HAO XIAO

ABSTRACT. These notes describe the machinery called t-structures for extracting an abelian category from a triangulated category.

CONTENTS

1.	Truncating <i>t</i> -structures	1
2.	Characterizations of objects for a <i>t</i> -structure	4
3.	Compatibility of truncation functors	6
4.	Hearts and <i>t</i> -cohomology	$\overline{7}$
5.	<i>t</i> -exactness	14

Let \mathscr{T} be a triangulated category throughout these notes.

1. Truncating *t*-structures

Definition 1.1. A subcategory \mathscr{B} of a category \mathscr{A} is **isomorphism closed** (or **replete**) if every \mathscr{A} -isomorphism $h: A \to B$ with $B \in \mathscr{B}$ belongs to \mathscr{B} , which in particular implies that A, h, and h^{-1} belong to \mathscr{B} as well. If in addition \mathscr{B} is a full subcategory, then it is called **strictly full**.

Remark 1.2. In the case of full subcategories, it is sufficient to check that every \mathscr{A} -object that is isomorphic to a \mathscr{B} -object is also a \mathscr{B} -object.

Example 1.3. Consider an arbitrary topological property (i.e. a property of topological spaces that is preserved by homeomorphisms), then it determines a strictly full subcategory of Top.

Definition 1.4. Let $\mathscr{T}^{\leq 0}$ and $\mathscr{T}^{\geq 0}$ be (nonempty) strictly full subcategories of \mathscr{T} . For $n \in \mathbb{Z}$, let

$$\mathscr{T}^{\leq n} = \mathscr{T}^{\leq 0}[-n] \text{ and } \mathscr{T}^{\geq n} = \mathscr{T}^{\geq 0}[-n].$$

The pair $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ is a *t*-structure on \mathscr{T} if the following three axioms hold:

(T1) We have $\mathscr{T}^{\leq -1} \subset \mathscr{T}^{\leq 0}$ and $\mathscr{T}^{\geq 1} \subset \mathscr{T}^{\geq 0}$.

(T2) If $X \in \mathscr{T}^{\leq 0}$ and $Y \in \mathscr{T}^{\geq 1}$, then $\operatorname{Hom}_{\mathscr{T}}(X, Y) = 0$.

(T3) For every $X \in \mathscr{T}$, there exists a distinguished triangle

$$X_0 \to X \to X_1 \to X_0[1]$$

in \mathscr{T} with $X_0 \in \mathscr{T}^{\leq 0}$ and $X_1 \in \mathscr{T}^{\geq 1}$.

A *t*-structure is **bounded below** (resp. **bounded above**) if, for every $X \in \mathscr{T}$, there is an integer n such that $X \in \mathscr{T}^{\geq n}$ (resp. $X \in \mathscr{T}^{\leq n}$). It is **bounded** if it is bounded both below and above.

Proposition/Definition 1.5. If $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ is a t-structure on \mathscr{T} , then so is $(\mathscr{T}^{\leq n}, \mathscr{T}^{\geq n})$ which is called the shifted t-structure.

Proof. This is an immediate consequence of the shift functor $[1]: \mathscr{T} \xrightarrow{\sim} \mathscr{T}$.

Proposition/Definition 1.6. For an abelian category \mathscr{A} , the full subcategories of $D(\mathscr{A})$ given by

$$D(\mathscr{A})^{\leq 0} := \left\{ X \in D(\mathscr{A}) : H^i(X) = 0 \text{ for } i > 0 \right\}$$

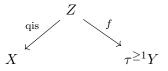
and $D(\mathscr{A})^{\geq 0} := \left\{ X \in D(\mathscr{A}) : H^i(X) = 0 \text{ for } i < 0 \right\}.$

form a t-structure on $D(\mathscr{A})$, called the **natural** t-structure.

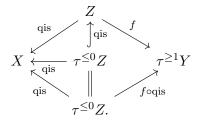
Proof. The axiom (T1) is clear. For (T2), let $X \in D(\mathscr{A})^{\leq 0}$ and $Y \in D(\mathscr{A})^{\geq 1}$ be arbitrary. The canonical morphism $Y \to \tau^{\geq 1} Y$ in $D(\mathscr{A})$ is an isomorphism, so we obtain a canonical identification

$$\operatorname{Hom}_{D(\mathscr{A})}(X,Y) = \operatorname{Hom}_{D(\mathscr{A})}(X,\tau^{\geq 1}Y).$$

Let



be an arbitrary morphism in $\operatorname{Hom}_{D(\mathscr{A})}(X, \tau^{\geq 1}Y)$, and consider the following commutative diagram



Since the morphism $f \circ qis : \tau^{\leq 0}Z \to \tau^{\geq 1}Y$ in $K(\mathscr{A})$ can only be represented by the zero morphism in $C(\mathscr{A})$, we obtain $\operatorname{Hom}_{D(\mathscr{A})}(X, \tau^{\geq 1}Y) = 0$. For (T3), one observes the distinguished triangle

$$\tau^{\leq 0}X \longrightarrow X \longrightarrow \tau^{\geq 1}X \longrightarrow (\tau^{\leq 0}X)[1]$$

in $D(\mathscr{A})$. It comes from for every $n \in \mathbb{Z}$ the short exact sequence

$$0 \longrightarrow \tau^{\leq n} X \longrightarrow X \longrightarrow X/\tau^{\leq n} X \longrightarrow 0$$

in $C(\mathscr{A})$. There is an associated distinguished triangle

$$\tau^{\leq n} X \longrightarrow X \longrightarrow X/\tau^{\leq n} X \longrightarrow (\tau^{\leq n} X)[1],$$

in $D(\mathscr{A})$. We then conclude using the canonical isomorphism $X/\tau^{\leq n}X \xrightarrow{\sim} \tau^{\geq n+1}$ in $D(\mathscr{A})$. \Box

Given a *t*-structure on \mathscr{T} , there follows two powerful adjoint functors:

Theorem 1.7 (Truncating *t*-structures). Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a *t*-structure on \mathscr{T} .

- (i) The inclusion $\mathscr{T}^{\leq n} \hookrightarrow \mathscr{T}$ admits a right adjoint ${}^t\tau^{\leq n} : \mathscr{T} \to \mathscr{T}^{\leq n}$.
- (ii) The inclusion $\mathscr{T}^{\geq n} \hookrightarrow \mathscr{T}$ admits a left adjoint ${}^t\tau^{\geq n} : \mathscr{T} \to \mathscr{T}^{\geq n}$.
- (iii) There exists a unique natural transformation $\delta : {}^t \tau^{\geq n+1} \to [1] {}^t \tau^{\leq n}$ such that, for every $X \in \mathscr{T}$, the diagram

$${}^{t}\tau^{\leq n}X \longrightarrow X \longrightarrow {}^{t}\tau^{\geq n+1}X \xrightarrow{\delta_{X}} ({}^{t}\tau^{\leq n}X)[1]$$

is a distinguished triangle. Moreover, every distinguished triangle $A \to X \to B \to A[1]$ with $A \in \mathscr{T}^{\leq n}$ and $B \in \mathscr{T}^{\geq n+1}$ is canonically isomorphic to this one.

Proof. We first assume n = 0.

For an arbitrary $X \in \mathscr{T}$, pick a distinguished triangle

$$X_0 \longrightarrow X \longrightarrow X_1 \longrightarrow X_0[1$$

in \mathscr{T} with $X_0 \in \mathscr{T}^{\leq 0}$ and $X_1 \in \mathscr{T}^{\geq 1}$. Put

$${}^{t}\tau^{\leq 0}X = X_0 \text{ and } {}^{t}\tau^{\geq 1}X = X_1.$$

Let $Y \in \mathscr{T}^{\leq 0}$ be arbitrary, and consider the exact sequence

$$\operatorname{Hom}_{\mathscr{T}}(Y, X_1[-1]) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Y, X_0) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Y, X) \longrightarrow \operatorname{Hom}_{\mathscr{T}}(Y, X_1).$$

We have $\operatorname{Hom}_{\mathscr{T}}(Y, X_1) = 0$ since $Y \in \mathscr{T}^{\leq 0}$ and $X_1 \in \mathscr{T}^{\geq 1}$. Similarly, $\operatorname{Hom}_{\mathscr{T}}(Y, X_1[-1]) = 0$ since $Y \in \mathscr{T}^{\leq 0}$ and $X_1[-1] \in \mathscr{T}^{\geq 2} \subset \mathscr{T}^{\geq 1}$. This implies a canonical identification

$$\operatorname{Hom}_{\mathscr{T}}(Y, X_0) = \operatorname{Hom}_{\mathscr{T}}(Y, X).$$

Take ${}^t\tau^{\leq 0}X \to X$ to be $X_0 \to X$ of the distinguished triangle mentioned above.

Now we define ${}^{t}\tau^{\leq 0}$ on morphisms. Given a morphism $f: X \to Y$ in \mathscr{T} , let ${}^{t}\tau^{\leq 0} : {}^{t}\tau^{\leq 0}X \to {}^{t}\tau^{\leq 0}Y$ be the unique preimage of the composition ${}^{t}\tau^{\leq 0}X \to X \xrightarrow{f} Y$ in $\operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\leq 0}X, Y)$ via the canonical identification

$$\operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\leq 0}X, {}^{t}\tau^{\leq 0}Y) = \operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\leq 0}X, Y)$$

with ${}^t\tau^{\leq 0}X, {}^t\tau^{\leq 0}Y, Y$ replacing Y, X_0, X respectively in the previous identification. We then verify ${}^t\tau^{\leq 0}(gf) = {}^t\tau^{\leq 0}g \circ {}^t\tau^{\leq 0}f$ for $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathscr{T} . Consider distinguished triangles

$$\begin{array}{ccc} X_0 \xrightarrow{c_X} X \longrightarrow X_1 \longrightarrow X_0[1], \\ Y_0 \xrightarrow{c_Y} Y \longrightarrow Y_1 \longrightarrow Y_0[1], \\ \text{and } Z_0 \xrightarrow{c_Z} Z \longrightarrow Z_1 \longrightarrow Z_0[1]. \end{array}$$

Then ${}^{t}\tau^{\leq 0}f$ and ${}^{t}\tau^{\leq 0}g$ are uniquely given by the identities

$$c_Y \circ {}^t \tau^{\leq 0} f = f \circ c_X$$
 and $c_Z \circ {}^t \tau^{\leq 0} g = g \circ c_Y$

respectively. It follows that

 $c_Z \circ ({}^t \tau^{\leq 0} g \circ {}^t \tau^{\leq 0} f) = (c_Z \circ {}^t \tau^{\leq 0} g) \circ {}^t \tau^{\leq 0} f = g \circ (c_Y \circ {}^t \tau^{\leq 0} f) = (g \circ f) \circ c_X = c_Z \circ {}^t \tau^{\leq 0} (gf),$ which implies ${}^t \tau^{\leq 0} (gf) = {}^t \tau^{\leq 0} g \circ {}^t \tau^{\leq 0} f$. For $\operatorname{id}_X : X \to X$ in \mathscr{T} , we have

$$c_X \circ {}^t \tau^{\leq 0} \mathrm{id}_X = \mathrm{id}_X \circ c_X = c_X = c_X \circ \mathrm{id}_X.$$

This yields ${}^{t}\tau^{\leq 0}$ id_X = id_X. The naturality of the adjunction is clear from its construction.

Analogous considerations apply to ${}^{t}\tau^{\geq 1}$. Take $\delta : {}^{t}\tau^{\geq 1}X \to ({}^{t}\tau^{\leq 0}X)[1]$ to be $X_1 \to X_0[1]$ of the distinguished triangle mentioned above. Its functoriality follows from the commutative diagram

$$\begin{array}{cccc} X_0 & \xrightarrow{c_X} & X & \longrightarrow & X_1 & \longrightarrow & X_0[1] \\ & \downarrow^{t_\tau \leq 0} f & \downarrow f & \downarrow^{t_\tau \geq 1} f & \downarrow^{(t_\tau \leq 0} f)[1] \\ Y_0 & \xrightarrow{c_Y} & Y & \longrightarrow & Y_1 & \longrightarrow & Y_0[1]. \end{array}$$

Its uniqueness follows from $\operatorname{Hom}_{\mathscr{T}}(X_0, Y_1[-1]) = 0$ as $X_0 \in \mathscr{T}^{\leq 0}$ and $Y_1[-1] \in \mathscr{T}^{\geq 2} \subset \mathscr{T}^{\geq 1}$.

We have $\operatorname{Hom}_{\mathscr{T}}(A, X_1) = 0$ and $\operatorname{Hom}_{\mathscr{T}}(X_0, B) = 0$ since $A, X_0 \in \mathscr{T}^{\leq 0}$ and $X_1, B \in \mathscr{T}^{\geq 1}$. So there are morphisms of distinguished triangles indicated in the following commutative diagram

$$\begin{array}{cccc} A & \longrightarrow X & \longrightarrow B & \longrightarrow A[1] \\ \downarrow & & \parallel & \downarrow & \downarrow \\ X_0 & \longrightarrow X & \longrightarrow X_1 & \longrightarrow X_0[1] \\ \downarrow & & \parallel & \downarrow & \downarrow \\ A & \longrightarrow X & \longrightarrow B & \longrightarrow A[1]. \end{array}$$

Since $\operatorname{Hom}_{\mathscr{T}}(A, B[-1]) = 0$ as $A \in \mathscr{T}^{\leq 0}$ and $B[-1] \in \mathscr{T}^{\geq 2} \subset \mathscr{T}^{\geq 1}$, the composition $A \to X_0 \to A$ is uniquely id_A . Similarly, the composition $X_0 \to A \to X_0$ is uniquely id_{X_0} . Applying five lemma for triangulated categories, the same holds for B and X_1 . This verifies the canonical isomorphism between the above two distinguished triangles where the latter is actually

$${}^{t}\tau^{\leq n}X \longrightarrow X \longrightarrow {}^{t}\tau^{\geq n+1}X \xrightarrow{\delta_{X}} ({}^{t}\tau^{\leq n}X)[1].$$

By Proposition/Definition 1.5, we have

$${}^t \tau^{\leq n} X = {}^t \tau^{\leq 0} (X[n])[-n]$$

and ${}^t \tau^{\geq n+1} X = {}^t \tau^{\geq 1} (X[n])[-n]$

for arbitrary $n \in \mathbb{Z}$.

Remark 1.8. For a *t*-structure $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ on \mathscr{T} , note that for $X \in \mathscr{T}$ and $n, m \in \mathbb{Z}$ we have

$$\label{eq:tau} \begin{split} {}^t\tau^{\leq n}(X[m]) &\cong ({}^t\tau^{\leq n+m}X)[m] \\ \text{and} ~~{}^t\tau^{\geq n}(X[m]) &\cong ({}^t\tau^{\geq n+m}X)[m]. \end{split}$$

2. Characterizations of objects for a t-structure

Now we have a nice characterization of the objects in $\mathscr{T}^{\leq n}$:

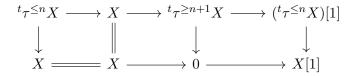
Corollary 2.1. Equip \mathscr{T} with a t-structure. For $X \in \mathscr{T}$, the following statements are equivalent:

(i) $X \in \mathscr{T}^{\leq n}$. (ii) ${}^t \tau^{\geq n+1} X = 0$.

- (iii) There is a canonical isomorphism ${}^t\tau^{\leq n}X \longrightarrow X$.
- (iv) $\operatorname{Hom}_{\mathscr{T}}(X,Y) = 0$ for all $Y \in \mathscr{T}^{\geq n+1}$.

In particular, the zero object of \mathscr{T} belongs to $\mathscr{T}^{\leq n}$ for all $n \in \mathbb{Z}$.

Proof. There is a canonical morphism of distinguished triangles



uniquely determined by the second vertical arrow.

(ii) \Leftrightarrow (iii) Immediate by five lemma for distinguished triangles.

(iii) \Rightarrow (i) Immediate by strict fullness of $\mathscr{T}^{\leq n}$.

 $(i) \Rightarrow (iv)$ Immediate by (T2).

(iv) \Rightarrow (i) Assume $X \notin \mathscr{T}^{\leq n}$, then the canonical morphism ${}^t\tau^{\leq n}X \to X$ is not an isomorphism. By five lemma for distinguished triangles, we have ${}^t\tau^{\geq n+1}X \ncong 0$. Now the canonical identification

$$\operatorname{Hom}_{\mathscr{T}}(X, {}^{t}\tau^{\geq n+1}X) = \operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\geq n+1}X, {}^{t}\tau^{\geq n+1}X) \neq 0$$

by Theorem 1.7 yields a contradiction.

(i) \Rightarrow (ii) The dual statement of the previous implication shows that the zero object belongs to $\mathscr{T}^{\geq n+1}$. Therefore, the result follows from Theorem 1.7.

Similarly, there is a dual statement for $\mathscr{T}^{\geq n+1}$:

Corollary 2.2. Equip \mathscr{T} with a t-structure. For $X \in \mathscr{T}$, the following statements are equivalent:

- (i) $X \in \mathscr{T}^{\geq n+1}$.
- (ii) ${}^{t}\tau^{\leq n}X = 0.$
- (iii) There is a canonical isomorphism $X \xrightarrow{\sim} t_{\tau} \ge n+1 X$.
- (iv) $\operatorname{Hom}_{\mathscr{T}}(Y, X) = 0$ for all $Y \in \mathscr{T}^{\leq n}$.

In particular, the zero object of \mathscr{T} belongs to $\mathscr{T}^{\geq n+1}$ for all $n \in \mathbb{Z}$.

Now the following definition makes sense:

Definition 2.3. A *t*-structure on \mathscr{T} is **nondegenerate** if $\bigcap_{n \in \mathbb{Z}} \mathscr{T}^{\leq n}$ and $\bigcap_{n \in \mathbb{Z}} \mathscr{T}^{\geq n}$ both contain only the zero object.

Corollary 2.4. Equip \mathscr{T} with a t-structure, then $\mathscr{T}^{\leq n}$ and $\mathscr{T}^{\geq n}$ are stable under extensions.

Proof. We only verify the extension stability for $\mathscr{T}^{\leq n}$ as that of $\mathscr{T}^{\geq n}$ is similar. Let

$$A \longrightarrow X \longrightarrow B \longrightarrow A[1]$$

be a distinguished triangle in \mathscr{T} with $A, B \in \mathscr{T}^{\leq n}$, then

$$\operatorname{Hom}_{\mathscr{T}}(A, {}^{t}\tau^{\geq n+1}X) = 0 = \operatorname{Hom}_{\mathscr{T}}(B, {}^{t}\tau^{\geq n+1}X)$$

by (T2). Applying $\operatorname{Hom}_{\mathscr{T}}(-, {}^t\tau^{\geq n+1}X)$ to the distinguished triangle above, we obtain

 $\operatorname{Hom}_{\mathscr{T}}(X,{}^{t}\tau^{\geq n+1}X)=0.$

By Theorem 1.7, we obtain the canonical identifications

$$\operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\geq n+1}X, {}^{t}\tau^{\geq n+1}X) = \operatorname{Hom}_{\mathscr{T}}(X, {}^{t}\tau^{\geq n+1}X) = 0.$$

Particularly, this implies $\operatorname{id}_{\tau \ge n+1} X = 0$, then ${}^t \tau^{\ge n+1} X = 0$. So $X \in \mathscr{T}^{\le n}$ by Corollary 2.1.

3. Compatibility of truncation functors

The two adjoint functors derived in Theorem 1.7 enjoy very nice compatibility properties:

Corollary 3.1. Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a t-structure on \mathscr{T} , and let (a, b) be a pair of integers.

(i) If $a \leq b$, then there are natural isomorphisms

(ii) If a > b, then there are natural isomorphisms

$$\tau^{\geq a} \circ {}^t \tau^{\leq b} \xrightarrow{\sim} {}^t \tau^{\leq b} \circ {}^t \tau^{\geq a} \xrightarrow{\sim} 0.$$

(iii) There is a natural isomorphism

$${}^{t}\tau^{\geq a} \circ {}^{t}\tau^{\leq b} \xrightarrow{\sim} {}^{t}\tau^{\leq b} \circ {}^{t}\tau^{\geq a}.$$

Proof. Let $X \in \mathscr{T}$ be arbitrary.

(i) Since ${}^t\tau^{\geq b}X \in \mathscr{T}^{\geq b} \subset \mathscr{T}^{\geq a}$, the canonical morphism ${}^t\tau^{\geq a}({}^t\tau^{\geq b}X) \to {}^t\tau^{\geq b}X$ is an isomorphism by Corollary 2.2. Let $Y \in \mathscr{T}^{\geq b}$, then we have canonical identifications

$$\operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\geq b}({}^{t}\tau^{\geq a}X),Y) = \operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\geq a}X,Y) = \operatorname{Hom}_{\mathscr{T}}(X,Y) = \operatorname{Hom}_{\mathscr{T}}({}^{t}\tau^{\geq b}X,Y).$$

It gives a canonical isomorphism ${}^t\tau^{\geq b}({}^t\tau^{\geq a}X) \xrightarrow{\sim} {}^t\tau^{\geq b}X$. We obtain ${}^t\tau^{\geq b}\circ{}^t\tau^{\geq a} \xrightarrow{\sim} {}^t\tau^{\geq a}\circ{}^t\tau^{\geq b} \xrightarrow{\sim} {}^t\tau^{\geq b}$ where the naturality is clear. The dual argument gives the other natural isomorphism.

(ii) Immediate by Corollary 2.1 and 2.2.

(iii) We assume $a \leq b$ by (ii). Consider distinguished triangles

$${}^{t}\tau^{\leq a-1}X \cong {}^{t}\tau^{\leq b}({}^{t}\tau^{\leq a-1}X) \cong {}^{t}\tau^{\leq a-1}({}^{t}\tau^{\leq b}X) \longrightarrow {}^{t}\tau^{\leq b}X \longrightarrow {}^{t}\tau^{\geq a}({}^{t}\tau^{\leq b}X) \longrightarrow ({}^{t}\tau^{\leq a-1}X)[1],$$

$${}^{t}\tau^{\leq b}X \longrightarrow X \longrightarrow {}^{t}\tau^{\geq b+1}X \longrightarrow ({}^{t}\tau^{\leq b}X)[1],$$
and
$${}^{t}\tau^{\leq a-1}X \longrightarrow X \longrightarrow {}^{t}\tau^{\geq a}X \longrightarrow ({}^{t}\tau^{\leq a-1}X)[1].$$

The octahedral axiom yields a distinguished triangle

$${}^{t}\tau^{\geq a}({}^{t}\tau^{\leq b}X) \longrightarrow {}^{t}\tau^{\geq a}X \longrightarrow {}^{t}\tau^{\geq b+1}X \longrightarrow ({}^{t}\tau^{\geq a}({}^{t}\tau^{\leq b}X))[1].$$

It admits a comparison to the canonical distinguished triangle

$${}^{t}\tau^{\leq b}({}^{t}\tau^{\geq a}X) \longrightarrow {}^{t}\tau^{\geq a}X \longrightarrow {}^{t}\tau^{\geq b+1}X \longrightarrow ({}^{t}\tau^{\leq b}({}^{t}\tau^{\geq a}X))[1]$$

Since ${}^t\tau^{\geq a}({}^t\tau^{\leq b}X) \cong {}^t\tau^{\leq b}({}^t\tau^{\geq a}X) \in \mathscr{T}^{\leq b}$, we have ${}^t\tau^{\geq a}({}^t\tau^{\leq b}X) \in \mathscr{T}^{\leq b}$ by strict fullness of $\mathscr{T}^{\leq b}$. Thus, Theorem 1.7 implies ${}^t\tau^{\geq a}({}^t\tau^{\leq b}X) \xrightarrow{\sim} {}^t\tau^{\leq b}({}^t\tau^{\geq a}X)$ which is clearly natural in X. \Box

4. Hearts and *t*-cohomology

Definition 4.1. Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a *t*-structure on \mathscr{T} , and let $\mathscr{C} = \mathscr{T}^{\leq 0} \cap \mathscr{T}^{\geq 0}$ as a full subcategory of \mathscr{T} . The category \mathscr{C} is called the **heart** (or **core**) of the *t*-structure $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$.

Remark 4.2. The heart \mathscr{C} is a (nonempty) strictly full subcategory of \mathscr{T} stable under extension.

Definition 4.3. Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a *t*-structure on \mathscr{T} with heart \mathscr{C} . The zeroth *t*-cohomology functor, also called the zeroth cohomology with respect to the *t*-structure, is the functor

$${}^{t}H^{0} := {}^{t}\tau^{\leq 0} \circ {}^{t}\tau^{\geq 0} : \mathscr{T} \to \mathscr{C}.$$

More generally, for every integer n, the nth t-cohomology functor ${}^tH^n: \mathscr{T} \to \mathscr{C}$ is given by

$${}^{t}H^{n} := {}^{t}H^{0} \circ [n] : \mathscr{T} \longrightarrow \mathscr{C}.$$

Remark 4.4. Note that ${}^{t}H^{0} \cong {}^{t}\tau^{\geq 0} \circ {}^{t}\tau^{\leq 0}$ by Corollary 3.1 (iii). This implies that, for every integer *n*, the target of ${}^{t}H^{n}$ is \mathscr{C} by strict fullness of $\mathscr{T}^{\leq 0}$ and $\mathscr{T}^{\geq 0}$.

Proposition 4.5. Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a t-structure on \mathscr{T} , and let $X \in \mathscr{T}$.

- (i) If $X \in \mathscr{T}^{\leq a}$ for some $a \in \mathbb{Z}$, then $X \in \mathscr{T}^{\leq 0}$ if and only if ${}^{t}H^{i}(X) = 0$ for all i > 0.
- (ii) If $X \in \mathscr{T}^{\geq b}$ for some $b \in \mathbb{Z}$, then $X \in \mathscr{T}^{\geq 0}$ if and only if ${}^{t}H^{i}(X) = 0$ for all i < 0.
- (iii) If $X \in \mathscr{T}^{\leq a} \cap \mathscr{T}^{\geq b}$ for some $a, b \in \mathbb{Z}$, then $X \in \mathscr{C}$ if and only if ${}^{t}H^{i}(X) = 0$ for all $i \neq 0$.

Proof. We only prove (ii) because (i) is dual to (ii) and (iii) follows from (i) and (ii).

Without loss of generality, we assume a < 0. Take a = b in the distinguished triangle obtained by the octahedral axiom in Corollary 3.1 (iii), i.e.

$${}^{t}H^{a}(X)[-a] \longrightarrow {}^{t}\tau^{\geq a}X \longrightarrow {}^{t}\tau^{\geq a+1}X \longrightarrow {}^{t}H^{a}(X)[1-a].$$

Suppose ${}^{t}H^{i}(X) = 0$ for all i < 0. In particular, we have ${}^{t}H^{a}(X) = 0$. Since $X \in \mathscr{T}^{\geq a}$, it follows that $X \cong {}^{t}\tau^{\geq a}X \cong {}^{t}\tau^{\geq a+1}X \in \mathscr{T}^{\geq a+1}$, so $X \in \mathscr{T}^{\geq a+1}$ by strict fullness of $\mathscr{T}^{\geq a+1}$. Inductively, we obtain $X \in \mathscr{T}^{\geq 0}$. The other direction is obvious.

Theorem 4.6. The heart \mathscr{C} of a t-structure $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ on \mathscr{T} is an abelian category.

Proof. We break the proof into several parts. Let $f: X \to Y$ be an arbitrary morphism in \mathscr{C} .

The heart \mathscr{C} is an additive category: Given two triangles $X_i \to Y_i \to Z_i \to X_i[1]$ for i = 1, 2 in an arbitrary pretriangulated category, they are distinguished if and only if

$$X_1 \oplus X_2 \longrightarrow Y_1 \oplus Y_2 \longrightarrow Z_1 \oplus Z_2 \longrightarrow (X_1 \oplus X_2)[1]$$

is distinguished. Given $X, Y \in \mathscr{C}$, we apply this criterion to the distinguished triangles $X \xrightarrow{=} X \to 0 \to X[1]$ and $0 \to Y \xrightarrow{=} Y \to 0[1]$, and we obtain a distinguished triangle

$$X \to X \oplus Y \to Y \to X[1].$$

By Remark 4.2, we have $X \oplus Y \in \mathscr{C}$.

Construction of cokernels: The morphism $f: X \to Y$ extends to a distinguished triangle

$$Z[-1] \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow X[1].$$

By Corollary 2.4, the shifted distinguished triangle $Y \to Z \to X[1] \to Y[1]$ implies

 $Z\in \mathscr{T}^{\leq 0}\cap \mathscr{T}^{\geq -1}$

since $Y \in \mathscr{T}^{\leq 0} \cap \mathscr{T}^{\geq 0} \subset \mathscr{T}^{\leq 0} \cap \mathscr{T}^{\geq -1}$ and $X[1] \in \mathscr{T}^{\leq -1} \cap \mathscr{T}^{\geq -1} \subset \mathscr{T}^{\leq 0} \cap \mathscr{T}^{\geq -1}$. We claim $\mathscr{C} \ni {}^t H^0(Z) \cong {}^t \tau^{\geq 0} Z \cong \operatorname{Coker}(f).$

Denote the composition $Y \to Z \to {}^t \tau^{\geq 0} Z$ by γ . Let $W \in \mathscr{C}$, and we have an exact sequence

$$\operatorname{Hom}_{\mathscr{C}}(X[1],W) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(Z,W) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(Y,W) \xrightarrow{-\circ f} \operatorname{Hom}_{\mathscr{C}}(X,W).$$

Note that $\operatorname{Hom}_{\mathscr{C}}(X[1], W) = 0$ as $X[1] \in \mathscr{T}^{\leq -1}$ and $W \in \mathscr{T}^{\geq 0}$. Let $g \in \operatorname{Hom}_{\mathscr{C}}(Y, W)$ be arbitrary with $g \circ f = 0$. Since ${}^t \tau^{\geq 0}$ is a left adjoint of $\mathscr{T}^{\geq 0} \hookrightarrow \mathscr{T}$, the above exact sequence is then

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{C}}({}^{t}\tau^{\geq 0}Z, W) \xrightarrow{-\circ\gamma} \operatorname{Hom}_{\mathscr{C}}(Y, W) \xrightarrow{-\circf} \operatorname{Hom}_{\mathscr{C}}(X, W)$$
$$g \longmapsto 0 = g \circ f.$$

By exactness, there exists a unique morphism $\overline{g} \in \operatorname{Hom}_{\mathscr{C}}({}^t\tau^{\geq 0}Z,W)$ such that $\overline{g} \circ \gamma = g$.

Construction of kernels: We claim

$$\mathscr{C} \ni {}^t H^0(Z[-1]) \cong {}^t \tau^{\leq 0}(Z[-1]) \cong \operatorname{Ker}(f)$$

Take ${}^{t}\tau^{\leq 0}(Z[-1]) \to X$ to be the composition ${}^{t}\tau^{\leq 0}(Z[-1]) \to Z[-1] \to X$. Let $e \in \operatorname{Hom}_{\mathscr{C}}(W, X)$ be arbitrary with $e \circ f = 0$. Consider the exact sequence

$$\operatorname{Hom}_{\mathscr{C}}(W, Y[-1]) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(W, Z[-1]) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(W, X) \xrightarrow{f \circ -} \operatorname{Hom}_{\mathscr{C}}(W, Y) e \longmapsto f \circ e = 0.$$

Note that $\operatorname{Hom}_{\mathscr{C}}(W, Y[-1]) = 0$, and we identify $\operatorname{Hom}_{\mathscr{C}}(W, {}^{t}\tau^{\leq 0}(Z[-1])) = \operatorname{Hom}_{\mathscr{C}}(W, Z[-1])$. Thus, the claim is established similarly.

There is a canonical isomorphism $\operatorname{Coim}(f) = \operatorname{Im}(f)$: Recall

$$\operatorname{Coim}(f) = \operatorname{Coker}(\operatorname{Ker}(f) \to X)$$
 and $\operatorname{Im}(f) = \operatorname{Ker}(Y \to \operatorname{Coker}(f))$.

Extend the composition $Y \to Z \to {}^t \tau^{\geq 0} Z$ to a distinguished triangle $Y \to {}^t \tau^{\geq 0} Z \to I[1] \to Y[1]$, and define I up to isomorphism. We first show $I \in \mathscr{C}$. As ${}^t \tau^{\geq 0} Z \in \mathscr{T}^{\geq 0} \subset \mathscr{T}^{\geq -1}$ and $Y[1] \in \mathscr{T}^{\geq -1}$, we conclude from the shifted distinguished triangle ${}^t \tau^{\geq 0} Z \to I[1] \to Y[1] \to ({}^t \tau^{\geq 0} Z)[1]$ that $I[1] \in \mathscr{T}^{\geq -1}$. So we have $I \in \mathscr{T}^{\geq 0}$. The distinguished triangles

$$\begin{array}{c} Y \longrightarrow Z \longrightarrow X[1] \longrightarrow Y[1] \\ \text{and} \ {}^{t}\tau^{\leq -1}Z \longrightarrow Z \longrightarrow {}^{t}\tau^{\geq 0}Z \longrightarrow ({}^{t}\tau^{\leq -1}Z)[1] \end{array}$$

together with the previous one imply by the octahedral axiom a distinguished triangle

$$X \longrightarrow I \longrightarrow {}^t \tau^{\leq -1} Z \longrightarrow X[1]$$

with $X, ({}^t\tau^{\leq -1}Z)[-1] \in \mathscr{T}^{\leq 0}$, i.e.

$$\operatorname{Ker}(f) \cong {}^{t}\tau^{\leq 0}(Z[-1]) = ({}^{t}\tau^{\leq -1}Z)[-1] \longrightarrow X \longrightarrow I \longrightarrow \operatorname{Ker}(f)[1].$$

It follows that $I \in \mathscr{T}^{\leq 0}$ and so $I \in \mathscr{C}$. The above distinguished triangle yields

$$\operatorname{Coim}(f) = \operatorname{Coker}(\operatorname{Ker}(f) \to X) \cong {}^{t}\tau^{\geq 0}I \cong I.$$

On the other hand, the distinguished triangle

$$Y \longrightarrow \operatorname{Coker}(f) \cong {}^t \tau^{\geq 0} Z \longrightarrow I[1] \longrightarrow Y[1]$$

implies

$$\operatorname{Im}(f) = \operatorname{Ker}(Y \to \operatorname{Coker}(f)) \cong {}^{t}\tau^{\leq 0}(I[1][-1]) = {}^{t}\tau^{\leq 0}I \cong I.$$

Therefore, we obtain canonical isomorphisms $\operatorname{Coim}(f) \cong I \cong \operatorname{Im}(f)$.

Corollary 4.7. Let \mathscr{C} be the heart of a t-structure on \mathscr{T} , and let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be two morphisms in \mathscr{C} . The following two conditions are equivalent:

- (i) We have a short exact sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$.
- (ii) There exists a morphism $h : Z \to X[1]$ in \mathscr{T} such that $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a distinguished triangle.

Moreover, if these conditions hold, then h is unique.

Proof. The uniqueness follows from $\operatorname{Hom}_{\mathscr{C}}(X, Z[-1]) = 0$ since $X \in \mathscr{T}^{\leq 0}$ and $Z[-1] \in \mathscr{T}^{\geq 1}$.

First let the sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be short exact. Extend the morphism f to a distinguished triangle

$$W[-1] \longrightarrow X \xrightarrow{f} Y \longrightarrow W \longrightarrow X[1].$$

Since $Y \in \mathscr{C}$ and $X[1] \in \mathscr{T}^{\leq 0} \cap \mathscr{T}^{\geq -1}$, we have $W \in \mathscr{T}^{\leq 0}$ and $W[-1] \in \mathscr{T}^{\geq 0}$ by Corollary 2.4. The proof of Theorem 4.6 shows

$$0 = \operatorname{Ker}(f) \cong {}^{t}\tau^{\leq 0}(W[-1])$$

and $(Y \xrightarrow{g} Z) \cong \operatorname{Coker} f \cong (Y \longrightarrow W \longrightarrow {}^{t}\tau^{\geq 0}W)$

By Corollary 2.2, the former implies $W[-1] \in \mathscr{T}^{\geq 1}$ and so $W \in \mathscr{T}^{\geq 0}$. Now we have $W \in \mathscr{C}$ and

$$(Y \xrightarrow{g} Z) \cong \operatorname{Coker} f \cong (Y \longrightarrow W).$$

So the result is immediate.

Conversely, we have

$$\operatorname{Ker}(f) \cong {}^{t}\tau^{\leq 0}(Z[-1]) = 0$$

and
$$\operatorname{Coker}(g) \cong {}^{t}\tau^{\geq 0}(X[1]) = 0$$

since $Z[-1] \in \mathscr{T}^{\geq 1}$ and $X[1] \in \mathscr{T}^{\leq -1}$. On the other hand, we have

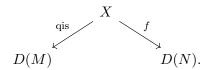
$$\operatorname{Ker}(g) \cong {}^{t}\tau^{\leq 0}X \cong X$$

and
$$\operatorname{Im}(f) \cong \operatorname{Ker}(Y \to {}^{t}\tau^{\geq 0}Z) \cong \operatorname{Ker}(Y \to Z) \cong {}^{t}\tau^{\leq 0}X \cong X$$

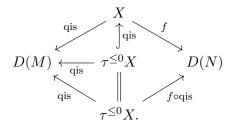
Therefore, the sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is exact.

Theorem 4.8. For an abelian category \mathscr{A} , let $\mathscr{T} = D(\mathscr{A})$ be equipped with the natural t-structure. Its heart \mathscr{C} is equivalent to \mathscr{A} . It implies $D(\mathscr{C}) \cong \mathscr{T}$, recovering the (original) triangulated category. It also shows that every abelian category can be regarded as a full subcategory of its derived category.

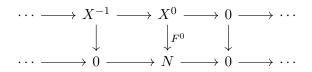
Proof. Denote the canonical functor $\mathscr{A} \to D(\mathscr{A})$ by D. Let $M, N \in \mathscr{A}$ and $F \in \operatorname{Hom}_{\mathscr{A}}(M, N)$ be arbitrary, then $H^0(D(F)) = F$. So the canonical map $\operatorname{Hom}_{\mathscr{A}}(M, N) \to \operatorname{Hom}_{D(\mathscr{A})}(D(M), D(N))$ is injective. Now let $\varphi \in \operatorname{Hom}_{D(\mathscr{A})}(D(M), D(N))$ be arbitrary and represented by the roof



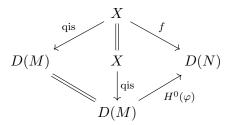
It follows that $H^i(X) = 0$ for all $i \neq 0$. Consider the following commutative diagram



It yields another commutative diagram



for a representative F in $C(\mathscr{A})$ of the homotopy class f in $K(\mathscr{A})$. Since all homotopies from X to D(N) are zero, this representative is unique. In addition, F^0 vanishes on $\operatorname{Im}(d^{-1})$, so it factors through $H^0(F) : H^0(X) \to N$, and we have $H^0(F) = H^0(f) = H^0(\varphi) \circ H^0(\operatorname{qis})$. The commutative diagram



implies $\varphi = D(H^0(\varphi))$. Therefore, the canonical map $\operatorname{Hom}_{\mathscr{A}}(M, N) \to \operatorname{Hom}_{D(\mathscr{A})}(D(M), D(N))$ is surjective. Now the essential image of D is clearly seen to be \mathscr{C} .

However, the nice phenomenon described in Theorem 4.8 is almost never true.

Remark 4.9. Let \mathscr{C} be the heart of a *t*-structure on \mathscr{T} . In general, we have $D(\mathscr{C}) \ncong \mathscr{T}$.

To construct counterexamples, we consider an abelian category \mathscr{A} and a full abelian subcategory \mathscr{B} both with enough injectives such that $\mathscr{B} \hookrightarrow \mathscr{A}$ is exact. The heart of the natural *t*-structure on $D_{\mathscr{B}}(\mathscr{A})$ is precisely \mathscr{B} . It follows that $D(\mathscr{B}) \ncong D_{\mathscr{B}}(\mathscr{A})$ frequently happens. The essence of

this weird phenomenon breaks down to the investigation of Ext groups, i.e. the Ext group usually differs in a category and a subcategory. More precisely, for $X, Y \in \mathcal{B}$ and $n \in \mathbb{Z}$ we have

$$\operatorname{Hom}_{D(\mathscr{B})}(X,Y) = \underline{\operatorname{Ext}}^n_{\mathscr{B}}(X,Y[-n]) \cong \operatorname{Ext}^n_{\mathscr{B}}(X,Y[-n])$$

and $\operatorname{Hom}_{D_{\mathscr{B}}(\mathscr{A})}(X,Y) = \operatorname{Hom}_{D(\mathscr{A})}(X,Y) = \underline{\operatorname{Ext}}^{n}_{\mathscr{A}}(X,Y[-n]) \cong \operatorname{Ext}^{n}_{\mathscr{A}}(X,Y[-n]).$

So $D(\mathscr{B}) \ncong D_{\mathscr{B}}(\mathscr{A})$ happens whenever $\operatorname{Ext}^1_{\mathscr{B}}(X,Y) \ncong \operatorname{Ext}^1_{\mathscr{A}}(X,Y)$ for some $X,Y \in \mathscr{B}$.

- (i) Let $\mathscr{A} = \mathbb{Z}[x]$ -Mod and $\mathscr{B} = \mathbb{Z}$ -Mod via $x \mapsto 0$, then $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}) = 0$ but $\operatorname{Ext}^{1}_{\mathbb{Z}[x]}(\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}$.
- (ii) Let X be an (n-1)-connected CW-complex for some $n \ge 2$ such that $\pi_n(X) \ne 0$ is a free abelian group of finite rank, e.g. the complex projective line $\mathbb{P}^1_{\mathbb{C}} \approx S^2$ or the Eilenberg-MacLane space $K(\pi_n(X), n)$. In this case, we have

$$G := H^n_{\operatorname{sing}}(X; \mathbb{C}) \cong \operatorname{Hom}(H^{\operatorname{sing}}_n(X), \mathbb{C}) \cong \operatorname{Hom}(\pi_n(X), \mathbb{C}) \neq 0.$$

Since X is simply connected, there is an equivalence of categories

$$Loc(X) \cong \mathbb{C}\text{-}Mod$$

by monodromy representation. Consider $D^b_{loc}(X)$ equipped with the natural *t*-structure, then its heart \mathscr{C} is canonically equivalent to $Loc(X) \cong \mathbb{C}$ -Mod. We have

$$\operatorname{Hom}_{D(\mathscr{C})}(\underline{\mathbb{C}}_X,\underline{\mathbb{C}}_X[n])\cong\operatorname{Ext}^n_{\mathscr{C}}(\underline{\mathbb{C}}_X,\underline{\mathbb{C}}_X)\cong\operatorname{Ext}^n_{\mathbb{C}}(\mathbb{C},\mathbb{C})=0.$$

On the other hand, we have

$$\operatorname{Hom}_{D^{b}_{\operatorname{loc}}(X)}(\underline{\mathbb{C}}_{X},\underline{\mathbb{C}}_{X}[n]) = \operatorname{Hom}_{D(\operatorname{Sh}(X,\mathbb{C}))}(\underline{\mathbb{C}}_{X},\underline{\mathbb{C}}_{X}[n])$$

$$\cong \operatorname{Ext}^{n}_{\operatorname{Sh}(X,\mathbb{C})}(\underline{\mathbb{C}}_{X},\underline{\mathbb{C}}_{X})$$

$$\cong H^{n}(R\operatorname{Hom}_{\operatorname{Sh}(X,\mathbb{C})}(\underline{\mathbb{C}}_{X},\underline{\mathbb{C}}_{X}))$$

$$= H^{n}(R\Gamma\mathcal{Hom}(\underline{\mathbb{C}}_{X},\underline{\mathbb{C}}_{X}))$$

$$\cong H^{n}(R\Gamma(\underline{\mathbb{C}}_{X}))$$

$$= H^{n}(X,\underline{\mathbb{C}}_{X})$$

$$\cong H^{n}_{\operatorname{sing}}(X;\mathbb{C})$$

$$\cong G.$$

Theorem 4.10. The functor ${}^tH^0: \mathscr{T} \to \mathscr{C}$ is a cohomological functor.

Proof. Let $X \to Y \to Z \to X[1]$ be a distinguished triangulated in \mathscr{T} . We first assume $X, Y, Z \in \mathscr{T}^{\geq 0}$. There is a canonical commutative diagram

by Theorem 1.7. Let $W \in \mathscr{C}$ be arbitrary, then we obtain

$$\begin{array}{cccc} \operatorname{Hom}_{\mathscr{C}}(W,Z[-1]) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,X) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,Y) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,Z) \\ & \uparrow & & \uparrow & & \uparrow & & & \uparrow & \\ \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq 0}(Z[-1])) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq 0}X) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq 0}Y) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq 0}Z) \\ & \downarrow & & \downarrow & & & \downarrow & \\ \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}H^{0}(Z[-1])) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}H^{0}(X)) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}H^{0}(Y)) & \longrightarrow & \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}H^{0}(Z)) \end{array}$$

again by Theorem 1.7. Since $\operatorname{Hom}_{\mathscr{C}}(W, Z[-1]) = 0$ with $W \in \mathscr{C}$ arbitrary, we obtain a canonical exact sequence

$$0 \longrightarrow {}^{t}H^{0}(X) \longrightarrow {}^{t}H^{0}(Y) \longrightarrow {}^{t}H^{0}(Z).$$

Dually, if $X, Y, Z \in \mathscr{T}^{\leq 0}$, then we have an exact sequence

$${}^{t}H^{0}(X) \longrightarrow {}^{t}H^{0}(Y) \longrightarrow {}^{t}H^{0}(Z) \longrightarrow 0.$$

Now consider $Z \in \mathscr{T}^{\geq 0}$. Let $W \in \mathscr{T}^{\leq -1}$ be arbitrary, then there is a commutative diagram

$$\operatorname{Hom}_{\mathscr{C}}(W,X) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}}(W,Y)$$

$$\uparrow^{\sim} \qquad \uparrow^{\sim}$$

$$\operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq -1}X) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(W,{}^{t}\tau^{\leq -1}Y)$$

by $\operatorname{Hom}_{\mathscr{C}}(W, Z[-1]) = 0 = \operatorname{Hom}_{\mathscr{C}}(W, Z)$. So there is a canonical isomorphism ${}^{t}\tau^{\leq -1}X \xrightarrow{\sim} {}^{t}\tau^{\leq -1}Y$. The octahedral axiom yields a commutative diagram

with four distinguished triangles. Apply ${}^{t}H^{0}(-)$ to the two columns in the middle, and we obtain a commutative diagram

where the second row is exact. The first two vertical arrows in the above diagram are canonical isomorphisms by Theorem 1.7. So $0 \to {}^tH^0(X) \to {}^tH^0(Y) \to {}^tH^0(Z)$ is an exact sequence.

Dually, if $X \in \mathscr{T}^{\leq 0}$, then we have an exact sequence

$${}^{t}H^{0}(X) \longrightarrow {}^{t}H^{0}(Y) \longrightarrow {}^{t}H^{0}(Z) \longrightarrow 0$$

Finally, we consider the general situation. Denote the canonical composition ${}^t\tau^{\leq 0}X \to X \to Y$ by c. The octahedral axiom gives a commutative diagram

Since ${}^t\tau^{\leq 0}X \in \mathscr{T}^{\leq 0}$ and $({}^t\tau^{\geq 1}X)[1] \in \mathscr{T}^{\geq 0}$, we have a commutative diagram

$${}^{t}H^{0}({}^{t}\tau^{\leq 0}X) \xrightarrow{{}^{t}H^{0}(c)} {}^{t}H^{0}(Y) \xrightarrow{{}^{t}H^{0}(u)} {}^{t}H^{0}(W) \longrightarrow 0$$

$${}^{t}H^{0}(i) \downarrow \sim \qquad {}^{t}H^{0}(f)$$

$${}^{t}H^{0}(X) \xrightarrow{{}^{t}H^{0}(f)}$$

with an exact row and an exact sequence

$$0 \longrightarrow {}^{t}H^{0}(W) \xrightarrow{{}^{t}H^{0}(v)} {}^{t}H^{0}(Z) \longrightarrow {}^{t}H^{0}(({}^{t}\tau^{\geq 1}X)[1]).$$

Note that ${}^{t}H^{0}(v) : {}^{t}H^{0}(W) \to {}^{t}H^{0}(Z)$ is a monomorphism, so $\operatorname{Ker}({}^{t}H^{0}(g)) = \operatorname{Ker}({}^{t}H^{0}(u))$. Since ${}^{t}H^{0}(g) = {}^{t}H^{0}(v) \circ {}^{t}H^{0}(u)$, they glue to an exact sequence

$${}^{t}H^{0}(X) \longrightarrow {}^{t}H^{0}(Y) \longrightarrow {}^{t}H^{0}(Z).$$

Now we are able to generalize Proposition 4.5:

Proposition 4.11. Let $(\mathscr{T}^{\leq 0}, \mathscr{T}^{\geq 0})$ be a nondegenerate t-structure on \mathscr{T} with heart \mathscr{C} . Let $n \in \mathbb{Z}$.

- (i) Let $X \in \mathscr{T}$ with ${}^{t}H^{i}(X) = 0$ for all $i \in \mathbb{Z}$, then we have X = 0.
- (ii) A morphism $f: X \to Y$ in \mathscr{T} is an isomorphism if and only if ${}^{t}H^{i}(f): {}^{t}H^{i}(X) \to {}^{t}H^{i}(Y)$ is an isomorphism for all $i \in \mathbb{Z}$.
- (iii) Let $X \in \mathscr{T}$, then $X \in \mathscr{T}^{\leq n}$ if and only if ${}^{t}H^{i}(X) = 0$ for all i > n.

- (iv) Let $X \in \mathscr{T}$, then $X \in \mathscr{T}^{\geq n}$ if and only if ${}^tH^i(X) = 0$ for all i < n.
- (v) Let $X \in \mathscr{T}$. We have $X \in \mathscr{C}[-n] = \mathscr{T}^{\leq n} \cap \mathscr{T}^{\geq n}$ if and only if ${}^{t}H^{i}(X) = 0$ for all $i \neq n$. In particular, we have $X \in \mathscr{C}$ if and only if ${}^{t}H^{i}(X) = 0$ for all $i \neq 0$.

Proof. We only prove (i), (ii), and (iii) since (iv) is dual to (iii) and (v) follows from (iii) and (iv). (i) First suppose $X \in \mathscr{T}^{\geq 0}$, then ${}^{t}\tau^{\leq 0}X \cong {}^{t}H^{0}(X) = 0$ yields $X \in \mathscr{T}^{\geq 1}$. Inductively, we obtain $X \in \mathscr{T}^{\geq i}$ for all $i \geq 0$. Since the t-structure on \mathscr{T} is nondegenerate, the object $X \in \bigcap_{n \in \mathbb{Z}} \mathscr{T}^{\geq n} = \{0\}$ is the zero object. Similarly, if $X \in \mathscr{T}^{\leq 0}$, we also have X = 0. Note that ${}^{t}H^{i}({}^{t}\tau^{\leq 0}X) \cong {}^{t}\tau^{\leq 0}({}^{t}H^{i}(X)) = 0$ and ${}^{t}H^{i}({}^{t}\tau^{\geq 1}X) \cong {}^{t}\tau^{\geq 1}({}^{t}H^{i}(X)) = 0$ hold for all $i \in \mathbb{Z}$. The general case follows from the canonical distinguished triangle ${}^{t}\tau^{\leq 0}X \to X \to {}^{t}\tau^{\geq 1}X \to ({}^{t}\tau^{\leq 0}X)[1]$.

(ii) We only assume ${}^{t}H^{i}(f)$ is an isomorphism for all $i \in \mathbb{Z}$ because the other direction is clear. Extend $f: X \to Y$ to a distinguished triangle $X \to Y \to Z \to X[1]$. By Theorem 4.10, apply the cohomological functor ${}^{t}H^{0}$, and we obtain an exact sequence

$$\cdots \longrightarrow {}^{t}H^{0}(X) \xrightarrow{{}^{t}H^{0}(f)} {}^{t}H^{0}(Y) \longrightarrow {}^{t}H^{0}(Z) \longrightarrow {}^{t}H^{0}(X[1]) \xrightarrow{{}^{t}H^{1}(f)} {}^{t}H^{0}(Y[1]) \longrightarrow \cdots$$

where ${}^{t}H^{i}(f)$ is an isomorphism for all $i \in \mathbb{Z}$. So ${}^{t}H^{i}(Z) = 0$ for all $i \in \mathbb{Z}$. This implies Z = 0. (iii) It suffices to assume n = 0 by the shift functor.

If ${}^{t}H^{i}(X) = 0$ for all i > 0, then ${}^{t}H^{i}(t\tau^{\geq 1}X) \cong {}^{t}\tau^{\geq 1}({}^{t}H^{i}(X)) = 0$ for all $i \in \mathbb{Z}$. Indeed, we have ${}^{t}H^{i}(X) = 0$ for i > 0 and ${}^{t}H^{i}(X) \in \mathscr{T}^{\leq 0}$ for $i \leq 0$. Then ${}^{t}\tau^{\geq 1}X = 0$ and so $X \in \mathscr{T}^{\leq 0}$ by (i).

Conversely, if $X \in \mathscr{T}^{\leq 0}$, then ${}^{t}\tau^{\geq 1}X = 0$. It follows that ${}^{t}H^{i}(t\tau^{\geq 1}X) = 0$ for all $i \in \mathbb{Z}$. Since ${}^{t}H^{i}(X) \in \mathscr{T}^{\geq 1}$ for i > 0, we obtain ${}^{t}H^{i}(X) \cong {}^{t}\tau^{\geq 1}({}^{t}H^{i}(X)) \cong {}^{t}H^{i}(\tau^{\geq 1}X) \cong 0$ for all i > 0. \Box

5. t-exactness

Definition 5.1. Let \mathscr{T}_1 and \mathscr{T}_2 be triangulated categories equipped with *t*-structures $(\mathscr{T}_1^{\leq 0}, \mathscr{T}_1^{\geq 0})$ and $(\mathscr{T}_2^{\leq 0}, \mathscr{T}_2^{\geq 0})$ respectively. A triangulated functor $F : \mathscr{T}_1 \to \mathscr{T}_2$ is **left** *t*-**exact** (resp. **right** *t*-**exact**) if $F(\mathscr{T}_1^{\geq 0}) \subset \mathscr{T}_2^{\geq 0}$ (resp. $F(\mathscr{T}_1^{\leq 0}) \subset \mathscr{T}_2^{\leq 0}$). It is *t*-**exact** if it is both left and right *t*-exact.

Remark 5.2. If $F : \mathscr{T}_1 \to \mathscr{T}_2$ is left *t*-exact (resp. right *t*-exact), then we have $F(\mathscr{T}_1^{\geq n}) \subset \mathscr{T}_2^{\geq n}$ (resp. $F(\mathscr{T}_1^{\leq n}) \subset \mathscr{T}_2^{\leq n}$) for all $n \in \mathbb{Z}$.

Proposition 5.3. Let \mathscr{T}_1 and \mathscr{T}_2 be triangulated categories equipped with t-structures whose hearts are denoted by \mathscr{C}_1 and \mathscr{C}_2 respectively. Let $F : \mathscr{T}_1 \to \mathscr{T}_2$ be a left t-exact (resp. right t-exact) triangulated functor. Denote $\mathscr{C}_1 \hookrightarrow \mathscr{T}_1$ by ε_1 , and set ${}^tF = {}^tH^0 \circ F \circ \varepsilon_1 : \mathscr{C}_1 \to \mathscr{C}_2$.

- (i) We have a natural transformation ${}^{t}H^{0} \circ F \cong {}^{t}F \circ {}^{t}H^{0} : \mathscr{T}_{1}^{\geq 0} \to \mathscr{C}_{2} \text{ (resp. } \mathscr{T}_{1}^{\leq 0} \to \mathscr{C}_{2} \text{).}$
- (ii) The functor ${}^tF: \mathscr{C}_1 \to \mathscr{C}_2$ is left exact (resp. right exact).
- (iii) If F is t-exact, then we obtain a natural transformation ${}^{t}H^{0} \circ F \cong {}^{t}F \circ {}^{t}H^{0} : \mathscr{C}_{1} \to \mathscr{C}_{2}$ and an exact functor ${}^{t}F : \mathscr{C}_{1} \to \mathscr{C}_{2}$.

Proof. It suffices to show the results for left t-exact functors, and (iii) is immediate by (i) and (ii). (i) Recall ${}^{t}H^{0} = {}^{t}\tau^{\leq 0} \circ {}^{t}\tau^{\geq 0} : \mathscr{T}_{i} \to \mathscr{C}_{i}$ for i = 1, 2. For $X \in \mathscr{T}_{1}^{\geq 0}$, the distinguished triangle

$${}^{t}H^{0}(X) \longrightarrow X \longrightarrow {}^{t}\tau^{\geq 1}X \longrightarrow {}^{t}H^{0}(X)[1]$$

implies another distinguished triangle

$$F({}^{t}H^{0}(X)) \longrightarrow F(X) \longrightarrow F({}^{t}\tau^{\geq 1}X) \longrightarrow F({}^{t}H^{0}(X))[1]$$

with $F(t\tau^{\geq 1}X) = F((t\tau^{\geq 1}X)[1])[-1] \in \mathscr{T}_2^{\geq 1}$ by left *t*-exactness of *F*. Applying tH^0 to the above yields the canonical isomorphism

$${}^{t}F({}^{t}H^{0}(X)) = {}^{t}H^{0}(F({}^{t}H^{0}(X))) \cong {}^{t}H^{0}(F(X))$$

since ${}^{t}H^{0}(F({}^{t}\tau^{\geq 1}X)) = 0$. Now the naturality is clear from the above.

(ii) Let $0 \to X \to Y \to Z \to 0$ be a short exact sequence in \mathscr{C}_1 . It gives rise to a distinguished triangle $X \to Y \to Z \to X[1]$ in \mathscr{T}_1 by Corollary 4.7. Then we have another distinguished triangle

$$F(X) \longrightarrow F(Y) \longrightarrow F(Z) \longrightarrow F(X)[1]$$

Since $F(X), F(Y), F(Z) \in \mathscr{T}_2^{\geq 0}$, there is an exact sequence

$$0 \longrightarrow {}^{t}H^{0}(F(X)) \longrightarrow {}^{t}H^{0}(F(Y)) \longrightarrow {}^{t}H^{0}(F(Z))$$

by Theorem 4.10. Now it remains to apply (i).

Definition 5.4. Let $F : \mathscr{T}_1 \to \mathscr{T}_2$ be a triangulated functor between triangulated categories equipped with *t*-structures. If *F* is left *t*-exact with $F(\mathscr{T}_1^{\leq 0}) \subset \mathscr{T}_2^{\leq d}$, then *F* has cohomological *t*-dimension $\leq d$. If *F* is right *t*-exact with $F(\mathscr{T}_1^{\geq 0}) \subset \mathscr{T}_2^{\geq -d}$, then *F* has cohomological *t*-dimension $\leq d$.

Proposition 5.5. Let $F : \mathscr{T}_1 \to \mathscr{T}_2$ be a triangulated functor between triangulated categories equipped with t-structures.

(i) If F is left t-exact with cohomological dimension $\leq d$, then

$${}^{t}H^{n+d}(F(X)) \cong {}^{t}H^{d}(F({}^{t}H^{n}(X))) \text{ for all } X \in \mathscr{T}_{1}^{\leq n}.$$

(ii) If F is right t-exact with cohomological dimension $\leq d$, then

$${}^{t}H^{n-d}(F(X)) \cong {}^{t}H^{-d}(F({}^{t}H^{n}(X))) \text{ for all } X \in \mathscr{T}_{1}^{\geq n}.$$

Proof. We only prove (i) as (ii) is dual to (i). First note that

$$H^{n}(X) = {}^{t}\tau^{\leq 0} {}^{t}\tau^{\geq 0}(X[n]) = {}^{t}\tau^{\leq 0}(({}^{t}\tau^{\geq n}X)[n]) = ({}^{t}\tau^{\leq n} {}^{t}\tau^{\geq n}X)[n].$$

So for $X \in \mathscr{T}_1^{\leq n}$ we have

$${}^{t}H^{d}(F({}^{t}H^{n}(X))) = {}^{t}H^{d}(F({}^{t}\tau^{\leq n} \, t\tau^{\geq n}X)[n]) = {}^{t}H^{n+d}(F({}^{t}\tau^{\leq n} \, t\tau^{\geq n}X)) \cong {}^{t}H^{n+d}(F({}^{t}\tau^{\geq n}X)).$$

It suffices to show $F({}^t\tau^{\geq n}X)\cong F(X)$. Let $W\in \mathscr{T}_2^{\geq n}$ be arbitrary, then the distinguished triangle

$${}^{t}\tau^{\leq n-1}X \longrightarrow X \longrightarrow {}^{t}\tau^{\geq n}X \longrightarrow ({}^{t}\tau^{\leq n-1}X)[1]$$

implies the exact sequence

$$\operatorname{Hom}_{\mathscr{T}_{2}}((F({}^{t}\tau^{\leq n-1}X))[1],W) \longrightarrow \operatorname{Hom}_{\mathscr{T}_{2}}(F({}^{t}\tau^{\geq n}X),W) \\ \longrightarrow \operatorname{Hom}_{\mathscr{T}_{2}}(F(X),W) \longrightarrow \operatorname{Hom}_{\mathscr{T}_{2}}(F({}^{t}\tau^{\leq n-1}X),W)$$

with $(F({}^t\tau^{\leq n-1}X))[1], F({}^t\tau^{\leq n-1}X) \in \mathscr{T}^{\leq n-1}$. Hence, the first and last terms vanish. We obtain a canonical identification $\operatorname{Hom}_{\mathscr{T}_2}(F({}^t\tau^{\geq n}X), W) = \operatorname{Hom}_{\mathscr{T}_2}(F(X), W)$. Therefore, there is a canonical isomorphism $F({}^t\tau^{\geq n}X) \xrightarrow{\sim} F(X)$.

MATHEMATISCHES INSTITUT, UNIVERSITÄT BONN, ENDENICHER ALLEE 60, D-53115, BONN, GERMANY *Email address*: xiao@uni-bonn.de