Cyclotomic guiver Hecke algebras II The Graded Isomorphism Theorem

Andrew Mathas

University of Sydney

Categorification, representation theory and symplectic geometry Hausdorff Research Institute for Mathematics November 2017

Let C be a generalised Cartan matrix of type $A_e^{(1)}$ or A_{∞} : Fix $\Lambda \in P^+$ and define Q-polynomials and κ -polynomials by: $Q_{ij}(u,v) = \begin{cases} (u-v)(v-u) & \text{if } i \leftrightarrows j, \\ u-v, & \text{if } i \longrightarrow j \\ v-u, & \text{if } i \longleftarrow j \\ 1, & \text{if } i \not -j \\ 0, & \text{if } i = j \end{cases} \text{ and } \kappa_i(u) = u^{\langle h_i, \Lambda \rangle}$ Then $\mathscr{R}_n^{\Lambda} = \bigoplus_{\alpha \in Q_+^+} \mathscr{R}_{\alpha}^{\Lambda}$, where $\mathscr{R}_{\alpha}^{\Lambda}$ is generated by $\{1_i | i \in I^{\alpha}\} \cup \{\psi_r | 1 \le r < n\} \cup \{y_r | 1 \le r \le n\}$ with relations • $\kappa_{i_1}(y_1)\mathbf{1}_{\mathbf{i}} = 0$, $\mathbf{1}_{\mathbf{i}}\mathbf{1}_{\mathbf{i}} = \delta_{\mathbf{i},\mathbf{j}}\mathbf{1}_{\mathbf{i}}$, $\sum_{\mathbf{i}\in I^{\alpha}}\mathbf{1}_{\mathbf{i}} = 1$, $\psi_r\mathbf{1}_{\mathbf{i}} = \mathbf{1}_{s,r\mathbf{i}}\psi_r$, • $y_r 1_i = 1_i y_r$, $y_r y_t = y_t y_r$, $\psi_r^2 1_i = Q_{i_r, i_{r+1}}(y_r, y_{r+1}) 1_i$ • $\psi_r y_t = y_t \psi_r$ if $s \neq r, r+1$, $\psi_r \psi_t = \psi_t \psi_r$ if |r-t| > 1• $(\psi_r y_{r+1} - y_r \psi_r) \mathbf{1}_i = \delta_{i_r, i_{r+1}} \mathbf{1}_i = (y_{r+1} \psi_r - \psi_r y_r) \mathbf{1}_i$ • $(\psi_{r+1}\psi_r\psi_{r+1} - \psi_r\psi_{r+1}\psi_r)\mathbf{1}_{\mathbf{i}} = \partial Q_{i_r,i_{r+1},i_{r+1}}(y_r,y_{r+1},y_{r+1})\mathbf{1}_{\mathbf{i}}$ Andrew Mathas— Cyclotomic quiver Hecke algebras II

Outline of lectures

- Quiver Hecke algebras and categorification
 - Basis theorems for quiver Hecke algebras
 - Categorification of $U_{a}(\mathfrak{g})$
 - Categorification of highest weight modules
- ² The Brundan-Kleshchev graded isomorphism theorem
 - Seminormal forms and semisimple KLR algebras
 - Lifting idempotents
 - Cellular algebras
- Intersection Content of Conten
 - Dual cell modules
 - Graded induction and restriction
 - The categorification theorem

Recent developments

- Consequences of the categorification theorem
- Webster diagrams and tableaux
- Content systems and seminormal forms

Andrew Mathas— Cyclotomic quiver Hecke algebras II

Fix $\xi \in \mathbb{k}$ such that *e* is minimal with $1 + \xi^2 + \cdots + \xi^{2(e-1)} = 0$ Fix integers $\kappa_1, \ldots, \kappa_\ell$ such that for all $i \in I$, $\#\{1 \le l \le \ell \mid \kappa_l \equiv i \pmod{e}\} = (h_i, \Lambda)$

For $m \in \mathbb{N}$ and define the ξ -quantum integer $[m] = [m]_{\xi} = \frac{\xi^{2m} - 1}{\xi - \xi^{-1}}$

Definition

The cyclotomic Hecke algebra of type A is the unital associative \mathbf{k} -algebra $\mathcal{H}_n^{\Lambda} = \mathcal{H}_n^{\Lambda}(\xi) \text{ with generators } T_1, \dots, T_{n-1}, L_1, \dots, L_n \text{ and relations} \\ \prod_{l=1}^{\ell} (L_1 - [\kappa_l]) = 0, \quad (T_r - \xi)(T_r + \xi^{-1}) = 0, \quad L_r L_t = L_t L_r$ $T_s T_{s+1} T_s = T_{s+1} T_s T_{s+1}, \quad T_r T_s = T_s T_r \text{ if } |r-s| > 1$ $T_r L_t = L_t T_r$ if $t \neq r, r+1$, $L_{r+1} = T_r L_r T_r + T_r$

When $\xi^2 \neq \mathcal{H}_n^{\Lambda}$ is an Ariki-Koike algebra, which is a deformation of the group algebra of $\mathbb{Z}/\ell\mathbb{Z} \wr \mathfrak{S}_n$. If $\xi^2 = 1$ then \mathscr{H}_n^{Λ} is a degenerate Ariki-Koike algebra. If $\ell = 1$ and $\xi^2 = 1$ then $\mathscr{H}_n^{\wedge} \cong \Bbbk \mathfrak{S}_n$.

Theorem (Ariki-Koike) The algebra \mathscr{H}_n^{\wedge} is free as a k-module with basis $\{L_1^{a_1}\ldots,L_n^{a_n}T_w \mid 0 \le a_k < \ell \text{ and } w \in \mathfrak{S}_n\},\$

In particular, \mathcal{H}_n^{\wedge} is free of rank $\ell^n n! = \#(\mathbb{Z}/\ell\mathbb{Z} \wr \mathfrak{S}_n)$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

The Brundan-Kleshchev graded isomorphism theorem

Theorem (Brundan-Kleshchev, Rouquier)

Suppose that \Bbbk is a field. Then $\mathscr{H}_n^{\wedge} \cong \mathscr{R}_n^{\wedge}$.

Remarks

- This theorem is only true when k is a field. For example, both algebras are defined over ℤ[ξ] but in general the theorem is false over this ring
- As a consequence, \mathscr{H}_n^{\wedge} is a \mathbb{Z} -graded algebra
- Brundan and Kleshchev prove this by constructing two explicit maps $\mathscr{R}_n^{\Lambda} \longrightarrow \mathscr{H}_n^{\Lambda}$ and $\mathscr{H}_n^{\Lambda} \longrightarrow \mathscr{R}_n^{\Lambda}$ and then checking the relations on both sides: nice result, ugly proof
- The aim for today is to prove half of this theorem, concentrating on kGn. At the same time, we will try to understand the KLR relations

Corollary

Suppose that \Bbbk is a field and that $\xi, \xi' \in \Bbbk$ are elements with e > 1minimal such that $[e]_{\xi} = 0 = [e]_{\xi'}$. Then $\mathscr{H}_n^{\wedge}(\xi) \cong \mathscr{H}_n^{\wedge}(\xi')$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

5 / 22

Tableau combinatorics

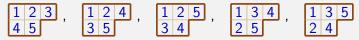
A partition of *n* is a weakly decreasing sequence $\lambda_1 \ge \lambda_2 \ge \cdots \ge 0$ of non-negative integers that sum to *n*. Identify λ with its Young diagram $[\lambda] = \{ (r, c) | 1 \le c \le \lambda_r \}$, which is an array of boxes in the plane.

Let \mathcal{P}_n^{Λ} be the set of partitions of *n*

Example The diagram of (3, 2) is

A λ -tableau is a function $t: [\lambda] \longrightarrow \{1, 2, ..., n\}$, which we think of as a labelled diagram. A λ -tableau is standard if its entries increase along rows and down columns.

Let Std(λ) be the set of standard λ -tableaux and Std(\mathcal{P}_n^{Λ}) = $\bigcup_{\lambda \in \mathcal{P}_n^{\Lambda}}$ Std(λ) Example The standard (3, 2)-tableaux are:



Remark If $\ell > 1$ then partitions get replaced by ℓ -tuples of partitions and standard tableau get replaced by ℓ -tuples of tableaux whose entries increase along rows and down columns in each component.

7 / 22

Jucys-Murphy elements and the Gelfand-Zetlin subalgebra

The presentation of \mathscr{H}_n^{Λ} includes the Jucys-Murphy elements L_1, \ldots, L_n In the case of the symmetric group (or their Iwahori-Hecke algebra),

 $L_k = (1, k) + (2, k) + \dots + (k - 1, k)$ (an "averaging operator")

Definition

The Gelfand-Zetland subalgebra of \mathscr{H}_n^{Λ} is $\mathscr{L}_n^{\Lambda} = \langle L_1, \dots, L_n \rangle$

Okounkov and Vershik have given a beautiful account of the semisimple representation theory of \mathfrak{S}_n , by showing that

$$\mathscr{L}_n^{\Lambda} = \{ z \in \Bbbk \mathfrak{S}_n \, | \, zh = hz \text{ for all } h \in \Bbbk \mathfrak{S}_{n-1} \}$$

They use \mathscr{L}_n^{\wedge} to show that the restriction of any irreducible \mathbb{CS}_n -module is multiplicity free and from this deduce that every irreducible \mathbb{CS}_n -module has a basis of simultaneous eigenvectors for the elements of \mathscr{L}_n^{\wedge} and they deduce what the eigenvalues are.

Theorem

Let \Bbbk be a field. Then \mathscr{H}_n^{\wedge} is (split) semisimple if and only if \mathscr{L}_n^{\wedge} is (split) semisimple

Andrew Mathas— Cyclotomic quiver Hecke algebras II

Content functions

The content of a node (r, c) is c - r and if t is standard and $1 \le m \le n$ then the content of m in t is $c_m(t) = c - r$, if t(r, c) = mExample If $\lambda = (4, 3, 3, 2)$ then the contents in $[\lambda]$ are:

0	1	2	3
-1	0	1	
-2	-1	0	
-3	-2		

Contents increase along rows, decrease down columns and are constant on the diagonals of λ . The addable nodes of λ have distinct contents

Lemma

Let $s \in Std(\lambda)$ and $t \in Std(\mu)$. Then s = t if and only if $c_m(s) = c_m(t)$ for $1 \le m \le n$. Consequently, if $1 \le r < n$ then $c_m(t) = c_m(t)$ for $r \ne m, m+1$ if and only if s = t or $s = s_r t$

Proof Follows easily by induction because addable nodes have distinct contents

Andrew Mathas- Cyclotomic quiver Hecke algebras II

6 / 22

Seminormal forms

Theorem (Young's seminormal form, 1901)

Let λ be a partition. Define the Specht module S^{λ} to be the $\mathbb{Q}\mathfrak{S}_{n}$ -module with basis { $v_{t} | t \in Std(\lambda)$ } and where the \mathfrak{S}_{n} -action is determined by $s_{r}v_{t} = \frac{1}{\rho_{r}(t)}v_{t} + \frac{\rho_{r}(t)+1}{\rho_{r}}v_{s_{r}t}$,

where $\rho_r(t) = c_{r+1}(t) - c_r(t)$ and $v_{s_rt} = 0$ if $s_rt \notin \mathit{Std}(\lambda)$

Key point Let
$$t \in Std(\lambda)$$
 and $1 \le m \le n$. Then $L_m v_t = c_m(t)v_t$ (†)
Assume only (†) and write $s_r v_t = \sum_s a_{st} v_s$
If $m \ne r, r + 1$ then $\sum_s c_m(s)a_{st}v_s = L_m s_r v_t = s_r L_m v_t = c_m(t)s_r v_t$
 $\Rightarrow a_{st} \ne 0$ only if $s = t$ or $s = s_r t$
Let $s = s_r t$ and write $s_r v_t = \alpha v_t + \beta v_s$ and $s_r v_s = \alpha' v_s + \beta' v_t$
 $\Rightarrow (1) v_t = (\alpha^2 + \beta\beta')v_t + (\alpha - \alpha')\beta v_s$
 $\Rightarrow (2) \alpha c_r(t)v_t + \beta c_{r+1}(t)v_s = L_r s_r v_t = (s_r L_{r+1} - 1)v_t$
 $\Rightarrow \alpha = \frac{1}{c_{r+1}(t) - c_r(t)} = \frac{1}{\rho_r(t)}$ and $\beta\beta' = 1 - \frac{1}{\rho_r(t)^2} = \frac{(\rho_r(t) - 1)(\rho_r(t) + 1)}{\rho_r(t)^2}$

A nice action on seminormal bases

The action of $\&\mathfrak{S}_n$ on the seminormal basis $\{f_{\mathtt{st}}\}\$ is given by $L_r f_{\mathtt{st}} = c_r(\mathtt{s}) f_{\mathtt{st}}$ and $s_r f_{\mathtt{st}} = \frac{1}{\rho_r(\mathtt{s})} f_{\mathtt{st}} + \beta_r(\mathtt{s}) f_{\mathtt{ut}}$, where $\mathtt{u} = s_r \mathtt{s}$

As the L_r 's are acting by scalars they are essentially irrelevant. Indeed, the action of \mathscr{L}_n^{Λ} on the seminormal basis is determined by $F_v f_{st} = \delta_{sv} f_{st}$

We can "simplify" the action of s_r by defining

$$\psi_r = \sum_{\mathbf{v} \in \mathsf{Std}(\mathcal{P}_n^{\Lambda})} \frac{1}{\beta_r(\mathbf{v})} (s_r - \frac{1}{\rho_r(\mathbf{v})}) F_{\mathbf{v}} \implies \psi_r f_{\mathtt{st}} = f_{\mathtt{ut}}$$

Change notation: standard tableaux are determined by their contents so let's replace ${\tt t}$ with its content sequence

 $\mathbf{c}(\mathtt{t}) = \big(c_1(\mathtt{t}), c_2(\mathtt{t}), \dots, c_n(\mathtt{t})\big)$

Let $I = \{ z \cdot 1_{k} \in \mathbb{Z} \mid -n \leq z \leq n \}$. Then $c(t) \in I^{n}$. Generalising the definition of F_{t} , for $c \in I^{n}$ define

$$F_{\mathbf{c}} = \prod_{r=1}^{n} \prod_{\substack{\mathbf{c} \in I^n \\ c_r \neq d_r}} \frac{L_r - d_r}{c_r - d_r}$$

Acting on $\{f_{st}\}, F_{c} \neq 0$ if and only if c = c(t), for some $t \in Std(\mathcal{P}_{n}^{\Lambda})$

Young idempotents

For t a standard tableau define $F_{ extsf{t}} = \prod$

$$= \prod_{r=1} \prod_{\substack{\text{s standard} \\ c_r(s) \neq c_r(t)}} \frac{L_r - c_r(s)}{c_r(t) - c_r(s)}$$

Theorem

Suppose that k is a field of characteristic p > n. Then:

- § { F_t | t a standard tableau of size n } is a complete set of pairwise
 orthogonal idempotents
- **2** If $\lambda \in \mathcal{P}_n^{\Lambda}$ and $t \in Std(\lambda)$ then $S^{\lambda} \cong \Bbbk \mathfrak{S}_n F_t$
- $\{S^{\lambda} | \lambda \in \mathcal{P}_{n}^{\Lambda}\}\$ is a complete set of pairwise non-isomorphic $\Bbbk \mathfrak{S}_{n}$ -modules
- As an $(\mathscr{L}_n^{\Lambda}, \mathscr{L}_n^{\Lambda})$ -bimodule, $\Bbbk \mathfrak{S}_n = \bigoplus (\Bbbk \mathfrak{S}_n)_{st}$, where $(\Bbbk \mathfrak{S}_n)_{st} = \{ a \in \Bbbk \mathfrak{S}_n | L_r a = c_r(s)a \text{ and } aL_r = c_r(t)a \}$ is one dimensional for all $s, t \in Std(\lambda), \lambda \in \mathcal{P}_n^{\Lambda}$

By part (4),
$$\& \mathfrak{S}_n$$
 has a basis $\{ f_{st} | (s, t) \in \operatorname{Std}^2(\mathcal{P}_n^{\Lambda}) \}$ with $f_{st} \in (\& \mathfrak{S}_n)_{st}$
 $\implies f_{st}f_{uv} = \delta_{tv}\gamma_t f_{sv}$, for some $\gamma_t \in \& \implies F_t = \frac{1}{\gamma_t}f_{tt}$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

10 / 22

Semisimple KLR algebras of type A

Theorem

The algebra $\& \mathfrak{S}_n$ is generated by $\{ F_{\mathbf{c}} | \mathbf{c} \in I^n \} \cup \{ \psi_1, \dots, \psi_{n-1} \}$ subject to the relations

$$F_{\mathbf{c}}F_{\mathbf{d}} = \delta_{\mathbf{cd}}F_{\mathbf{c}}, \quad \sum_{\mathbf{c}\in I^{n}}F_{\mathbf{c}} = 1, \quad \psi_{r}F_{\mathbf{c}} = F_{s_{r}\mathbf{c}}\psi_{r}$$
$$\psi_{r}^{2}F_{\mathbf{c}} = \delta_{c_{r}\neq c_{r+1}}F_{\mathbf{c}}, \quad \psi_{r}\psi_{t} = \psi_{t}\psi_{r} \text{ if } |r-t| > 1$$
$$(\psi_{r+1}\psi_{r}\psi_{r+1} - \psi_{r}\psi_{r+1}\psi_{r})F_{\mathbf{c}} = \begin{cases} F_{\mathbf{c}}, & \text{if } \mathbf{c}_{r+2} = \mathbf{c}_{r} \longrightarrow \mathbf{c}_{r+1}, \\ -F_{\mathbf{c}}, & \text{if } \mathbf{c}_{r+2} = \mathbf{c}_{r} \longleftarrow \mathbf{c}_{r+1}, \\ 0, & \text{otherwise} \end{cases}$$

Proof Using the seminormal form it is straightforward to check that these relations hold in $\Bbbk \mathfrak{S}_n$. Given this it is easy to deduce that $\Bbbk \mathfrak{S}_n$ is isomorphic to the abstract algebra with the presentation above.

Remark In the semisimple case, \mathscr{R}_n^{Λ} is concentrated in degree zero, so we are not seeing an interesting grading on $\Bbbk \mathfrak{S}_n$ yet.

Remark This argument works, essentially without change for all of the algebras \mathscr{H}_n^{Λ} . We need only define the content of a standard ℓ -tableau to be $c_m(t) = [\kappa_l + c - r]_{\xi}$ if t(l, r, c) = m, for $1 \le m \le n$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

Residue sequences

Now suppose that \Bbbk is a field of characteristic p, diving n. Then the primitive idempotents $F_t \in \mathbb{QS}_n$ cannot, in general, be reduced mod p to give elements of $\Bbbk \mathfrak{S}_n$ because of the denominators in their definition. Similarly, the Jucys-Murphy elements L_k no longer act as scalars but as upper triangular matrices.

Let $I = \mathbb{Z}/p\mathbb{Z}$. The residue sequence of a standard tableau t is the sequence $\mathbf{i}^{t} = (i_{1}^{t}, \dots, i_{n}^{t}) \in I^{n}$, where $i_{k} = c_{k}(t) + p\mathbb{Z}$. Like contents, residues increase along rows and decrease down columns, mod p

Example If $\lambda = (4, 3, 3, 2)$ and p = 3 then the residues in $[\lambda]$ are:

Given $\mathbf{i} \in I^n$ let $Std(\mathbf{i}) = \{ t \text{ standard } | \mathbf{i}^t = \mathbf{i} \}$. Frequently, $Std(\mathbf{i}) = \emptyset$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

13/22

The KLR generators in $\mathbb{Z}_{(p)}\mathfrak{S}_n$

The idempotents F_i take care of the "semisimple" elements in \mathscr{L}_n^{Λ}

For each $i \in I$ fix $\hat{i} \in \mathbb{Z}$ such that $i = \hat{i} + p\mathbb{Z}$. The nilpotent elements in \mathscr{L}_n^{Λ} are, $y_r = \sum_{i \in I^n} \sum_{t \in \text{Std}(i)} (L_r - \hat{i}_r) F_t$, Now consider ψ_r :

$$\psi_r = \sum_{\mathtt{v}\in\mathsf{Std}(\mathcal{P}_n^{\Lambda})} \left(s_r - rac{1}{
ho_r(\mathtt{v})}
ight) rac{1}{eta_r(\mathtt{v})} F_{\mathtt{v}}$$

Take $\beta_r(\mathbf{v}) = (1 + \rho_r(\mathbf{v}))/\rho_r(\mathbf{v})$. Then ψ_r becomes

$$\psi_r = \sum_{\mathbf{v}\in\mathsf{Std}(\mathcal{P}_n^{\Lambda})} (s_r\rho_r(\mathbf{v}) - 1) \frac{1}{1+\rho_r(\mathbf{v})} F_{\mathbf{v}}$$
$$= \sum_{\mathbf{v}\in\mathsf{Std}(\mathcal{P}_n^{\Lambda})} (s_r(L_{r+1} - L_r) - 1) \frac{1}{1+L_{r+1} - L_r} F_{\mathbf{v}}$$
$$= (L_r s_r - s_r L_r) \sum_{\mathbf{v}\in\mathsf{Std}(\mathcal{P}_n^{\Lambda})} \frac{1}{1+L_{r+1} - L_r} F_{\mathbf{v}}$$

The right-hand side makes sense as an element of $\mathbb{Z}_{(p)}\mathfrak{S}_n$ provided that $1 + i_{r+1}^{v} - i_r^{v} \notin p\mathbb{Z}$. If $i_r^{v} = i_{r+1}^{v}$ then $(L_r s_r - s_r L_r)F_i = p\mathbb{Z}_{(p)}\mathfrak{S}_n$.

Lifting idempotents

For $\mathbf{i} \in I^n$ let $F_{\mathbf{i}} = \sum_{\mathbf{t} \in \mathsf{Std}(\mathbf{i})} F_{\mathbf{t}} \in \mathbb{Q}\mathfrak{S}_n$

Proposition

Suppose $\mathbf{i} \in I^n$. Then $F_{\mathbf{i}} \in \mathbb{Z}_{(p)}\mathfrak{S}_n$

Proof Let
$$F'_{t} = \prod_{r=1}^{n} \prod_{\substack{s \in \operatorname{Std} \mathcal{P}_{n}^{\wedge} \\ i_{r}^{*} \neq i_{r}^{*}}} \frac{L_{r} - c_{r}(s)}{c_{r}(t) - c_{r}(s)} \in \mathcal{O}\mathfrak{S}_{n}$$

 $\implies F'_{t} = F'_{t} \sum_{\substack{s \in \operatorname{Std}(\mathcal{P}_{n}^{\wedge}) \\ s \in \operatorname{Std}(\mathcal{P}_{n}^{\wedge})}} F_{s} = \sum_{\substack{s \in \operatorname{Std}(i) \\ s \in \operatorname{Std}(i)}} a_{st}F_{s}, \text{ for some } a_{st} \in \mathbb{Z}_{(p)}$

In particular, $a_{tt} = 1$ and $F_i F'_t = F'_t$. Therefore, since $F_s F_u = \delta_{su} F_s$,

$$\prod_{t} (F_{i} - F'_{t}) = \prod_{t} \left(\sum_{s \neq t} (1 - a_{st}) F_{s} \right) = 0$$

$$\implies F_{i} = \prod_{t \in Std(i)} (F_{i} - F'_{t}) - \sum_{\emptyset \neq S \subseteq Std(i)} (-1)^{|S|} \prod_{s \in S} F'_{s} \in \mathbb{Z}_{(p)} \mathfrak{S}_{n}$$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

The graded isomorphism theorem

Theorem (Brundan-Kleshchev, Hu-M.)

Suppose that
$$\mathbb{k} = \mathbb{Z}_{(p)}$$
. For $1 \le r < n$ and $\mathbf{i} \in I^n$ define
 $y_r = \sum_{\mathbf{i} \in I^n} \sum_{\mathbf{t} \in Std(\mathbf{i})} (L_r - \hat{i}_r) F_{\mathbf{t}}$ and
 $\psi_r F_{\mathbf{i}} = \begin{cases} (s_r + 1) \frac{1}{L_{r+1} - L_r} F_{\mathbf{i}}, & \text{if } i_r = i_{r+1}, \\ (L_r s_r - s_r L_r) F_{\mathbf{i}}, & \text{if } i_r = i_{r+1} + 1, \\ (L_r s_r - s_r L_r) \frac{1}{L_r - L_r} F_{\mathbf{i}}, & \text{otherwise} \end{cases}$

Then $y_r, \psi_r, F_i \in \mathbb{k}\mathfrak{S}_n$. These elements generate $\mathbb{k}\mathfrak{S}_n$ and they induce an isomorphism $\mathbb{k}\mathfrak{S}_n \cong \mathscr{R}_n^{\Lambda}(\mathbb{k})$.

To prove this it is enough the relations on the seminormal basis of $\mathbb{Q}\mathfrak{S}_n$, which is completely straightforward. To complete the proof that $\mathbf{k}\mathfrak{S}_n \cong \mathscr{R}_n^{\Lambda}$ you can use a dimension count, which comes from the categorification of the Fock space

This shows that \mathscr{R}_n^{Λ} is an "idempotent completion" of $\Bbbk \mathfrak{S}_n$: once the idempotents F_i belong to $\mathscr{H}_n^{\Lambda}(\Bbbk)$ then algebra becomes isomorphic to $\mathscr{R}_n^{\Lambda}(\Bbbk)$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

14 / 22

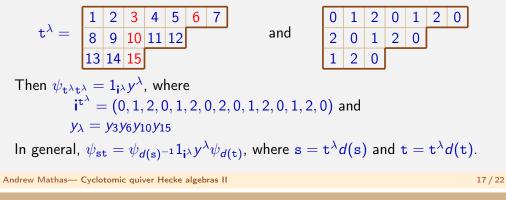
A graded cellular basis of $\Bbbk \mathfrak{S}_n$

The KLR generators of \mathscr{R}_n^{Λ} , which induce its grading, are $\psi_1, \ldots, \psi_{n-1}, \quad y_1, \ldots, y_n, \quad \mathbf{1}_i, \quad \text{ for } \mathbf{i} \in I^n$

Theorem (Hu-M.)

Suppose that \Bbbk is a field, Then $\Bbbk \mathfrak{S}_n$ is a graded cellular algebra with graded cellular basis { $\psi_{st} | s, t \in Std(\lambda)$ and $\lambda \in \mathcal{P}_n^{\Lambda}$ }.

Example Take p = 3 and $\lambda = (7, 5, 3)$. The initial λ -tableau t^{λ} has the numbers $1, 2, \ldots, n$ entered in order along the rows of λ :



Cellular algebra examples

• Let $A = Mat_n(k)$ be the algebra of $n \times n$ matrices. Take $\mathcal{P} = \{\#\}, \quad S(\#) = \{1, 2, \dots, n\}$ and $c_{ij}^{\#} = e_{ij},$ where e_{ij} is the elementary matrix with 1 in row *i* and column *j* and 0 elsewhere. Then *A* is cellular because $e_{ij}e_{kl} = \delta_{ik}e_{il}$

② Let { $f_{st} | (s, t) \in Std^2(\mathcal{P}_n^{\Lambda})$ } be a seminormal basis of $\&\mathfrak{S}_n$. This is a cellular basis because $f_{st}f_{uv} = \delta_{tv}\gamma_t f_{sv}$

The basis ψ_{st} is cellular essentially because $\psi_{st} = f_{st} + \text{ higher terms}$

Cellular algebras

Let A be an unital k-algebra, where k is a commutative ring with one

Definition (Graham and Lehrer, 1996)

3 The map $*: A \longrightarrow A$; $c_{st}^{\lambda} \mapsto c_{ts}^{\lambda}$ is an anti-isomorphism

A cellular algebra is an algebra that has a cellular basis

If A is a graded algebra then a cellular basis (C, \mathcal{P}, S) of A is a graded cellular basis if, in addition, there exists a degree function deg : $\coprod_{\lambda \in \mathcal{P}} S(\lambda) \longrightarrow \mathbb{Z}$; t \mapsto deg t such that deg $c_{st}^{\lambda} = \deg s + \deg t$

Andrew Mathas— Cyclotomic quiver Hecke algebras II

18 / 22

Graded Specht modules – cellular algebras

One of the main properties of a cellular basis is that

$$h\psi_{sv} = \sum_{a \in Std(\lambda)} r_{sa}(h)\psi_{av}$$
 (mod higher shapes)

The graded Specht module S^{λ} has basis $\{\psi_t | t \in Std(\lambda)\}$ and \mathscr{R}_n^{Λ} -action

$$m \psi_{\mathtt{s}} = \sum_{\mathtt{a} \in \mathsf{Std}(\lambda)} r_{\mathtt{sa}}(m) \psi_{\mathtt{a}}$$

Importantly, S^{λ} has a natural homogeneous bilinear form $\langle \;,\;
angle$

Consider: $\psi_{st}\psi_{uv} = \langle \psi_t, \psi_u \rangle \psi_{sv}$

 $\implies \text{ rad } S^{\lambda} = \{ x \in S^{\lambda} | \langle x, y \rangle = 0 \text{ for all } y \in S^{\lambda} \} \text{ is a graded} \\ \text{submodule of } S^{\lambda} \text{ as } \langle xh, y \rangle = \langle x, yh^* \rangle \text{ is homogeneous} \end{cases}$

Define $D^{\mu}=S^{\mu}/\operatorname{rad}S^{\mu}$, a graded quotient of S^{μ}

Theorem (Brundan-Kleshchev, Hu-M.)

Over a field, $\{ D^{\mu} \langle k \rangle | \mu \in \mathcal{K}_{n}^{\Lambda} \text{ and } k \in \mathbb{Z} \}$ is a complete set of pairwise non-isomorphic irreducible $\Bbbk \mathfrak{S}_{n}$ -modules. Moreover, $(D^{\mu})^{\circledast} \cong D^{\mu}$.

Further reading

- S. Ariki and K. Koike, A Hecke algebra of (Z/rZ) ≥ S_n and construction of its irreducible representations, Adv. Math., 106 (1994), 216–243.
- J. Brundan and A. Kleshchev, *Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras*, Invent. Math., **178** (2009), 451–484.
- J. Brundan, A. Kleshchev, and W. Wang, *Graded Specht modules*, J. Reine Angew. Math., **655** (2011), 61–87. arXiv:0901.0218.
- J. J. Graham and G. I. Lehrer, *Cellular algebras*, Invent. Math., **123** (1996), 1–34.
- J. Hu and A. Mathas, *Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A*, Adv. Math., **225** (2010), 598–642. arXiv:0907.2985.
- ____, Seminormal forms and cyclotomic quiver Hecke algebras of type A, Math. Ann., **364** (2016), 1189–1254. arXiv:1304.0906.
- A. Kleshchev and A. Ram, *Homogeneous representations of Khovanov-Lauda algebras*, J. Eur. Math. Soc. (JEMS), **12** (2010), 1293–1306.

Andrew Mathas— Cyclotomic quiver Hecke algebras II

21 / 22

Further reading II

- _____, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., **349** (2011), 943–975.
- A. Mathas, *Cyclotomic quiver Hecke algebras of type A*, in Modular representation theory of finite and *p*-adic groups, G. W. Teck and K. M. Tan, eds., National University of Singapore Lecture Notes Series, **30**, World Scientific, 2015, ch. 5, 165–266. arXiv:1310.2142.
- A. Okounkov and A. Vershik, *A new approach to representation theory of symmetric groups*, Selecta Math. (N.S.), **2** (1996), 581–605.
- R. Rouquier, *Quiver Hecke algebras and 2-Lie algebras*, Algebra Colloq., **19** (2012), 359–410.

Andrew Mathas— Cyclotomic quiver Hecke algebras II