Verdier Duality

Tim Lichtnau

June 3, 2024

Properties of Verdier Duality 1

Let X, Y denote varieties. Throughout let $f : X \to Y$ be a morphism of varieties.

Theorem 1.1. There is a contravariant endofunctor $\mathbb{D} : D^b_c(X) \to D^b_c(X)$ such that

- (a) If X = pt, $\mathbb{D} : D^b_c(pt) \to D^b_c(pt)$ is linear duality $M^{\bullet} \mapsto (M^{-\bullet})^*$
- (b) There is a natural isomorphism $\mathbb{D}^2 \xrightarrow{\sim} \mathrm{id}$
- (c) For $\mathcal{F} \in D^b_c(X, \mathbb{C}), \mathcal{G} \in D^b_c(Y, \mathbb{C})$ we have isomorphisms

$$f_* \mathbb{D}\mathcal{F} \cong \mathbb{D}f_! \mathcal{F} \tag{1}$$

$$f^! \mathbb{D}\mathcal{G} \cong \mathbb{D}(f^*\mathcal{G}) \tag{2}$$

$$f_{!}(\mathbb{D}\mathcal{F}) \cong \mathbb{D}(f_{*}\mathcal{F})$$

$$(2)$$

$$(3)$$

$$f^*(\mathbb{D}\mathcal{G}) \cong \mathbb{D}(f^!\mathcal{G}) \tag{4}$$

(d) For $\mathcal{F}, \mathcal{G} \in D^b_c(X, \mathbb{C})$ we have isomorphisms

$$R\mathcal{H}om(\mathcal{F},\mathcal{G}) \cong \mathbb{D}(\mathcal{F} \overset{\mathrm{L}}{\otimes} \mathbb{D}\mathcal{G}) \cong R\mathcal{H}om(\mathbb{D}\mathcal{G},\mathbb{D}\mathcal{F})$$

Notation. Let $a_X : X \to \{\star\}$ be the unique map.

Definition 1.2. Let $\omega_X := a_X^! \underline{\mathbb{C}}_{pt}$ the dualizing complex.

<u>Observe:</u> $f^! \omega_Y \cong \omega_X$

Definition 1.3. The verdier duality functor is given by

$$\mathbb{D} \colon D^{-}(X, \mathbb{C})^{op} \to D^{+}(X, \mathbb{C})$$
$$\mathcal{F} \mapsto \mathcal{RHom}(\mathcal{F}, \omega_X)$$

Lemma 1.4 (2.8.1). • For any X, ω_X lies in $D^b_c(X, \mathbb{C})$.

• The verdier duality functor restricts to a functor

$$\mathbb{D}: D^b_c(X, \mathbb{C})^{op} \to D^b_c(X, \mathbb{C})$$

Proof. The second point follows from the first, as $R\mathcal{H}om$ preserves constructibility (Talk 7). We do Noetherian Induction. If X = pt, then $\omega_X = \mathbb{C}$ so the statement is clear.

Let $j : U \hookrightarrow X$ be the inclusion of a smooth open and we assume that the statement holds for ω_Z , where we denote the complementary embedding $i : Z := X \setminus U \hookrightarrow X$. Then we have a distinguished triangle

$$i_*\underbrace{i^!\omega_X}_{=\omega_Z} \to \omega_X \to j_*\underbrace{j^*\omega_X}_{\omega_U} \to$$

Here $\omega_U = \mathbb{C}[2n]$ by Prop 1.5 is constructible and ω_Z is constructible by induction hypothesis, and as pushforwards preserve constructibility, the middle term of the distinguished triangle is constructible as well.

Proposition 1.5 (Poincare Duality, Talk 5). If X is a smooth variety of dimension n, then we have $\omega_X = \mathbb{C}[2n]$.

Corollary 1.6. Let X be a smooth variety of dimension n. Then $H^{2n-k}(X, \mathbb{C}) \cong H^k_c(X, \mathbb{C})^*$

Proof. We have

$$R\Gamma_c(X,\mathbb{C})^* = R\mathcal{H}om((a_X)_!\mathbb{C}_X,\mathbb{C}) \cong \mathbb{D}((a_X)_!\mathbb{C}_X) \stackrel{(c1)}{\cong} (a_X)_*(\underbrace{\mathbb{D}\mathbb{C}_X}_{=\omega_X}) = R\Gamma(X,\mathbb{C})[2n]$$

Now take cohomology:

$$H^k_c(X,\mathbb{C})^* = H^{-k}(R\Gamma_c(X,\mathbb{C})^*) = H^{-k}(R\Gamma(X,\mathbb{C})[2n]) = H^{2n-k}(X,\mathbb{C})$$

Proof. of (c) 1) 2).

1.

$$f_* \mathbb{D}\mathcal{F} \cong f_* R\mathcal{H}om(\mathcal{F}, \underbrace{\omega_X}_{\cong f^! \omega_Y}) = R\mathcal{H}om(f_! \mathcal{F}, \omega_Y)$$

2. Apply $f^! R \mathcal{H}om(\mathcal{G}, \mathcal{F}) \cong R \mathcal{H}om(f^*\mathcal{G}, f^!\mathcal{F})$ to $\mathcal{F} := \omega_Y$

Proof. of (c) 3) 4) Using Lemma 1 and verdier duality is an involution (b) we get

$$f_! \mathbb{D}\mathcal{F} \cong \mathbb{D}\mathbb{D}(f_! (\mathbb{D}\mathcal{F})) \stackrel{(1)}{\cong} \mathbb{D}(f_* \mathbb{D}(\mathbb{D}\mathcal{F})) \cong \mathbb{D}f_*\mathcal{F}$$

and similarly $f^* \mathbb{D} \mathcal{F} \cong \mathbb{D} f^! \mathcal{F}$

Warning: We will later prove (c) 3, 4 again with using (b) in special cases.

Proof. of [(d)] We first check left isomorphism:

$$R\mathcal{H}om(\mathcal{F},\mathcal{G}) \cong R\mathcal{H}om(\mathcal{F},R\mathcal{H}om(\mathbb{D}\mathcal{G},\omega_X)) \qquad | \text{ Tensor-hom}$$
$$= R\mathcal{H}om(\mathcal{F} \overset{\mathrm{L}}{\otimes} \mathbb{D}\mathcal{G},\omega_X)$$
$$= \mathbb{D}(\mathcal{F} \overset{\mathrm{L}}{\otimes} \mathbb{D}\mathcal{G})$$

because $\mathbb{D}(\mathcal{F} \overset{L}{\otimes} \mathbb{D}\mathcal{G}) \cong \mathbb{D}(\mathbb{D}\mathcal{G} \overset{L}{\otimes} \mathbb{D}\mathbb{D}\mathcal{F})$ by (b), the right isomorphism is a special case of the left one. By duality we only have to check the

We can finally show, that all our six functors preserve constructibility.

Corollary 1.7. For any $\mathcal{F} \in D^b_c(Y, \mathbb{C})$ and $f: X \to Y, f^! \mathcal{F}$ lies in $D^b_c(X, \mathbb{C})$

Proof. We have

$$f^!\mathcal{F} = f^!(\mathbb{DDF}) = \mathbb{D}f_*\mathbb{DF}$$

and both verdier duality and pushforward preserve constructibility.

2 Verdier duality dualizes and shifts stalks

We want to see how (a) is generalized.

Lemma 2.1. Let X be a smooth variety of dimension n and $x \in X$. For any $\mathcal{F} \in D^b_{locf}(X, \mathbb{C})$ there is a natural isomorphism

$$(\mathbb{D}\mathcal{F})_x \xrightarrow{\sim} \mathbb{D}(\mathcal{F}_x)[2n]$$

Proof. First, for any analatic open subset U containing x (where $i_x : \{x\} \hookrightarrow U$), we have a map

$$R\mathcal{H}om(\mathcal{F}|_U, \mathbb{C}_U[2n]) \to i_{x*}R\mathcal{H}om(i_x^*(\mathcal{F}|_U), i_x^*(\mathbb{C}_U[2n])) \tag{(\star)}$$

<u>Observe:</u> (*) is an isomorphism whenever $i_x : \{x\} \to U$ is a homotopy equivalence (apply Yoneda , use that $i_x^* : D_{loc}^+(U) \to D_{loc}^+(\{x\})$ is an equivalence of categories that preserves tensor products) That yields on hyper cohomology a map

$$\mathbf{H}^{k}(R\mathcal{H}om(\mathcal{F}|_{U}, \mathbb{C}_{U}[2n])) \to \mathbf{H}^{k}(R\mathcal{H}om(\mathcal{F}_{x}, \mathbb{C}_{x}[2n])) = H^{k}(\mathbb{D}(\mathcal{F}_{x})[2n])$$

Now, using a statement about cohomology of the stalk from talk 2 and letting U vary gives

$$H^{k}((\mathbb{D}\mathcal{F})_{x}) \cong \varinjlim_{U \ni x} \mathbf{H}^{k}(R\mathcal{H}om(\mathcal{F}, \omega_{x})|_{U})$$
$$\to H^{k}(\mathbb{D}(\mathcal{F}_{x})[2n])$$

As X has a basis of contractible neighborhoods, the latter map is an isomorphism. $\hfill \Box$

In the same spirit:

Remark 1. If X is smooth of dimension $n, \mathcal{L} \in \operatorname{Loc}^{ft} X, \mathbb{C}$ is locally free, then

$$\mathbb{D}\mathcal{L}\cong\mathcal{L}^{\vee}[2n]$$

Proof. Poincare Duality (Prop 1.5) says : $\omega_X \cong \mathbb{C}_X[2n]$. As \mathcal{L} is locally free, we have

$$\mathbb{D}\mathcal{L} = R\mathcal{H}om(\mathcal{L}, \omega) \cong R\mathcal{H}om(\mathcal{L}, \mathbb{C}_X)[2n] \cong \mathcal{H}om(\mathcal{L}, \mathbb{C}_X)[2n] = \mathcal{L}^{\vee}[2n]$$

3 Proof of verdier duality

Lemma 3.1. • If $f: U \hookrightarrow Y$ is the inclusion of an open subset then (c) (4) holds and refines to

$$(\mathbb{D}\mathcal{G})|_U \cong \mathbb{D}(\mathcal{G}|_U)$$

If f : Z → Y is proper (e.g. inclusion of a closed subset), then (c) (3) holds:

$$f_!(\mathbb{D}\mathcal{F}) \cong \mathbb{D}(f_*\mathcal{F})$$

Proof. Use that $f^! = f^*$ ($f_!$ is the left adjoint of f^* for f an open immersion), and $f_! = f_*$ for f proper.

Proposition 3.2. Let $j : U \hookrightarrow X$ be an inclusion of an open smooth irreducible subset. Then for any $\mathcal{F} \in D^b_{locf}(U, \mathbb{C})$ all of (c) holds, i.e. we have $\mathbb{D}(j_*\mathcal{F}) \cong j_!(\mathbb{D}\mathcal{F})$

Proof. Step 1:

The case where X is smooth and $Z := X \setminus U$ is a divisor with simple normal crossings.

Lemma 3.3. Let the irreducible components of Z be Z_1, \ldots, Z_k . For any $x \in U$, setting $\ell := |\{1 \le i \le k \mid x \in Z_i\}|$, there exists an arbitrary small analytic open $V \ni x$, called an normal crossing coordinate chart, with a commutative diagram

of horizontal biholomorphisms.

A calculation shows the following:

Lemma 3.4. Moreover for any $\mathcal{F} \in D^b_{locf}((\mathbb{C}^{\times})^{\ell} \times \mathbb{C}^{n-\ell})$, we have $\Gamma_c(h_*\mathcal{F}) = 0$.

By Lemma 3.1 we already have $(\mathbb{D}(j_*\mathcal{F}))|_U \cong \mathbb{D}\mathcal{F} \cong (j_!(\mathbb{D}\mathcal{F})))|_U$. So it remains to show $(\mathbb{D}(j_*\mathcal{F}))|_Z = 0$, i.e. $(\mathbb{D}(j_*\mathcal{F}))_x = 0 \ \forall x \in Z$.

$$H^{k}((\mathbb{D}(j_{*}\mathcal{F})_{x})) = \varinjlim_{V \ni x} H^{k}(R\Gamma(\mathbb{D}(j_{*}\mathcal{F})|_{V}))$$
$$\stackrel{(c,1)}{=} \varinjlim_{V \ni x} H^{k}(\mathbb{D}(R\Gamma_{c}(j_{*}\mathcal{F})|_{V})) = 0$$

as x has an arbitrary small normal crossing coordinate chart V, we may

$$R\Gamma_c((j_*\mathcal{F})|_V) \cong R\Gamma_c(j'_*(\mathcal{F}|_{V\cap U})) \stackrel{3.4}{=} 0$$

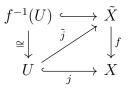
where we used open base change.

Step 2: The case where X is irreducible.

Theorem 3.5 (Resolution of Singularities). Let X be a irreducible variety and $U \subset X$ be a nonempty open smooth subset. There exists a proper map $f: \tilde{X} \to X$ such that

- 1. The variety \tilde{X} is smooth
- 2. The map f restricts to an isomorphism $f^{-1}(U) \to U$
- 3. The preimage $f^{-1}(X \setminus U)$ is a divisor with simple normal crossings.

Define \tilde{j} , such that there is a commutative diagram



Then we can exploit this factorization of j as follows:

$$\mathbb{D}(j_*\mathcal{F}) = \mathbb{D}(p_*\tilde{j}_*\mathcal{F})$$

$$\stackrel{3.1}{=} p_!\mathbb{D}(\tilde{j}_*\mathcal{F}) \qquad | \text{ step 1}$$

$$= p_!\tilde{j}_!\mathbb{D}(\mathcal{F})$$

$$= j_!\mathbb{D}(\mathcal{F})$$

Step 3: Factor

and then apply Step 2 to \bar{j} (\bar{U} is irreducible as U is irreducible) and Lemma 3.1 to i.

 \square

Definition 3.6 (Evaluation map). Given $\mathcal{F} \in D^b_c(X, \mathbb{C})$ we call the map corresponding to the identity under the isomorphisms

$$\operatorname{Hom}(\mathbb{D}\mathcal{F},\mathbb{D}\mathcal{F})\cong\operatorname{Hom}(\mathbb{D}\mathcal{F}\overset{\mathrm{L}}{\otimes}\mathcal{F},\omega_X)\cong\operatorname{Hom}(\mathcal{F},R\mathcal{H}om(\mathbb{D}\mathcal{F},\omega_X)=\operatorname{Hom}(\mathcal{F},\mathbb{D}\mathbb{D}\mathcal{F})$$

the evaluation map $ev_{\mathcal{F}}: \mathcal{F} \to \mathbb{D}\mathbb{D}\mathcal{F}$.

Proof. of (b).

Step 1 X is smooth of dimension n and irreducible and $\mathcal{F} \in D^b_{locf}(X, \mathbb{C})$. We will show, that the evaluation map induces an isomorphism on stalks $\mathcal{F}_x \to \mathbb{D}(\mathbb{D}\mathcal{F})_x$.

As

 $\mathbb{D}\mathcal{F} \stackrel{1.5}{=} R\mathcal{H}om(\mathcal{F}, \mathbb{C}[2n])$

lies in $D^b_{locf}(X, \mathbb{C})$, we can apply Lemma 2.1 twice:

$$(\mathbb{DD}\mathcal{F})_x \cong R \operatorname{Hom}((\mathbb{D}\mathcal{F})_x, \mathbb{C}[2n])$$
$$\cong R \operatorname{Hom}(R \operatorname{Hom}(\mathcal{F}_x, \mathbb{C}), \mathbb{C}) \qquad |\text{Linear duality}$$
$$\cong \mathcal{F}_x$$

Where in the last step, we used that linear duality on finitely gerated complexes is an involution.

Step 2 General X

We use Noetherian Induction: If X is a point we are done by the Step 1. If not, we can choose a smooth irreducible open subset $j: U \hookrightarrow \overline{X}$ such that $\mathcal{F}|_U \in D^b_{locf}(U,\mathbb{C})$. Let $i: Z := X \setminus U \hookrightarrow X$. By Step 1 and Lemma 3.1, restricting the evaluation map to U

$$j^* \mathcal{F} \xrightarrow{\sim} \mathbb{DD}(j^* \mathcal{F}) \cong j^* \mathbb{DD} \mathcal{F}$$
 (5)

yields an isomorphism.

Furthermore, for any $\mathcal{G} \in D^b_c(Z, \mathbb{C})$, $\operatorname{ev}_{\mathcal{G}}$ is an isomorphism by Noetherian induction, hence also $\operatorname{ev}_{i_*\mathcal{G}}$, being the composite

$$i_*\mathcal{G} \xrightarrow{\sim} i_*\mathbb{D}(\mathbb{D}(\mathcal{G})) \stackrel{3.1}{\cong} \mathbb{D}(\mathbb{D}(i_*\mathcal{G}))$$
 (6)

Consider the following horizontal distinguished triangles

<u>Claim</u>: In the middle sequence indeed the right term vanishes when restricted to U and the left term is zero when restricted to Z.

If shown the claim: By Talk 2, part 2, the lower distinguished triangle is the universal distinguished triangle $A \to \mathbb{DDF} \to C \to$, such that A vanishes when restricted to Z and C is supported on Z. Hence there are canonical comparison isomorphism d and e. One easily checks that d makes the triangle on the left commute. As the left triangle commutes, $\mathrm{ev}_{j_1j^*\mathcal{F}}$ has to be an isomorphism as well. By two out of three property for the upper two distinguished triangles, $\mathrm{ev}_{\mathcal{F}}$ has to be an isomorphism, as desired.

Proof of the claim.

The first assertion follows by Lemma 3.1.

The second may be proven by the following, using $j^* \mathcal{F} \in D^b_{locf}$:

$$i^* \mathbb{DD} j_! j^* \mathcal{F} \stackrel{3.2}{=} i^* j_! \mathbb{DD} j^* \mathcal{F} = 0$$

(Recall: The last equation holds very generally: Setting $\mathcal{G} = \mathbb{D}\mathbb{D}j^*\mathcal{F}$:

$$(i^*j_!\mathcal{G})_z = (j_!\mathcal{G})_z \stackrel{Talk3}{=} R\Gamma_c(\mathcal{G}|\underbrace{j^{-1}(z)}_{\varnothing}) = 0$$

 \Box (Claim)

4 Compatibilities with external tensor product

Slogan : external tensor products preserve everything.

Proposition 4.1 (2.9.4). $\mathbb{D}\mathcal{F} \boxtimes \mathcal{G} \cong R\mathcal{H}om(p_1^*\mathcal{F}, p_2^!\mathcal{G}).$

Corollary 4.2. We have natural isomorphisms

- $\mathbb{D}\mathcal{F} \boxtimes \mathbb{D}\mathcal{G} = \mathbb{D}(\mathcal{F} \boxtimes \mathcal{G})$
- •

$$R\mathcal{H}om(\mathcal{F},\mathcal{G})\boxtimes R\mathcal{H}om(\mathcal{F}',\mathcal{G}')=R\mathcal{H}om(\mathcal{F}\boxtimes\mathcal{F}',\mathcal{G}\boxtimes\mathcal{G}')$$

Proof. in Prop 4.1, replace \mathcal{G} by $\mathbb{D}\mathcal{G}$, use Thm 1.1 (c,2) and apply tensor-hom

$$\mathbb{D}\mathcal{F} \boxtimes \mathbb{D}\mathcal{G} \cong R\mathcal{H}om(p_1^*\mathcal{F}, \underbrace{p_2^! \mathbb{D}\mathcal{G}}_{=\mathbb{D}p_2^*\mathcal{G}}) = R\mathcal{H}om(p_1^*\mathcal{F} \overset{\mathrm{L}}{\otimes} p_2^*\mathcal{G}, \omega_Y) = \mathbb{D}(\mathcal{F} \boxtimes \mathcal{G})$$

Actually we dont need the involution property for this.

For the second part use Thm 1.1 (d) to express everything just by (external) tensor products and verdier duals $\hfill \Box$

Proposition 4.3. Let $f: X \to X', g: Y \to Y'$ be maps of varieties.

1. If $\mathcal{F} \in D^b_c(X', \mathbb{C}), \mathcal{G} \in D^b_c(Y', \mathbb{C})$ there are natural isomorphisms

 $f^* \mathcal{F} \boxtimes g^* \mathcal{G} \cong (f \times g)^* (\mathcal{F} \boxtimes \mathcal{G})$ (7)

$$f^{!}\mathcal{F} \boxtimes g^{!}\mathcal{G} \cong (f \times g)^{!}(\mathcal{F} \boxtimes \mathcal{G})$$
(8)

2. If $\mathcal{F} \in D^b_c(X, \mathbb{C}), \mathcal{G} \in D^b_c(Y, \mathbb{C})$ there is a natural isomorphism

$$f_*\mathcal{F} \boxtimes g_*\mathcal{G} \cong (f \times g)_*(\mathcal{F} \boxtimes \mathcal{G}) \tag{9}$$

$$f_! \mathcal{F} \boxtimes g_! \mathcal{G} \cong (f \times g)_! (\mathcal{F} \boxtimes \mathcal{G}) \tag{10}$$

Proof. (7) is straightforward using that pullback is functorial and preserves the tensor product.

(9) is Proposition 2.9.1 in the Book. From this Now (8) and (10) follow by invoking Corollary 4.2. \Box

Corollary 4.4 (Künneth Formula). There is a natural isomorphism

$$R\Gamma(\mathbb{C}_X) \overset{\mathrm{L}}{\otimes} R\Gamma(\mathbb{C}_Y) \cong R\Gamma(\mathbb{C}_{X \times Y})$$

Proof. As pullbacks of the constant sheaf \mathbb{C} are constant, we have $\mathbb{C}_X \boxtimes \mathbb{C}_Y = \mathbb{C}_{X \times Y}$. So

$$R\Gamma(\mathbb{C}_{X\times Y}) = a_{X\times Y}(\mathbb{C}_{X\times Y}) = (a_X \times a_Y)(\mathbb{C}_X \boxtimes \mathbb{C}_Y) = a_{X*}\mathbb{C}_X \boxtimes a_{Y*}\mathbb{C}_Y$$

by (9). As the external tensor product of sheaves on a point is the same as the ordinary tensor product, we win. \Box

Remark 2. The same works for compactly supported cohomology by applying (10) of Prop 4.3.

Corollary 4.5 (of (8)). We have $\omega_X \boxtimes \omega_Y \cong \omega_{X \times Y}$