} |\lambda^{(k)}| + \sum_{j=1}^{i} \lambda^{(l)}_{j} \ge \sum_{k=1}^{l-1} |\mu^{(k)}| + \sum_{j=1}^{i} \mu^{(l)}_{j}$$

Dominance corresponds to moving nodes in the diagrams up and to the left

## Addable and removable nodes

Recall from last lecture that we fixed integers  $\kappa_1, \ldots, \kappa_\ell$  such that  $\#\{1 \le l \le \ell \mid \kappa_l \equiv i \pmod{e}\} = (h_i, \Lambda), \text{ for } i \in I$ An addable node of  $\lambda$  is a node  $B \notin \lambda$  such that  $\lambda + A := \lambda \cup \{B\} \in \mathcal{P}_{n+1}^{\Lambda}$ A removable node of  $\lambda$  is a node  $B \in \lambda$  with  $\lambda - A := \lambda \setminus \{B\} \in \mathcal{P}_{n-1}^{\Lambda}$ A node  $(I, r, c) \in \{1, 2, \ldots, \ell\} \times \mathbb{N}^2$  is an *i*-node if it has residue  $i = \kappa_l + c - r + e\mathbb{Z} \in I = \mathbb{Z}/e\mathbb{Z}$ 

Let  $Add_i(\lambda)$  and  $Rem_i(\lambda)$  be the sets of addable and removable *i*-nodes

## Definition (Brundan-Kleshchev-Wang)

If A is an addable or removable *i*-node of  $\mu$  define:  $d^{A}(\mu) = \#\{B \in \operatorname{Add}_{i}(\mu) \mid A > B\} - \#\{B \in \operatorname{Rem}_{i}(\mu) \mid A > B\}$   $d_{A}(\mu) = \#\{B \in \operatorname{Add}_{i}(\mu) \mid A < B\} - \#\{B \in \operatorname{Rem}_{i}(\mu) \mid A < B\}$   $d_{i}(\mu) = \#\operatorname{Add}_{i}(\mu) - \#\operatorname{Rem}_{i}(\mu)$ 

Andrew Mathas— Cyclotomic quiver Hecke algebras III

5 / 26

7/26

## Cellular bases

The algebra  $\mathscr{R}_n^{\wedge}$  has two natural "dual" graded cellular bases.

For  $\lambda \in \mathcal{P}_n^{\Lambda}$  define polynomials  $y^{\lambda} = y(t^{\lambda})$  and  $y_{\lambda} = y(t_{\lambda})$  inductively by  $y^{\lambda} = y(t_{\downarrow(n-1)}^{\lambda})y_n^{d^A(\lambda)}$  and  $y_{\lambda} = y(t_{\lambda\downarrow(n-1)})y_n^{d_A(\lambda)}$ 

Then these two cellular bases have the following properties

| Poset          | $(\mathcal{P}_n^{\Lambda}, \succeq)$                                                                                 | $(\mathcal{P}_n^{\wedge}, \trianglelefteq)$                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Basis          | $\set{\psi_{\mathtt{st}}   (\mathtt{s}, \mathtt{t}) \in Std^2(\mathcal{P}^{A}_n)}$                                   | $\{\psi'_{\mathtt{st}}   (\mathtt{s}, \mathtt{t}) \in Std^2(\mathcal{P}^{\Lambda}_n)\}$      |
| Definition     | $\psi_{\mathtt{st}} = \psi^*_{d(\mathtt{s})} i^{\boldsymbol{\lambda}} y^{\boldsymbol{\lambda}} \psi_{d(\mathtt{t})}$ | $\psi_{\mathtt{st}} = \psi^*_{d'(\mathtt{s})} i_{\lambda} y_{\lambda} \psi_{d'(\mathtt{t})}$ |
| Degree         | $\deg \psi_{\mathtt{st}} = \deg \mathtt{s} + \deg \mathtt{t}$                                                        | $\deg'\psi_{\mathtt{st}} = \deg'\mathtt{s} + \deg'\mathtt{t}$                                |
| Residues       | i <sup>s</sup> and i <sup>t</sup>                                                                                    | i <sup>s</sup> and i <sup>t</sup>                                                            |
| Cell modules   | S <sup><math>\lambda</math></sup>                                                                                    | $S_{\lambda}$                                                                                |
| Simple modules | $D^{\mu}$                                                                                                            | $D_{\mu}$                                                                                    |

Let 
$$\mathcal{K}_n^{\Lambda} = \{ \mu \in \mathcal{P}_n^{\Lambda} | D^{\mu} \neq 0 \}$$
 and  $\mathcal{K}_{\Lambda}^n = \{ \mu \in \mathcal{P}_n^{\Lambda} | D_{\mu} \neq 0 \}$ . Then  $\{ D^{\mu} \langle k \rangle | \mu \in \mathcal{K}_n^{\Lambda}, k \in \mathbb{Z} \}$  and  $\{ D_{\mu} \langle k \rangle | \mu \in \mathcal{K}_{\Lambda}^n, k \in \mathbb{Z} \}$ 

are both complete sets of pairwise non-isomorphic irreducible  $\mathscr{R}_n^{\Lambda}$ -modules

For symmetric groups, the Specht modules and simple modules are interchanged by tensoring with the sign representation

# Standard tableaux

A  $\lambda$ -tableau is a map  $t : [\lambda] \longrightarrow \{1, 2, ..., n\}$ , which we identify with a labelling of  $[\lambda]$ . A tableau t is standard if its entries increase along rows and down columns in each component

Let  $\mathsf{Std}(\lambda)$  be the set of standard  $\lambda$ -tableaux

Example Let  $\lambda = (3, 2|2^2|(2, 1))$ . Then two standard  $\lambda$ -tableau are:

$$\mathbf{t}^{\lambda} = \left( \begin{array}{c|c} 1 & 2 & 3 \\ 4 & 5 \end{array} \middle| \begin{array}{c} 6 & 7 \\ 8 & 9 \end{array} \middle| \begin{array}{c} 10 & 11 \\ 12 \end{array} \right) \quad \mathbf{t}_{\lambda} = \left( \begin{array}{c|c} 8 & 10 & 12 \\ 9 & 11 \end{array} \middle| \begin{array}{c} 4 & 6 \\ 5 & 7 \end{array} \middle| \begin{array}{c} 1 & 3 \\ 2 \end{array} \right)$$

These are the initial and final  $\lambda$ -tableau, respectively

If  $t \in \operatorname{Std}(\lambda)$  define permutations d(t) and  $d'(t) \in \mathfrak{S}_n$  by  $t^\lambda d(t) = t = t_\lambda d'(t)$ 

The residue sequence of  $t \in \text{Std}(\mathcal{P}_n^{\Lambda})$  is  $i^t \in I^n$  where  $t^{-1}(m)$  is an  $i_m^t$ -node

Let  $A = t^{-1}(n)$ . Define the degree and codegree, respectively, of t by: deg t = deg t<sub> $\downarrow(n-1)$ </sub> +  $d^A(\mu)$  and deg' t = deg' t<sub> $\downarrow(n-1)$ </sub> +  $d_A(\mu)$ 

such that "empty (0|...|0)-tableau" has degree and codegree 0 By definition, deg t, deg' t  $\in \mathbb{Z}$ . They can be positive, negative or zero

Andrew Mathas— Cyclotomic quiver Hecke algebras III

# Graded decomposition matrices

For  $\lambda \in \mathcal{P}_n^{\Lambda}$  and  $\mu \in \mathcal{K}_n^{\Lambda}$  define graded decomposition numbers  $d_{\lambda\mu}(q) = [S^{\lambda} : D^{\mu}]_q = \sum_{k \in \mathbb{Z}} [S^{\lambda} : D^{\mu} \langle k \rangle] q^k \quad \in \mathbb{N}[q, q^{-1}]$ Let  $\mathbf{d}_q = (d_{\lambda\mu}(q))$  be the graded decomposition matrix Let  $Y^{\mu}$  be the (graded) projective cover of  $D^{\mu}$ Let  $\mathbf{c}_q = ([Y^{\mu} : D^{\nu}]_q)_{\mu,\nu \in \mathcal{K}_n^{\Lambda}}$  be the graded Cartan matrix

### Theorem

Suppose that  $\lambda \in \mathcal{P}_n^{\Lambda}$  and  $\mu \in \mathcal{K}_n^{\Lambda}$ . Then  $d_{\mu\mu}(q) = 1$  and  $d_{\lambda\mu}(q) \neq 0$  only if  $\lambda \supseteq \mu$ Moreover,  $Y^{\mu}$  has a filtration by graded Specht modules in which  $S^{\lambda}$ appears with multiplicity  $d_{\lambda\mu}(q)$  $\implies \mathbf{c}_q = \mathbf{d}_q^T \mathbf{d}_q$ 

Proof This follows from the general theory of (graded) cellular algebras Remark Specht filtration multiplicities are not well-defined, but the import of the theorem is that  $[Y^{\mu}: S^{\lambda}]_{q} = [S^{\lambda}: D^{\mu}]_{q}$ 

### Induction and restriction

For  $i \in I$  define  $1_{n,i} = \sum_{j \in I^n} 1_{ji} \in \mathscr{R}^{\wedge}_{n+1}$ 

#### Lemma

Let  $i \in I$ . There is an embedding of graded algebras  $\mathscr{R}_{n}^{\wedge} \hookrightarrow \mathscr{R}_{n+1}^{\wedge}$  given by  $1_{\mathbf{j}} \mapsto 1_{\mathbf{j}i}, \quad y_{r} \mapsto y_{r}1_{n,i} \quad \text{and} \quad \psi_{s} \mapsto \psi_{s}1_{n,i}$ This induces an exact functor  $i-\text{Ind} : \mathscr{R}_{n}^{\wedge} - Mod \longrightarrow \mathscr{R}_{n+1}^{\wedge} - Mod; M \mapsto M \otimes_{\mathscr{R}_{n}^{\wedge}} 1_{n,i} \mathscr{R}_{n+1}^{\wedge}$ Moreover,  $Ind = \bigoplus_{i \in I} i-\text{Ind}$ 

Proof Check the KLR relations and use the KLR basis theorems

The functor *i*-Ind has a natural left adjoint:

*i*-Res  $M = Me_{1,i} \cong \operatorname{Hom}_{\mathscr{R}_n^{\wedge}}(1_{n,i}\mathscr{R}_n^{\wedge}, M)$ 

### Theorem (Kashiwara)

Suppose  $i \in I$ . Then (i-Res, i-Ind) is a biadjoint pair.

Andrew Mathas— Cyclotomic quiver Hecke algebras III

9 / 26

# Graded branching rules and tableaux degrees



Induction and restriction of Specht modules

Theorem (Brundan-Kleshchev-Wang, Hu-Mathas)

Suppose that  $\Bbbk$  is an integral domain and  $\lambda \in \mathcal{P}_n^{\Lambda}$ .

Let B<sub>1</sub> > B<sub>2</sub> > ··· > B<sub>y</sub> be the removable i-nodes of λ. Then i-Res S<sup>λ</sup> and i-Res S<sub>λ</sub> have graded Specht filtrations 0 = R<sub>0</sub> ⊂ R<sub>1</sub> ⊂ ··· ⊂ R<sub>y</sub> = i-Res S<sup>λ</sup> 0 = R<sub>y+1</sub> ⊂ R<sub>y</sub> ⊂ ··· ⊂ R<sub>1</sub> = i-Res S<sub>λ</sub> such that R<sub>j</sub>/R<sub>j-1</sub> ≅ q<sup>d<sub>Bj</sub>(λ)</sup>S<sup>λ-B<sub>j</sub></sup> and R<sub>j</sub>/R<sub>j+1</sub> ≅ q<sup>d<sup>Bj</sup>(λ)</sup>S<sub>λ-B<sub>j</sub></sub>
Let A<sub>1</sub> > A<sub>2</sub> ··· > A<sub>z</sub> be the addable i-nodes of λ. Then i-Ind S<sup>λ</sup> and i-Ind S<sub>λ</sub> have graded Specht filtrations 0 = I<sub>z+1</sub> ⊂ I<sub>z</sub> ⊂ ··· ⊂ I<sub>1</sub> = i-Ind S<sup>λ</sup> 0 = I<sub>0</sub> ⊂ I<sub>1</sub> ⊂ ··· ⊂ I<sub>z</sub> = i-Ind S<sub>λ</sub> such that I<sub>j</sub>/I<sub>j+1</sub> ≅ q<sup>d<sub>Aj</sub>(λ)</sup>S<sup>λ+A<sub>j</sub></sup> and I<sub>j</sub>/I<sub>j-1</sub> ≅ q<sup>d<sup>A<sub>j</sub></sup>(λ)</sup>S<sub>λ+A<sub>j</sub></sub>



Andrew Mathas— Cyclotomic quiver Hecke algebras III

10/26

# Defect and duality

Let \* be the unique (homogeneous) anti-isomorphism of  $\mathscr{R}_n^{\wedge}$  that fixes each of the KLR generators

 $\implies (\psi_{\tt st})^* = \psi_{\tt ts} \text{ and } (\psi'_{\tt st})^* = \psi'_{\tt ts}, \text{ so } * \text{ is the cellular}$ basis involution for both the  $\psi$  and  $\psi'$ -bases

If M is an  $\mathscr{R}_n^{\wedge}$ -module then  $M^{\circledast} = \operatorname{Hom}_{\Bbbk}(M, \Bbbk)$  is an  $\mathscr{R}_n^{\wedge}$ -module with action:  $(h \cdot f)(m) = f(h^*m)$ , for  $h \in \mathscr{R}_n^{\wedge}$ ,  $f \in M^{\circledast}$  and  $m \in M$  $\implies \dim_q M^{\circledast} = \dim_q M$ 

where  $\overline{f(q)} = f(q^{-1})$  is the  $\mathbb{Z}$ -linear bar involution on  $\mathbb{Z}[q, q^{-1}]$ Previously, we noted that  $(D^{\mu})^{\circledast} \cong D^{\mu}$  and  $(D_{\nu})^{\circledast} \cong D_{\nu}$ 

To describe duality on the Specht modules define the defect of  $\beta \in Q^+$ def  $\beta = (\Lambda, \beta) - \frac{1}{2}(\beta, \beta) = \frac{1}{2}((\Lambda, \Lambda) - (\Lambda - \beta, \Lambda - \beta)) \in \mathbb{N}$ 

For  $\lambda \in \mathcal{P}_n^{\Lambda}$  set  $\beta_{\lambda} = \sum_{k=1}^n \alpha_{i_k^{t}} \in Q^+$ , for any  $t \in \text{Std}(\lambda)$ . The defect of  $\lambda$  is def  $\lambda = \text{def } \beta_{\lambda}$ 

## Symmetrizing form

A graded k-algebra A is a graded symmetric algebra if there exists a homogeneous non-degenerate trace form  $\tau: A \longrightarrow k$ , where k is in degree zero. That is,  $\tau(ab) = \tau(ba)$  and if  $0 \neq a \in A$  then there exists  $b \in A$  such that  $\tau(ab) \neq 0$ .

### Theorem (Hu-M., Kang-Kasiwara, Webster)

Suppose that  $\beta \in Q_n^+$ . Then  $\mathscr{R}_{\beta}^{\wedge}$  a graded symmetric algebra with homogeneous trace form  $\tau_{\beta}$  of degree  $-2 \operatorname{def} \beta$ .

Proof Our proof reduces to the trace-form on  $\mathscr{H}_n^{\Lambda}$ . A key part of the argument is the observation that

 $au_{eta}(\psi_{\mathtt{st}}\psi'_{\mathtt{uv}}) 
eq 0$  only if  $\mathtt{u} \trianglerighteq \mathtt{t}$  and that  $au_{eta}(\psi_{\mathtt{st}}\psi'_{\mathtt{ts}}) 
eq 0$ 

### Corollary (Hu-M.)

Let  $\lambda \in \mathcal{P}_n^{\Lambda}$ . Then  $S^{\lambda} \cong q^{def\lambda}S_{\lambda}^{\circledast}$  and  $S_{\lambda} = q^{def\lambda}(S^{\lambda})^{\circledast}$ 

Proof By the remarks above, an isomorphism is given by sending  $\psi_t \in S^{\lambda}$  to the map  $\theta_t \in q^{\text{def}\lambda}S^{\circledast}_{\lambda}$  that is given by  $\theta_t(\psi'_u) = \tau_{\beta}(\psi_{t^{\lambda}t}\psi'_{ut^{\lambda}})$ Andrew Mathas— Cyclotomic quiver Hecke algebras III 13/26

# The quantum group $U_q(\mathfrak{sl}_e)$

Given our choice of Cartan matrix, we need to work with  $U_q(\widehat{\mathfrak{sl}}_e)$ 

The quantum group  $U_q(\widehat{\mathfrak{sl}}_e)$  associated with the Cartan matrix C is the  $\mathbb{Q}(q)$ -algebra generated by  $\{E_i, F_i, K_i^{\pm} \mid i \in I\}$ , subject to the relations:  $K_i K_j = K_j K_i, \quad K_i K_i^{-1} = 1, \quad K_i E_j K_i^{-1} = q^{c_{ij}} E_j$   $K_i F_j K_i^{-1} = q^{-c_{ij}} F_j, \quad [E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}},$   $\sum_{0 \le c \le 1 - c_{ij}} (-1)^c [\![ {}^{1-c_{ij}} ]\!]_i E_i^{1-c_{ij}-c} E_j E_i^c = 0$   $\sum_{0 \le c \le 1 - c_{ij}} (-1)^c [\![ {}^{1-c_{ij}} ]\!]_i F_i^{1-c_{ij}-c} F_j F_i^c = 0$ where  $[\![ d ]\!]_i = \frac{[\![ d ]\!]_i!}{[\![ c ]\!]_i! [\![ d - c ]\!]_i!}$  and  $[\![ m ]\!]_i! = \prod_{k=1}^m \frac{q^k - q^{-k}}{q - q^{-1}}$ Recall that  $\mathbb{A} = \mathbb{Z}[q, q^{-1}]$ Let  $U_{\mathbb{A}}(\widehat{\mathfrak{sl}}_e)$  be Lusztig's  $\mathbb{A}$ -form of  $U_q(\widehat{\mathfrak{sl}}_e)$ , which is the  $\mathbb{A}$ -subalgebra of  $U_q(\widehat{\mathfrak{sl}}_e)$  generated by the quantised divided powers

$$E_i^{(k)} = E_i^k / [k]_i!$$
 and  $F_i^{(k)} = F_i^k / [k]_i!$ 

For each  $\Lambda \in P^+$  there is a irreducible integrable highest weight module  $L(\Lambda)$  of highest weight  $\Lambda$ .

### The Hom-dual

Define # to be the graded endofunctor of  $\operatorname{Rep}(\mathscr{R}_n^{\Lambda})$  and  $\operatorname{Proj}(\mathscr{R}_n^{\Lambda})$  given by  $M^{\#} = \operatorname{Hom}_{\mathscr{R}_n^{\Lambda}}(M, \mathscr{R}_n^{\Lambda})$ 

In particular, note that  $(Y^{\mu})^{\#} \cong Y^{\mu}$  since  $Y^{\mu}$  is a summand of  $\mathscr{R}^{\Lambda}_{n}$ 

A straightforward argument using the adjointness of  $\otimes$  and Hom gives:

#### Lemma

Let  $\beta \in Q^+$ . As endofunctors of  $\operatorname{Rep}(\mathscr{R}^{\wedge}_{\beta})$ , there is an isomorphism of functors  $\# \cong q^{2\operatorname{def}\beta} \circ \circledast$ .

We use will  $\circledast$  as the duality for the dual canonical bases and # for the canonical basis

Andrew Mathas— Cyclotomic quiver Hecke algebras III

14 / 26

# The combinatorial Fock space

The **combinatorial Fock space**  $\mathscr{F}^{\wedge}_{\mathbb{A}}$  is the free  $\mathbb{A}$ -module with basis the set of symbols  $\{ |\lambda\rangle | \lambda \in \mathcal{P}^{\wedge} \}$ , where  $\mathcal{P}^{\wedge} = \bigcup_{n \geq 0} \mathcal{P}^{\wedge}_{n}$ . For future use, let  $\mathcal{K}^{\wedge} = \bigcup_{n \geq 0} \mathcal{K}^{\wedge}_{n}$ . Set  $\mathscr{F}^{\wedge}_{\mathbb{Q}(q)} = \mathscr{F}^{\wedge}_{\mathbb{A}} \otimes_{\mathbb{A}} \mathbb{Q}(q)$ . Then,  $\mathscr{F}^{\wedge}_{\mathbb{Q}(q)}$  is an infinite dimensional  $\mathbb{Q}(q)$ -vector space. We consider  $\{ |\lambda\rangle | \lambda \in \mathcal{P}^{\wedge} \}$  as a basis of  $\mathscr{F}^{\wedge}_{\mathbb{Q}(q)}$  by identifying  $|\lambda\rangle$  and  $|\lambda\rangle \otimes 1_{\mathbb{Q}(q)}$ .

### Theorem (Hayashi, Misra-Miwa)

Suppose that  $\Lambda \in P^+$ . Then  $\mathscr{F}_{\mathbb{Q}(q)}^{\Lambda}$  is an integrable  $U_q(\widehat{\mathfrak{sl}}_e)$ -module with  $U_q(\widehat{\mathfrak{sl}}_e)$ -action determined by  $E_i|\lambda\rangle = \sum_{B \in Rem_i(\lambda)} q^{d_B(\lambda)}|\lambda - B\rangle, \quad F_i|\lambda\rangle = \sum_{A \in Add_i(\lambda)} q^{-d^A(\lambda)}|\lambda + A\rangle$ and  $K_i|\lambda\rangle = q^{d_i(\lambda)}|\lambda\rangle$ , for  $i \in I$  and  $\lambda \in \mathcal{P}_n^{\Lambda}$ .

**Proof** A tedious check of the relations

It follows from the theorem that  $L(\Lambda) \cong U_q(\widehat{\mathfrak{sl}}_e)|\mathbf{0}_\ell\rangle$ , where  $\mathbf{0}_\ell$  is the zero  $\ell$ -partition. Define  $L_{\mathbb{A}}(\Lambda) = U_{\mathbb{A}}(\widehat{\mathfrak{sl}}_e)|\mathbf{0}_\ell\rangle$ 

## The CDE triangle in the Fock space

Recall that  $\operatorname{Rep}(\mathscr{R}^{\wedge}) = \bigoplus_{n \geq 0} \operatorname{Rep}(\mathscr{R}^{\wedge}_n)$  and  $\operatorname{Proj}(\mathscr{R}^{\wedge}) = \bigoplus_{n \geq 0} \operatorname{Proj}(\mathscr{R}^{\wedge}_n)$ 

#### Proposition

Suppose that  $\Lambda \in P^+$ . Then the *i*-induction and *i*-restriction functors induce a  $U_q(\widehat{\mathfrak{sl}}_e)$ -module structure on  $\operatorname{Proj}(\mathscr{R}^{\Lambda}) \otimes_{\mathbb{A}} \mathbb{Q}(q)$  and  $\operatorname{Rep}(\mathscr{R}^{\Lambda}) \otimes_{\mathbb{A}} \mathbb{Q}(q)$  so that, as  $U_q(\widehat{\mathfrak{sl}}_e)$ -modules,  $\operatorname{Proj}(\mathscr{R}^{\Lambda}) \otimes_{\mathbb{A}} \mathbb{Q}(q) \cong L(\Lambda) \cong \operatorname{Rep}(\mathscr{R}^{\Lambda}) \otimes_{\mathbb{A}} \mathbb{Q}(q)$ 

Proof The decomposition matrix defines the linear maps shown. As vector space homomorphisms,  $\mathbf{d}_q^T$  is injective and  $\mathbf{d}_q$ is surjective. Using the graded induction and restriction formulas it remains to observe that  $E_i$  coincides with *i*-Res and that  $q^{-1}F_iK_i$  coincides with *i*-Ind.



The result then follows since  $L(\Lambda) = U_q(\widehat{\mathfrak{sl}}_e)v_{\Lambda} \subseteq \operatorname{im} \mathsf{d}_q^{\mathcal{T}}$ 

Andrew Mathas— Cyclotomic quiver Hecke algebras III

17 / 26

### Dualities on Fock space

The dualities  $\circledast$  and # on  $\operatorname{Rep}(\mathscr{R}^{\wedge})$  induce semilinear endomorphisms on  $\operatorname{Rep}(\mathscr{R}^{\wedge})$  and  $\operatorname{Proj}(\mathscr{R}^{\wedge})$  by  $[M]^{\circledast} = [M^{\circledast}]$  and  $[M]^{\#} = [M^{\#}]$ 

We concentrate on  $\circledast$ . Write  $\mathbf{d}_q^{-1} = (e_{\mu\nu}(-q))$ 

#### Lemma

Let  $\lambda \in \mathcal{K}_n^{\wedge}$ . Then  $[S^{\mu}]^{\circledast} = [S^{\mu}] + \sum_{\mu \rhd \tau \in \mathcal{K}_n^{\wedge}} a_{\mu\tau}(q)[S^{\tau}]$ 

**Proof** We just compute using the decomposition matrix:

$$[S^{\mu}]^{\circledast} = \left(\sum_{\substack{\mu \triangleright \nu \in \mathcal{K}_{n}^{\wedge} \\ \mu \triangleright \tau}} d_{\mu\nu}(q)[D^{\nu}]\right)^{\circledast} = \sum_{\substack{\mu \succeq \nu} \\ \mu \models \nu} \overline{d_{\mu\nu}(q)} [D^{\nu}]$$
$$= [S^{\mu}] + \sum_{\substack{\tau \in \mathcal{K}_{n}^{\wedge} \\ \mu \triangleright \tau}} \left(\sum_{\substack{\nu \in \mathcal{K}_{n}^{\wedge} \\ \mu \models \nu \models \tau}} \overline{d_{\mu\nu}(q)} e_{\nu\tau}(-q)\right)[S^{\tau}]$$

### Cartan pairing

A semilinear map of  $\mathbb{A}$ -modules is a  $\mathbb{Z}$ -linear map  $\theta: M \longrightarrow N$  such that  $\theta(f(q)m) = \overline{f(q)}\theta(m)$ , for all  $f(q) \in \mathbb{A}$  and  $m \in M$ .

A sesquilinear map  $f: M \times N \longrightarrow \mathbb{A}$ , where M and N are  $\mathbb{A}$ -modules, is a function that is semilinear in the first variable and linear in the second.

Define the Cartan pairing  $\langle [P], [M] \rangle = \dim_q \operatorname{Hom}_{\mathscr{R}_n^{\wedge}}(P, M)$ , for  $P \in \operatorname{Proj}(\mathscr{R}_n^{\wedge})$  and  $M \in \operatorname{Rep}(\mathscr{R}_n^{\wedge})$ . This is a sesquilinear form because  $\operatorname{Hom}_{\mathscr{R}^{\wedge}}(P\langle k \rangle, M) \cong \operatorname{Hom}_{\mathscr{R}^{\wedge}}(P, M\langle -k \rangle)$ 

$$\implies \langle [Y^{\mu}], [D^{\nu}] \rangle = \delta_{\mu\nu}$$

The biadjointness of  $(E_i, F_i)$  implies that

 $\langle i - \operatorname{Ind} x, y \rangle = \langle x, i - \operatorname{Res} y \rangle$  and  $\langle i - \operatorname{Res} x, y \rangle = \langle x, i - \operatorname{Ind} y \rangle$ Using the uniqueness of the Shapovalov form, we obtain:  $\implies$  If  $x \in \operatorname{Proj}(\mathscr{R}^{\Lambda})$  and  $y \in \operatorname{Rep}(\mathscr{R}^{\Lambda})$  then  $\langle \mathbf{d}_{q}^{T}(x), y \rangle = \langle x, \mathbf{d}_{q}(y) \rangle$ 

#### Corollary

As  $U_{\mathbb{A}}(\widehat{\mathfrak{sl}}_e)$ -modules,  $Proj(\mathscr{R}^{\wedge}) = L_{\mathbb{A}}(\Lambda)$  and  $Rep(\mathscr{R}^{\wedge}) = L_{\mathbb{A}}(\Lambda)^{\vee} = \{ x \in L_{\mathbb{Q}(q)}(\Lambda) \mid \langle x, y \rangle \in \mathbb{A} \text{ for all } y \in \mathbb{L}_{\mathbb{A}}(\Lambda) \}$ 

Andrew Mathas— Cyclotomic quiver Hecke algebras III

### Lusztig's Lemma

Proposition (Lusztig's lemma)

There exists a unique basis 
$$\{B^{\mu} \mid \mu \in \mathcal{K}^{\wedge}\}$$
 of  $Rep(\mathscr{R}^{\wedge})$  such that  
 $(B^{\mu})^{\circledast} = B^{\mu}$  and  $B^{\mu} = [S^{\mu}] + \sum_{\mu \triangleright \tau \in \mathcal{K}^{\wedge}_{n}} b^{\mu\tau}(q)[S^{\tau}]$ 
where  $b^{\mu\tau}(\tau) \in S$  is a scalar function of the second seco

where  $b^{oldsymbol{\mu au}}(q)\in \delta_{oldsymbol{\mu au}}+q\mathbb{Z}[q]$ 

#### Proof

Uniqueness If  $B^{\mu}$  and  $\dot{B}^{\mu}$  are two such elements then  $B^{\mu} - \dot{B}^{\mu} = \sum_{\mu \triangleright \tau} c^{\mu\tau}(q) [S^{\tau}], \quad \text{for } c^{\mu\tau}(q) \in q\mathbb{Z}[q].$ The left-hand side is  $\circledast$ -invariant and  $\overline{c^{\mu\tau}(q)} \in q^{-1}\mathbb{Z}[q^{-1}].$  If  $\tau \neq \mu$  is maximal such that  $c^{\mu\tau}(q) \neq 0$  then the last lemma forces

 $c^{oldsymbol{\mu au}}(q)\in q\mathbb{Z}[q]\cap q^{-1}\mathbb{Z}[q^{-1}]=\{0\},$ 

a contradiction! Hence,  $B^{\mu} = \dot{B}^{\mu}$ 

### Lusztig's lemma – existence

Existence: argue by induction on dominance If  $\mu \in \mathcal{K}_n^{\Lambda}$  is minimal in  $\mathcal{K}_n^{\Lambda}$  then  $B^{\mu} = [S^{\mu}] = [D^{\mu}] = (B^{\mu})^{\circledast}$ . If  $\mu \in \mathcal{K}_n^{\Lambda}$  is not minimal set  $C^{\mu} = [D^{\mu}]$   $\implies (C^{\mu})^{\circledast} = C^{\mu}$  and  $C^{\mu} = [S^{\mu}] + \sum_{\mu \triangleright \tau} c^{\mu\tau}(q)[S^{\tau}]$ , for  $c^{\mu\tau}(q) \in A$ If  $c^{\mu\tau}(q) \in q\mathbb{Z}[q]$  for all  $\tau$ , set  $B^{\mu} = C^{\mu}$  – we're done If not, let  $\nu$  be maximal such that  $c^{\mu\nu}(q) \notin q\mathbb{Z}[q]$ Replace  $C^{\mu}$  with the element  $C^{\mu} - a^{\mu\nu}(q)B^{\nu}$ , where  $a^{\mu\nu}(q)$  is the unique Laurent polynomial such that  $\overline{a^{\mu\nu}(q)} = a^{\mu\nu}(q)$  and  $c^{\mu\nu}(q) - a^{\mu\nu}(q) \in q\mathbb{Z}[q]$ .  $\implies (C^{\mu})^{\circledast} = C^{\mu}$  and the coefficient of  $[S^{\nu}]$  in  $C^{\mu}$  belongs to  $q\mathbb{Z}[q]$ . Repeating this process, after finitely many steps we construct an

element  $B^{\mu}$  with the required properties.

Andrew Mathas— Cyclotomic quiver Hecke algebras III

21/26

23 / 26

# Ariki's categorification theorem

Let  $\operatorname{Proj}(\mathscr{H}^{\Lambda}) = \bigoplus_{n \geq 0} \operatorname{Proj}(\mathscr{H}^{\Lambda}_n)$  be the Grothendieck group of the *ungraded* algebras  $\mathscr{H}^{\Lambda}_n$ , for  $n \geq 0$ .

 $\implies \operatorname{Proj}(\mathscr{H}^{\Lambda}) \text{ is the free } \mathbb{Z}\text{-module with basis } \{\underline{Y}^{\mu} \mid \mu \in \mathcal{K}^{\Lambda}\},$ where  $M \mapsto \underline{M}$  is the forgetful functor that forgets the grading

Let  $L_1(\Lambda)$  be the irreducible integrable highest weight module with highest weight  $\Lambda$  when q = 1

## Theorem (Ariki's Categorification Theorem)

Suppose that  $\Bbbk$  is a field of characteristic zero. Then the canonical basis of  $L_1(\Lambda)$  coincides with the basis of (ungraded) projective indecomposable  $\mathscr{H}_n^{\Lambda}$ -modules {  $[\underline{Y}^{\mu}] | \mu \in \mathcal{K}^{\Lambda}$  } of  $\operatorname{Proj}(\mathscr{H}_n^{\Lambda})$ .

## Corollary

Suppose that k is a field of characteristic zero. Then  $\{ [D^{\mu}] | \mu \in \mathcal{K}^{\Lambda} \}$  is the dual canonical basis of  $L_{\mathbb{A}}(\Lambda)$  $\implies d_{\lambda\mu}(q) \in \delta_{\lambda\mu} + q\mathbb{N}[q]$ 

# Canonical basis

Using an almost identical argument starting with  $X_{\mu} = \sum_{\lambda \in \mathcal{K}_{a}^{\wedge}} e_{\lambda \mu}(-q)[Y^{\lambda}] \in \mathsf{Proj}(\mathscr{R}^{\wedge}) \text{ we obtain:}$ 

### Proposition (Lusztig's lemma)

There exists a unique basis  $\{B_{\mu} | \mu \in \mathcal{K}^{\wedge}\}$  of  $Proj(\mathscr{R}^{\wedge})$  such that  $(B^{\mu})^{\#} = B^{\mu}$  and  $B^{\mu} = [S_{\mu}] + \sum_{\tau \rhd \mu \in \mathcal{K}_{n}^{\wedge}} b^{\tau \mu}(q)[X_{\tau}]$ where  $b^{\tau \mu}(q) \in \delta_{\tau \mu} + q\mathbb{Z}[q]$ 

The basis  $\{B^{\mu}\}$  is the dual canonical basis of  $L_{\mathbb{A}}(\lambda)^{\vee} \cong \operatorname{Rep}(\mathscr{R}^{\wedge})$  and  $\{D_{\mu} \mid \mu \in \mathcal{K}^{\wedge}\}$  is the canonical basis of  $L_{\mathbb{A}}(\Lambda) \cong \operatorname{Proj}(\mathscr{R}^{\wedge}_{n})$ 

As their names suggest, these two bases are dual under the Cartan pairing:

#### Corollary

Suppose that  $\lambda, \mu \in \mathcal{K}^{\Lambda}$ . Then  $\langle B_{\mu}, B^{\lambda} \rangle = \delta_{\lambda \mu}$ 

Andrew Mathas— Cyclotomic quiver Hecke algebras III

22 / 26

# <sup>-</sup>urther reading I

- S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n),
   J. Math. Kyoto Univ., 36 (1996), 789–808.
- —\_\_\_\_, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series, 26, American Mathematical Society, Providence, RI, 2002. Translated from the 2000 Japanese edition and revised by the author.
- S. Ariki and A. Mathas, *The number of simple modules of the Hecke algebras of type G*(*r*, 1, *n*), Math. Z., **233** (2000), 601–623.
- J. Brundan and A. Kleshchev, *Graded decomposition numbers for cyclotomic Hecke algebras*, Adv. Math., **222** (2009), 1883–1942.
- \_\_\_\_, *The degenerate analogue of Ariki's categorification theorem*, Math. Z., **266** (2010), 877–919. arXiv:0901.0057.
- J. Brundan, A. Kleshchev, and W. Wang, *Graded Specht modules*, J. Reine Angew. Math., **655** (2011), 61–87. arXiv:0901.0218.
- M. Geck, *Representations of Hecke algebras at roots of unity*, Astérisque, 1998, Exp. No. 836, 3, 33–55. Séminaire Bourbaki. Vol. 1997/98.

# Further reading II

- J. Hu and A. Mathas, *Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A*, Adv. Math., **225** (2010), 598–642. arXiv:0907.2985.
- \_\_\_\_\_, *Graded induction for Specht modules*, Int. Math. Res. Not. IMRN, **2012** (2012), 1230–1263. arXiv:1008.1462.
- A. Kleshchev, *Linear and projective representations of symmetric groups*, Cambridge Tracts in Mathematics, **163**, Cambridge University Press, Cambridge, 2005.
- A. Lascoux, B. Leclerc, and J.-Y. Thibon, *Hecke algebras at roots of unity and crystal bases of quantum affine algebras*, Comm. Math. Phys., **181** (1996), 205–263.
- A. Mathas, *Cyclotomic quiver Hecke algebras of type A*, in Modular representation theory of finite and *p*-adic groups, G. W. Teck and K. M. Tan, eds., National University of Singapore Lecture Notes Series, **30**, World Scientific, 2015, ch. 5, 165–266. arXiv:1310.2142.

# Further reading III

- ——, *Restricting Specht modules of cyclotomic Hecke algebras*, Science China Mathematics, 2017, 1–12. Special Issue on Representation Theory, arXiv:1610.09729.
- R. Rouquier, *Quiver Hecke algebras and 2-Lie algebras*, Algebra Colloq., **19** (2012), 359–410.
- M. Varagnolo and E. Vasserot, *Canonical bases and KLR-algebras*, J. Reine Angew. Math., **659** (2011), 67–100.
- B. Webster, *Canonical bases and higher representation theory*, Compos. Math., **151** (2015), 121–166. arXiv:1209.0051.

25 / 26

Andrew Mathas— Cyclotomic quiver Hecke algebras III