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1 Properties of Verdier Duality

Let X, Y denote varieties. Throughout let f : X → Y be a morphism of
varieties.

Theorem 1.1. There is a contravariant endofunctor D : Db
c(X) → Db

c(X)
such that

(a) If X = pt, D : Db
c(pt) → Db

c(pt) is linear duality M• 7→ (M−•)∗

(b) There is a natural isomorphism D2 ≃→ id

(c) For F ∈ Db
c(X,C),G ∈ Db

c(Y,C) we have isomorphisms

f∗DF ∼= Df!F (1)

f !DG ∼= D(f ∗G) (2)

f!(DF) ∼= D(f∗F) (3)

f ∗(DG) ∼= D(f !G) (4)

(d) For F ,G ∈ Db
c(X,C) we have isomorphisms

RHom(F ,G) ∼= D(F
L
⊗ DG) ∼= RHom(DG,DF)

Notation. Let aX : X → {⋆} be the unique map.

Definition 1.2. Let ωX := a!XCpt the dualizing complex.

Observe: f !ωY
∼= ωX

Definition 1.3. The verdier duality functor is given by

D : D−(X,C)op → D+(X,C)
F 7→ RHom(F , ωX)
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Lemma 1.4 (2.8.1). • For any X, ωX lies in Db
c(X,C).

• The verdier duality functor restricts to a functor

D : Db
c(X,C)op → Db

c(X,C)

Proof. The second point follows from the first, asRHom preserves constructibil-
ity (Talk 7). We do Noetherian Induction. If X = pt, then ωX = C so the
statement is clear.
Let j : U ↪→ X be the inclusion of a smooth open and we assume that the
statement holds for ωZ , where we denote the complemententary embedding
i : Z := X \ U ↪→ X. Then we have a distinguished triangle

i∗ i
!ωX︸︷︷︸
=ωZ

→ ωX → j∗ j
∗ωX︸ ︷︷ ︸
ωU

→

Here ωU = C[2n] by Prop 1.5 is constructible and ωZ is constructible by
induction hypothesis, and as pushforwards preserve constructibility, the middle
term of the distinguished triangle is constructible as well.

Proposition 1.5 (Poincare Duality, Talk 5). If X is a smooth variety of
dimension n, then we have ωX = C[2n].

Corollary 1.6. LetX be a smooth variety of dimension n. ThenH2n−k(X,C) ∼=
Hk

c (X,C)∗

Proof. We have

RΓc(X,C)∗ = RHom((aX)!CX ,C) ∼= D((aX)!CX)
(c1)∼= (aX)∗(DCX︸ ︷︷ ︸

=ωX

) = RΓ(X,C)[2n]

Now take cohomology:

Hk
c (X,C)∗ = H−k(RΓc(X,C)∗) = H−k(RΓ(X,C)[2n]) = H2n−k(X,C)

Proof. of (c) 1) 2).

1.
f∗DF ∼= f∗RHom(F , ωX︸︷︷︸

∼=f !ωY

) = RHom(f!F , ωY )

2. Apply f !RHom(G,F) ∼= RHom(f ∗G, f !F) to F := ωY
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Proof. of (c) 3) 4) Using Lemma 1 and verdier duality is an involution (b) we
get

f!DF ∼= DD(f!(DF))
(1)∼= D(f∗D(DF)) ∼= Df∗F

and similarly f ∗DF ∼= Df !F

Warning: We will later prove (c) 3 , 4 again with using (b) in special cases.

Proof. of [(d)] We first check left isomorphism:

RHom(F ,G) ∼= RHom(F , RHom(DG, ωX)) | Tensor-hom

= RHom(F
L
⊗ DG, ωX)

= D(F
L
⊗ DG)

because D(F
L
⊗DG) ∼= D(DG

L
⊗DDF) by (b), the right isomorphism is a special

case of the left one. By duality we only have to check the

We can finally show, that all our six functors preserve constructibility.

Corollary 1.7. For any F ∈ Db
c(Y,C) and f : X → Y , f !F lies in Db

c(X,C)

Proof. We have
f !F = f !(DDF) = Df∗DF

and both verdier duality and pushforward preserve constructibility.

2 Verdier duality dualizes and shifts stalks

We want to see how (a) is generalized.

Lemma 2.1. Let X be a smooth variety of dimension n and x ∈ X. For any
F ∈ Db

locf (X,C) there is a natural isomorphism

(DF)x
∼→ D(Fx)[2n]

Proof. First, for any analatic open subset U containing x (where ix : {x} ↪→
U), we have a map

RHom(F|U ,CU [2n]) → ix∗RHom(i∗x(F|U), i∗x(CU [2n])) (⋆)

Observe: (⋆) is an isomorphism whenever ix : {x} → U is a homotopy equiv-
alence (apply Yoneda , use that i∗x : D+

loc(U) → D+
loc({x}) is an equivalence of

categories that preserves tensor products) That yields on hyper cohomology
a map

Hk(RHom(F|U ,CU [2n])) → Hk(RHom(Fx,Cx[2n])) = Hk(D(Fx)[2n])
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Now, using a statement about cohomology of the stalk from talk 2 and letting
U vary gives

Hk((DF)x) ∼= lim−→
U∋x

Hk(RHom(F , ωx)|U)

→ Hk(D(Fx)[2n])

As X has a basis of contractible neighborhoods, the latter map is an isomor-
phism.

In the same spirit:

Remark 1. If X is smooth of dimension n, L ∈ LocftX,C is locally free, then

DL ∼= L∨[2n]

Proof. Poincare Duality (Prop 1.5) says : ωX
∼= CX [2n]. As L is locally free,

we have

DL = RHom(L, ω) ∼= RHom(L,CX)[2n] ∼= Hom(L,CX)[2n] = L∨[2n]

3 Proof of verdier duality

Lemma 3.1. • If f : U ↪→ Y is the inclusion of an open subset then (c)
(4) holds and refines to

(DG)|U ∼= D(G|U)

• If f : Z → Y is proper (e.g. inclusion of a closed subset), then (c) (3)
holds:

f!(DF) ∼= D(f∗F)

Proof. Use that f ! = f ∗ (f! is the left adjoint of f ∗ for f an open immersion),
and f! = f∗ for f proper.

Proposition 3.2. Let j : U ↪→ X be an inclusion of an open smooth irreducible
subset. Then for any F ∈ Db

locf (U,C) all of (c) holds, i.e. we have D(j∗F) ∼=
j!(DF)

Proof. Step 1:
The case where X is smooth and Z := X \ U is a divisor with simple normal
crossings.
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Lemma 3.3. Let the irreducible components of Z be Z1, . . . , Zk. For any x ∈
U , setting ℓ := |{1 ≤ i ≤ k | x ∈ Zi}|., there exists an arbitrary small analytic
open V ∋ x, called an normal crossing coordinate chart, with a commutative
diagram

V ∩ U (C×)ℓ × Cn−ℓ

V Cn = Cℓ × Cn−ℓ

ϕ|V ∩U ,∼

j′ h

∼

of horizontal biholomorphisms.

A calculation shows the following:

Lemma 3.4. Moreover for any F ∈ Db
locf ((C×)ℓ×Cn−ℓ) , we have Γc(h∗F) =

0.

By Lemma 3.1 we already have (D(j∗F))|U ∼= DF ∼= (j!(DF))))|U . So it
remains to show (D(j∗F))|Z = 0, i.e. (D(j∗F))x = 0 ∀x ∈ Z.

Hk((D(j∗F)x)) = lim−→
V ∋x

Hk(RΓ(D(j∗F)|V ))

(c,1)
= lim−→

V ∋x
Hk(D(RΓc(j∗F)|V )) = 0

as x has an arbitrary small normal crossing coordinate chart V , we may

RΓc((j∗F)|V ) ∼= RΓc(j
′
∗(F|V ∩U))

3.4
= 0

where we used open base change.

Step 2: The case where X is irreducible.

Theorem 3.5 (Resolution of Singularities). Let X be a irreducible variety
and U ⊂ X be a nonempty open smooth subset. There exists a proper map
f : X̃ → X such that

1. The variety X̃ is smooth

2. The map f restricts to an isomorphism f−1(U) → U

3. The preimage f−1(X \ U) is a divisor with simple normal crossings.

Define j̃, such that there is a commutative diagram

f−1(U) X̃

U X

∼= f
j̃

j
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Then we can exploit this factorization of j as follows:

D(j∗F) = D(p∗j̃∗F)
3.1
= p!D(j̃∗F) | step 1

= p!j̃!D(F)

= j!D(F)

Step 3: Factor

U Ū

X

j̄

j
i

and then apply Step 2 to j̄ (Ū is irreducible as U is irreducible) and Lemma
3.1 to i.

Definition 3.6 (Evaluation map). Given F ∈ Db
c(X,C) we call the map

corresponding to the identity under the isomorphisms

Hom(DF ,DF) ∼= Hom(DF
L
⊗F , ωX) ∼= Hom(F , RHom(DF , ωX) = Hom(F ,DDF)

the evaluation map evF : F → DDF .

Proof. of (b).
Step 1 X is smooth of dimension n and irreducible and F ∈ Db

locf (X,C). We
will show, that the evaluation map induces an isomorphism on stalks Fx →
D(DF)x.
As

DF 1.5
= RHom(F ,C[2n])

lies in Db
locf (X,C), we can apply Lemma 2.1 twice:

(DDF)x ∼= RHom((DF)x,C[2n])
∼= RHom(RHom(Fx,C),C) |Linear duality
∼= Fx

Where in the last step, we used that linear duality on finitely gerated complexes
is an involution.
Step 2 General X
We use Noetherian Induction: If X is a point we are done by the Step 1.
If not, we can choose a smooth irreducible open subset j : U ↪→ X such that
F|U ∈ Db

locf (U,C). Let i : Z := X \ U ↪→ X. By Step 1 and Lemma 3.1,
restricting the evaluation map to U

j∗F ∼→ DD(j∗F) ∼= j∗DDF (5)
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yields an isomorphism.
Furtermore, for any G ∈ Db

c(Z,C), evG is an isomorphism by Noetherian in-
duction, hence also evi∗G, beeing the composite

i∗G
∼→ i∗D(D(G))

3.1∼= D(D(i∗G)) (6)

Consider the following horizontal distinguished triangles

j!j
∗F F i∗i

∗F

DDj!j∗F DDF DDi∗i∗F

j!j
∗DDF DDF i∗i

∗DDF

evj!j∗F

5,∼

evF ev,∼ by 6

d

Claim : In the middle sequence indeed the right term vanishes when restricted
to U and the left term is zero when restricted to Z.
If shown the claim: By Talk 2, part 2, the lower distinguished triangle is the
universal distinguished triangle A → DDF → C →, such that A vanishes when
restricted to Z and C is supported on Z. Hence there are canonical comparison
isomorphism d and e. One easily checks that d makes the triangle on the left
commute. As the left triangle commutes, evj!j∗F has to be an isomorphism as
well. By two out of three property for the upper two distinguished triangles,
evF has to be an isomorphism, as desired.
Proof of the claim.
The first assertion follows by Lemma 3.1.
The second may be proven by the following, using j∗F ∈ Db

locf :

i∗DDj!j∗F
3.2
= i∗j!DDj∗F = 0

(Recall: The last equation holds very generally: Setting G = DDj∗F :

(i∗j!G)z = (j!G)z
Talk3
= RΓc(G|j−1(z)︸ ︷︷ ︸

∅

) = 0

□ (Claim)

4 Compatibilities with external tensor prod-

uct

Slogan : external tensor products preserve everything.
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Proposition 4.1 (2.9.4). DF ⊠ G ∼= RHom(p∗1F , p!2G).

Corollary 4.2. We have natural isomorphisms

• DF ⊠ DG = D(F ⊠ G)

•
RHom(F ,G)⊠RHom(F ′,G ′) = RHom(F ⊠ F ′,G ⊠ G ′)

Proof. in Prop 4.1, replace G by DG, use Thm 1.1 (c,2) and apply tensor-hom

DF ⊠ DG ∼= RHom(p∗1F , p!2DG︸ ︷︷ ︸
=Dp∗2G)

) = RHom(p∗1F
L
⊗ p∗2G, ωY ) = D(F ⊠ G)

Actually we dont need the involution property for this.
For the second part use Thm 1.1 (d) to express everything just by (external)
tensor products and verdier duals

Proposition 4.3. Let f : X → X ′, g : Y → Y ′ be maps of varieties.

1. If F ∈ Db
c(X

′,C),G ∈ Db
c(Y

′,C) there are natural isomorphisms

f ∗F ⊠ g∗G ∼= (f × g)∗(F ⊠ G) (7)

f !F ⊠ g!G ∼= (f × g)!(F ⊠ G) (8)

2. If F ∈ Db
c(X,C),G ∈ Db

c(Y,C) there is a natural isomorphism

f∗F ⊠ g∗G ∼= (f × g)∗(F ⊠ G) (9)

f!F ⊠ g!G ∼= (f × g)!(F ⊠ G) (10)

Proof. (7) is straightforward using that pullback is functorial and preserves
the tensor product.
(9) is Proposition 2.9.1 in the Book. From this Now (8) and (10) follow by
invoking Corollary 4.2.

Corollary 4.4 (Künneth Formula). There is a natural isomorphism

RΓ(CX)
L
⊗RΓ(CY ) ∼= RΓ(CX×Y )

Proof. As pullbacks of the constant sheaf C are constant, we have CX ⊠CY =
CX×Y . So

RΓ(CX×Y ) = aX×Y ∗(CX×Y ) = (aX × aY )∗(CX ⊠ CY ) = aX∗CX ⊠ aY ∗CY

by (9). As the external tensor product of sheaves on a point is the same as
the ordinary tensor product, we win.

Remark 2. The same works for compactly supported cohomology by applying
(10) of Prop 4.3.

Corollary 4.5 ( of (8)). We have ωX ⊠ ωY
∼= ωX×Y
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