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Notes on the affine Hecke algebra and equivariant K-theory

1 Conventions and preliminaries

Let F be a non-archimedean local field with ring of integers O and residue field Fq. For a connected

semisimple linear algebraic group A we shall write W (A), W̃ (A) and Waff(A) for the Weyl group, extended
affine Weyl group, and affine Weyl group of A, respectively. We shall write I(A) for the an Iwahori subgroup
corresponding to a silently chosen Borel subgroup in A(Fq), and F`(A) for the corresponding affine flag
variety A(F )/I(A). Where there is no danger of confusion we will write A also for A(F ). Note however that
we write A∨ for the Langlands dual of A, and as we consider only C-points of A∨, we write A∨ = A∨(C).

Now fix G be a semisimple linear algebraic group and W̃ = W nX∗(T ) its affine Weyl group. Let H be
the affine Hecke algebra corresponding to (W̃ , S). It is frequently claimed that there is an isomorphism of
Z[q, q−1]-algebras

H → KG∨×C×
0 (St)

where St is the Steinberg variety of the complex Langlands dual group G∨ = G∨(C) of G. As known to all
experts, this hypothesis can be dispensed with via passing to the universal covering group, but formally this
doesn’t seem to be done anywhere in writing, or even mentioned much of the time. This has tripped me up
enough times that I decided to write up some pretty informal notes for myself.

2 The p-adic side

Let (X∗,Φ, X∗,Φ
∨) be the root datum for (G,T ). Let Q = ZΦ ⊂ X∗ be the root lattice.

Definition 1. A group G is simply-connected if the coroot lattice is equal to the coweight lattice. The
fundamental group of G is π1(G) := X∨/ZΦ∨ = X∗(T )/ZΦ∨ the coweight lattice modulo the coroot lattice.

Definition 2. A group G∨ is of adjoint type if it has trivial centre.

Langlands duality exchanges the centre and the fundamental group, so that

G is simply connected iff G∨ is of adjoint type

Then we have the following diagram

X R G π1(G) X∗ = HomZ(X,Z) R∨ G∨ Z(G∨) Hom(Z(G∨),C×)

Q R Gad π1(Gad) HomZ(Q,Z) R∨ (Gad)∨ Z((Gad))∨ Hom(Z((Gad)∨),C×).

πid id p

(1)

and we see that (Gad)∨ = G̃∨ is the universal cover of the dual group (in the sense of algebraic groups). Here
Gad = G/Z(G) is the adjoint group of G. Note that as we take Langlands dual groups over C, the universal
cover corresponds to that of Lie groups and we can deduce the surjections of centres that way.

The root data for these groups are as follows:

G : (X ⊃ Q,Φ, X∨ ⊃ Q∨,Φ∨), G∨ : (X∨ ⊃ Q∨,Φ∨, X ⊃ Q,Φ)

Gad : (Q,Φ,HomZ(Q,Z),Φ∨), (Gad)∨ : (HomZ(Q,Z),Φ∨, Q,Φ).

Note in particular that Waff(G) = Waff(Gad).
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2.1 Components of the affine flag variety

Note that by diagram (1) we have an inclusion of the coweight lattice of G into the coweight lattice of Gad

which induces an inclusion of extended affine Weyl groups

W̃ (G) ↪→ W̃ (Gad)

as well as the above-noted inclusion of fundamental groups.
As Z(G(k)) ⊂ B(k), we have π(I(G)) = I(Gad ), and obtain an induced injection

G F`(G) := G/I(G) =
∐
ω∈π1(G) F`(G)ω =

∐
ω∈π1(G)

⋃
w∈ωWaff(G)

I(G)ẇI(G)

Gad F`(Gad) := Gad/I(Gad) =
∐
ω∈π1(Gad) F`(Gad)ω =

∐
ω∈π1(Gad)

⋃
w∈ωWaff (G) I(Gad)ẇI(Gad),

π

where if w ∈W nX∗/W nR∨, then π restricts to an isomorphism

π : I(G)ẇI(G)
∼→ I(Gad)ẇI(Gad)

where on the right-hand side ẇ is the same representative as on the left-hand side, only considered as a
representative of a coset in W n HomZ(Q,Z)/W nR∨.

In summary F`(G) is just a subset of the connected components of F`(Gad). All the connected components
are isomorphic.

2.1.1 Bruhat order on W̃

By definition of the Bruhat order on W̃ , two elements of W̃ are comparable only if they are in the same
Waff -coset.

2.2 Inclusion of affine Hecke algebras

Therefore extension by zero provides an injection of Z[q, q−1]-algebras

C∞c [I(G)\G/I(G)] ↪→ C∞c [I(Gad)\Gad/I(Gad)],

where we mean functions with values in Z[q, q−1] (which of course is just Z[q−1] in this case). Further, we
have a direct sum decomposition, as vector spaces⊕

ω∈π1(G)

spanZ[q,q−1] {Tw}w∈ωWaff(G)
↪→

⊕
ω∈π1(Gad)

spanZ[q,q−1] {Tw}w∈ωWaff(G)

compatible with the above injection of algebras.
The content of these notes is writing down carefully the fact that the isomorphism of C[q, q−1]-algebras

that exists when the dual group is simply-connected restricts to an isomorphism of the two subalgebras,
which will follow from it being compatible with this direct sum decomposition and the below direct sum
decomposition as a linear map.

2.3 Algebraic alternative

The inclusion of extended affine Weyl groups together with the Berstein presentation (see below) gives a
totally algebraic way to see the inclusion of Hecke algebras: Consider the restriction

res : X∗ = HomZ(X,Z) ↪→ HomZ(Q,Z).

Then we get
W nX∗ ↪→W n HomZ(Q,Z),
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and a linear injection
HWnX∗ → HWnHomZ(Q,Z).

sending
Tw 7→ Tw, w ∈W

and
θλ 7→ θresλ, λ ∈ X∗.

Note that as every simple root α lies in Q = ZΦ, the pairing between X∗ and X restricts to the pairing
between Q and HomZ(Q,Z), and so the relations in the Bernstein presentation are preserved, yielding an
injection of algebras.

3 The K-theory side

3.1 The Bernstein presentation

Aside from the usual Coxeter presentation of H, there is another presentation due to Bernstein (and
Bernstein-Zelevinskii in type A) and first published by Lusztig that appears naturally on the K-theory side.

The Bernstein presentation uses the basis {Twθλ}w∈W,λ∈X∗ , where

• Tw is the usual basis element Tw from the Coxeter presentation.

• Writing λ = λ1 − λ2 for λi ∈ X+
∗ dominant coweights, set

θλ = q
−`(λ1)+`(λ2)

2 Tλ1T
−1
λ2

where we view λi ∈ W̃ when taking lengths.

The elements θλTw are also a Z[q, q−1]- basis. The relations are as follows:

• For finite simple reflections, the quadratic relation T 2
s = (q − 1)Ts + q.

• θλθλ′ = θλ+λ′ .

• The Bernstein relation: for a finite simple root α we have

θλTsα − Tsαθsα(λ) = (q − 1)
θλ − θsα(λ)

1− θ−α∨
if α∨ 6∈ 2X∗.

• A more complicated version of the last relation if α∨ ∈ 2X∗.

Definition 3. The commutative subalgebra spanned by the θλ is the Bernstein subalgebra.

Remark 1. In particular the simpler form holds for any simply-connected root system.

Remark 2. The fraction is in fact always an element of H.

Example 1. For G = SL2(F ) and α is unique simple root, then

α∨ : π 7→ diag(π, π−1),

so α∨ 6∈ 2X∗ and if λ = α∨, the last relation reads

θα∨Tsα − Tsαθsα(α∨) = θα∨Tsα − Tsαθ−α∨ = (q − 1)
θα∨ − θ−α∨
1− θ−α∨

= (q − 1)(1 + θα).
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Example 2. If G = PGL2(F ), an example that is not simply-connected, we have the following relation.
Recall that

2ρ = α : GL2(C) 3 diag(a, b) 7→ ab−1

defines the usual simple root for SL2, and descends to the quotient to define a weight of PGL2.
This is not true of

ρ : GL2(C) 3 diag(a, b) 7→ a.

This issue of Z versus 2Z is good to keep in mind.
Let α be the root of SL2 as above. The coroot lattice of of PGL2 is Z〈α〉. The coweight lattice of PGL2

is Z〈α2 〉 ⊃ Z〈α〉. In this case the last relation is of the form

θα
2
Ts∨α − Ts∨αθ−α2 = (q − 1)

θα
2
− θ−α2

1− θ−α
= (q − 1)θα

2

Compare this with the relation in K-theory to see why we are forced to take one side Langlands dual.

Proposition 1 ([2] corollary 5.7). We have supp θλ ⊂
{
x ∈ W̃

∣∣∣x ≤ λ}. In particular, supp θλ ⊂ F`λ.

3.1.1 Aside: Discrete-series representations

Definition 4. A representation belongs to the discrete series if all eigenvalues of the Bernstein subalgebra
have absolute value strictly less than 1.

Example 3. For G = SL2(F ), there are four one-dimensional representations of H, defined in the Coxeter
presentation by

1.
St : Ts0 7→ −1, Ts1 7→ −1 =⇒ θα∨ 7→ q−1.

2.
triv : Ts0 7→ q, Ts1 7→ q =⇒ θα∨ 7→ q

3.
Ts0 7→ −1, Ts1 7→ q =⇒ θα∨ 7→ 1

4.
Ts0 7→ q, Ts1 7→ −1 =⇒ θα∨ 7→ 1

The first representation is the Steinberg representation. It is discrete series for q > 1. The second is
the trivial representation. It is not discrete series for q > 1 (it is fact “antitempered,” or “antidiscrete
series.”) The last two representations are also not discrete series. They are however tempered, meaning
that the eigenvalues of the Bernstein subalgebra are at most 1.

The Steinberg and trivial representations deform the sign and trivial representations of the affine Weyl
group

〈
s0, s1

∣∣ s2
0 = s2

1 = 1
〉
, respectively.

3.2 Equivariant K-theory of the Steinberg variety

The basic reference is [1]
This section discusses objects on what we have chosen to be the Langlands dual side. Recall we write

G∨ = G∨(C). Write St for the Steinberg variety of G∨, KG∨×C×(St) = KG∨×C×
0 (St) for the equivariant

K-theory of St. It is a Z[q, q−1]-algebra, where Z[q, q−1] = K0(Rep(C×)) is the representation ring of C×.
Inside Steinberg variety we have the smooth closed subvariety St∆ = {(x, b1, b2) |x ∈ b1 = b2 is nilpotent}.

It is isomorphic to the diagonal of Ñ∨ × Ñ∨.
Therefore we have the following diagram
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(x, b, b) St∆ Ñ∨ × Ñ∨

b B∆ B × B

∆

π∆ π×π

∆

Let λ be a coweight of G, hence a weight of G∨. Recall the line bundle Lλ on B, the flag variety of G∨. It
is a smooth projective finite-dimensional variety.

The map π is G∨-equivariant, and so we get a G∨ × C×-equivariant coherent sheaf Oλ := π∗∆Lλ on St∆,
which we view as a cohere sheaf on St supported on St∆.

Note that St∆ is smooth, and so convolution in K-theory is the same as the tensor product in K-theory,
which is defined. This makes multiplying the classes [Oλ] very simple, just like multiplying the θλ in the
Bernstein presentation.

For s ∈ S, let Ys ⊂ B × B be the corresponding G∨-orbit. Then Ȳs = Ys t B∆ is smooth and

Ȳs ↪→ B × B � B

is a P1-fibration via the projection onto the first factor. Consider the sheaf ΩȲs/B of relative 1-forms. The

conormal bundle T ∗
Ȳs

(B × B) to Ȳs is an irreducible component of St, and write Qs = π∗sΩȲs/B∨ .

3.3 Grading of equivariant K-theory of the Steinberg variety

The centre of G∨ acts trivially on St, and hence the equivariant K-theory acquires a Hom(Z(G∨),C×)-grading
as a Z[q, q−1]-module. Thus we have a decomposition

KG∨×C×(St) =
⊕

χ∈Hom(Z(G∨),U(1))

KG∨×C×(St)χ

as a Z[q, q−1]-module.

Remark 3. This decomposition does not mean that there is a action of Z(G∨) on K-theory, in the same way
that in the case of a point, a group H does not act on its representation ring R(H) or on Rep(H). What
one can do given a subgroup K of H that acts on irreducible representations of H by a character, is partition
the set of isomorphism classes of irreducible representations of H according to characters of K. The resulting
direct sum decomposition of R(A) as a Z-module.

We have, as G∨ is semisimple,

Hom(Z(G∨),Gm) ' X∨/Q∨ = π1(G),

by [3], theorem 4.22.

Note also that as G̃∨ → G∨ is a finite cover of Lie groups (and G̃∨ is the universal cover of G∨ as a Lie

group (us having taken C-points of a semisimple group)) Lie(G∨) = Lie(G̃∨) and in particular the two groups
have the same Steinberg varieties. Note further that ker(p), where p is the covering map from diagram (1), is

a finite central subgroup of (̃G∨) and so a G∨ × C×-equivariant coherent sheaf is a (̃G∨)× C×-equivariant
coherent sheaf with trivial ker(p)-action on the fibres. Therefore we have an inclusion of Z[q, q−1]-algebras

KG∨×C×(St) =
⊕

χ∈Hom(Z(G∨),U(1))

KG∨×C×(St)χ ↪→ KG̃∨×C×(St) =
⊕

χ∈Hom(Z(G̃∨),U(1))

KG̃∨×C×(St)χ

compatible with the inclusion of duals of centres again from diagram (1), the point being that

KG∨×C×(St)χ = KG̃∨×C×(St)χ

when χ is trivial on ker(p).
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4 Checking the equivalence

Recall the usually-stated form of the isomorphism.

Theorem 1. Let G be semisimple and G∨ be simply-connected. Then there is a Z[q, q−1]-algebra isomorphism

Θ: C∞c [I(G)\G/I(G)]→ KG∨×C×(St).

The isomorphism sends
Θ: θλ 7→ [O−λ], λ ∈ X∗

and
Θ: Ts 7→ −[qQs]− [O0].

Remark 4. Before appearing in the book [1] as theorem 7.2.5, versions of various strength were published or
announced by many authors. See [1] chapter 0 for a historical overview.

The whole claim is that the restriction of Θ lands where we claim it does.

Theorem 2. Let G be semisimple. Then the following diagram of Z[q, q−1]-modules

C∞c [I(G)\G/I(G)] C∞c [I(Gad)\Gad/I(Gad)]

KG∨×C×(St) K(Gad)∨×C×(St)

Θ�C∞c [I(G)\G/I(G)] Θ

commutes.

Proof. First we will see that the elements Ts are mapped compatibly. Clearly they lie in the summand of
C∞c (I(G)\G/I(G)) corresponding to ω = 1. We must therefore show that the elements Qs have trivial Z(G∨)
action as coherent sheaves. This is however clear, as Z(G∨) is contained in any Borel subgroup B∨ of G∨,
and hence acts trivially on B∨ and B∨ × B∨, hence on functions on these varieties. Therefore the centre also
trivially on the relative cotangent sheaves and on their pullbacks Qs (see section 3.2 for the definition of Qs).

As a sanity check, recall that the line bundles Lλ for λ 6= a weight of G∨ have sections which are not
functions on B∨ but rather functions on G∨/N∨ that transform under T∨ by λ if B∨ = T∨N∨ and we view
B∨ = G∨/B∨.

Recall that we know supp θλ ⊂ F`λ. We therefore want to show that O−λ = π∗∆L−λ is scaled according
to the weight λ of Z(G∨).

Intuitively this is true by definition. If r : G∨ � B∨, then sections of Lλ over an open subset U ⊂ B∨ are
functions f : r−1(U)→ C such that f(gb) = λ(b)−1f(g), where λ is extended by inflation. As the centre is
contained in any Borel, we have f(zg) = f(gz) = λ−1(z)f(g). Then as G∨ acts on B∨ on the left, the action
of z ∈ Z(G∨) on local sections of Lλ is

z : f 7→ z · f : x 7→ f(z−1x) = λ(z)f(x)

as required. Now the G∨-equivariant structure on Oλ is π∗∆I, where

I : a∗Lλ → p∗Lλ

is the isomorphism specifying the G∨-equivariant structure of Lλ as a sheaf on B∨. Here a is the action map
and p is projection as usual.

Upon restricting π∗∆I to Z(G∨)× St∆ the action and projection maps are equal, and the G∨ -equivariant
structure just provides an automorphism

OZ(G∨) ⊗C OÑ ⊗π•∆OB∨ Lλ = (OÑ ⊗π•∆OB∨ Lλ)⊕#Z(G∨) → (OÑ ⊗π•∆OB∨ Lλ)⊕#Z(G∨).

The direct sum decomposition comes from the fact that the centre is finite discrete, and each component of
the automorphism corresponds to the action of that element of the centre. Note that Z(G∨) acts trivially on
Ñ , hence acts trivially on the first tensor factor.

Corollary 1. In theorem 1, the assumption that G∨ is simply-connected can be dropped.
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5 The asymptotic Hecke algebra and equivariant K-theory

The following is Lemma 5.4.27 in [1], although there are some inconsistencies of notation in the proof as
typeset there.

Lemma 1. We have the following commutative diagram of R(G∨)-modules:

KG(Z) HomR(G)(K
G(E2),KG(E1))

KG(M1 ×M2) HomR(G)(K
G(M2),KG(M1)).

ρE

ī∗p̄∗ Th

ρM

Proof. It is helpful to draw the expanded diagram

M2 E2

M1 ×M2 E1 ×M2 E1 × E2

M1 E1.

p2
q2

q1

ī

pr

p1
p̄1

p̄

π2

i

Here the maps with indices are projections from products onto the indexed factor, except for p2 : E2 →M2

which is just the bundle projection. The map pr is also projection onto the factor M2.
We must prove that

(̄i∗p̄∗F) ? G ' i∗1(F ? π∗2p∗2G);

the right-hand side is the meaning of the map Th of hom-spaces induced by the Thom isomorphism.
Expanding, we need to prove

q1∗((̄i
∗p∗F)⊗L q∗2G) ' i∗1(p̄1∗(F ⊗L p̄∗pr∗G)). (2)

The lower square of the helpful diagram is Cartesian, and so we have

i∗1p1∗ = q1∗ī
∗ =⇒ i∗1p1∗p̄∗ = i∗1p̄1 = q1∗ī

∗p̄∗

by base-change and the commutativity of the lower triangle.
Therefore we can rewrite the RHS of (2) as

i∗1(p̄2(F ⊗L p̄pr∗G)) = q1∗ī
∗p̄∗(F ⊗L p̄∗pr∗G) (3)

= q1∗ī
∗(p̄∗F ⊗L pr∗G) (4)

= q1∗(̄i
∗p̄∗F ⊗L ī∗pr∗G) (5)

= q1∗(̄i
∗p̄∗F ⊗L q∗2G) (6)

(7)

where in line 4 we used the projection formula. The projection formula is stated only in a limited way in [1],
but the point here is that we can replace coherent sheaves by its finite locally-free resolution because we are
working with smooth varieties everywhere.

If E1 = E2 = E and M1 = M2 = M and Z ⊂ E ×E, then KG(Z) acquires the structure of a convolution
algebra.

Then HomR(G)(K
G(E),KG(E)) and HomR(G)(K

G(M),KG(M)) become algebras as well, and KG(M ×
M) is always an algebra under convolution, and we can ask if the last lemma upgrades to give a commutative
diagram of R(G).
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Lemma 2. We have the following commutative diagram of R(G∨)-algebras. This is Corollary 5.4.34 in [1].

KG(Z) HomR(G)(K
G(E),KG(E))

KG(M ×M) HomR(G)(K
G(M),KG(M)).

ρE

ī∗p̄∗ Th

ρM

Remark 5. Note that if we know that ρM is injective, this is automatic. In particular it applies whenever the
Künneth theorem from [1], §5.6, is known to hold for M . Note also that if q1∗F 6= 0, then taking G to be a
skyscraper on M , we see that ρM (F)(G) = q1∗(F) 6= 0, so ρM is injective on such sheaves. It does however
not seem that this pushforward is in general injective.

Proof. The map Th: ϕ 7→ i∗ ◦ ϕ ◦ (i∗)−1, and we obviously have Th(ϕ ◦ ψ) = Th(ϕ) ◦ Th(ψ), as required.
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