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Abstract

In this talk, we will first introduce stratifications and filtrations by smooth varieties, with a list
of examples. Then we will define constructible sheaves, the category Db

c(X), and study some of their
properties.

1 Stratifications and filtrations by smooth varieties

Recall that our varieties are defined over C.

Definition 1.1. Let X be a variety, and let (Xs)s∈S be a finite collection of disjoint, smooth, connected,
and locally closed subvarieties such that X = ⊔s∈SXs. Then

(1) if we can order S = {s1, ..., sn} so that Xs1 ⊔ ...⊔Xsi is closed for each i, then we say (Xs)s∈S is a
filtration of X by smooth varieties.

(2) if for any s, t ∈ S , Xs∩Xt is either empty or Xt, then we say (Xs)s∈S is a (algebraic) stratification
of X.

The subvarieties Xs are called strata.

Remark. Since X is Noetherian, it always admits a filtration by smooth varieties: we can first take a smooth
connected open subset of X, then apply Noetherian induction to its complement (By Noetherian induction
we mean the principle that in order to show a property P holds for a noetherian topological space X, we may
assume that all proper closed subsets of X satisfies P).

Remark. If (Xs)s∈S is a stratification, we define the closure partial order on S by

t ≤ s ⇐⇒ Xt ⊂ Xs

Every stratification is automatically a filtration by smooth varieties by choosing any total order on S that
refines the closure partial order.

Example 1.1 (trivial stratification). If X is a smooth and connected variety, then we have the trivial
stratification on X, defined in the obvious way.

Example 1.2 (cell decomposition of CPN ). We have a stratification of CPN by

CPN = CN ⊔ CN−1 ⊔ ... ⊔ C ⊔ {pt}

where m ≤ n ⇐⇒ Cm ⊂ Cn for m,n ≤ N .

Example 1.3 (cell decomposition for Grassmannians). (See [AF23, Chapter9] for more details) Denote by
G(d, n) the set of d−dimensional subspaces of Cn. Recall that G(d, n) is a projective variety of dimension
d× (n−d). We will define a stratification on G(d, n). Fix a flag E1 ⊂ E2 ⊂ ... ⊂ En = Cn with dim Eq = q.
Given a partition λ = (n− d ≥ λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0), the Schubert cell Ω◦

λ is the set of subspaces

{F ⊂ Cn | dim(F ∩ Eq) = k for q ∈ [n− d+ k − λk, n− d+ k − λk+1], k = 0, .., d} (1)

where we set λ0 = n− d, λd+1 = 0.

1



The Schubert cells Ω◦
λ are obviously disjoint for distinct λ’s, and we have

G(d, n) =
⊔
λ

Ω◦
λ. (2)

It is also not hard to check that these Schubert cells are connected and smooth (they are in fact isomorphic
to Cn(n−d)−

∑
λi , see the remark below). The closures Ωλ := Ω◦

λ are called Schubert varieties. They are
described by replacing equalities by inequalities in the dimension conditions:

Ωλ := Ω◦
λ = {F ⊂ Cn | dim(F ∩ En−d+k−λk

) ≥ k for , k = 1, .., d} (3)

Next, we illustrate the closure partial order using the Young diagrams. Let λ be a partition, say

λ = (5, 3, 1, 1), then the corresponding young diagram is given by

1 2 3 4 5

1 2 3

1

1

The closure partial order is given by µ ≤ λ ⇐⇒ the Young diagram of µ covers λ. Then the condition
(3) translates to

Ωλ =
⋃
µ≤λ

Ω◦
µ (4)

So we get a stratification on G(d, n).

Example 1.4 (the case of G(2, 4)). We look more closely at the simple case G(2, 4). There are in total 6

partitions, (2, 2), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0) whose Young diagrams are
1 2

1 2

1 2

1

1 2

1

1

1
respectively.

The corresponding Schubert cells can be represented in matrix forms as
0 0
0 0
1 0
0 1



0 0
1 0
∗ 0
0 1



1 0
∗ 0
∗ 0
0 1



0 0
1 0
0 1
∗ ∗



1 0
∗ 0
0 1
∗ ∗



1 0
0 1
∗ ∗
∗ ∗

 (5)

Remark. In general, we have a bijection between partitions λ = (n − d ≥ λ1 ≥ ... ≥ λd ≥ 0) with subsets
I = {i1<...<id} ⊂ {1, ..., n} of size d. The bijection is given by

ik = k + λd+1−k (6)

If we choose the standard basis e1, ..., en and fix the flag (as we already did in the example of G(d,n))
< en >⊂< en−1, en >⊂ ... ⊂< e1, ...en >= Cn, then we have

Ω◦
λ = B− · Fλ (7)

where Fλ is the subspace spanned by {ei | i ∈ I} and B− ⊂ GLn is the set of lower triangular matrices(!).
This exactly tells us what (5) will look like in general.

Example 1.5 (Bruhat decomposition). (See, for example [Hum12] for background on reductive groups) Let
G be a complex reductive group. We fix a pair T ⊂ B where T is a maximal torus and B is a Borel subgroup
containing T . As an example to keep in mind, we may take G to be GLn, T to be invertible diagonal matrices,
and B to be invertible lower triangular matrices. Then we have the Bruhat decomposition for G:

G =
⊔

w∈W

BwB (8)
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where W = N(T )/T is the Weyl group of G. Passing to the flag variety G/B, we have

G/B =
⊔

w∈W

BwB/B (9)

More generally, we say a closed subgroup P ⊂ G is parabolic if B ⊂ P for some Borel subgroup. Equivalently
this means G/P is a projective variety. Then from (9) we get a decomposition for G/P :

G/P =
⊔

w∈W/WP

BwP/P (10)

where WP is a subgroup of W determined by P . In fact, (9) (10) are both stratifications (the strata are
isomorphic to Cl(w) for some number l(w) which we will not define here).

We can connect this to the example of Grassmannians. Take G = GLn, and recall that it has a transitive

left action on G(d, n). Choose a point p =

(
0
Id

)
. Its stabilizer is the parabolic subgroup

P =

[
A 0
C D

]
where A and D are of size (n− d)× (n− d) and d× d respectively. We have G/P ∼= G(d, n) as varieties, and
we can check that (2) and (10) give rise to the same stratification. For example, if d = 2 and n = 4, then
W ∼= S4 and WP

∼= S2 × S2, so we have exactly 6 strata on both sides.

Remark. If the strata of a stratification are all affine varieties, then we say the stratification is an affine
paving. So far the examples are all affine pavings, except the first one.

Example 1.6 (action by an algebraic group). Let G be a connected algebraic group acting on a variety X.
Then every orbit is a smooth, connected, locally closed subvariety whose boundary is a union of orbits of lower
dimension. Therefore we have a stratification on X. All previous examples are special cases of this, except
probably the first one.

Example 1.7 (Whitney umbrella). As an example of a stratification that does not come from an algebraic
group action, consider X = V (x2 − zy2) ⊂ C3. The singular locus of X is given by the z−axis {x = y = 0},
and we have a stratification X = Xsmooth⊔Xsing. But Xsing cannot be the orbit of an algebraic group action
since the local ring OX,origin is different from other points on the z−axis (compare the completion of the local
rings). This example shows that ‘equisingularity’ along strata may fail.

Example 1.8 (filtration by smooth varieties ⇏ stratification). Let [x : y : z] be the homogeneous coordinates
on CP2. Then the subvarieties V (y), V (z) ∩D(y), and D(y) ∩D(z) constitute a filtration of CP2 by smooth

varieties. But this is not a stratification as V (z) ∩D(y) = V (z)

Definition 1.2. Let S and T be two filtrations of X by smooth varieties. Then S is a refinement of T
if each stratum of S is contained in a stratum of T .

Despite the last example, the following should not be surprising.

Lemma 1.1. Let X be a variety. Then
(1) Any filtration of X by smooth varieties admits a refinement that is a stratification.
(2) Any two stratifications of X admits a common refinement.
(3) Let Y ⊂ X be a locally closed subvariety. Then there exists a stratification of X such that Y is a

union of strata.

For example, we can refine Example 1.8 to the stratification given by V (y)∩V (z), V (y)∩D(z), V (z)∩D(y),
and D(y) ∩D(z).
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2 Constructible sheaves

Now we come to the important concept of constructibility.

Definition 2.1. Let X be a variety, and let (Xs)S be a stratification of X.
(1) A sheaf F ∈ Sh(X) is said to be constructible with respect to S if for each s ∈ S , the restriction

F |Xs
is a local system of finite type. A sheaf F is constructible if it is constructible with respect to some

stratification of X.
(2) We say an object F ∈ Db(X) is constructible with respect to S (or just constructible) if each

cohomology sheaf Hk(F) has the same property. The full subcategory of Db(X) consisting of such objects is
denoted by Db

S (X) (or Db
c(X))

Remark. It is clear that an object F is constructible with respect to S if for each Xs we have

F|Xs ∈ Db
locf (Xs) (11)

where Db
locf (Xs) is the full subcategory of Db(Xs) consisting of objects G with Hi(G) ∈ Locft(Xs) for all

i ∈ Z.

Lemma 2.1. Let X be a variety.
(1) For any stratification S of X, the category Db

S (X) is a full triangulated subcategory of Db(X).
(2) The category Db

c(X) is also a full triangulated subcategory of Db(X).

We will show(in this and subsequent talks) that various sheaf operations preserve constructibility.

Proposition 2.2. Let f : X → Y be a morphism of varieties. Then for any F ∈ Db
c(X), we have f∗F ∈

Db
c(Y ).

Proof. Suppose F is constructible with respect to (Yt)t∈T . By Lemma 1.1 we can choose a stratification
(Xs)s∈S of X such that each preimage f−1(Yt) is a union of strata. By assumption F|Yt

is a bounded
complex with locally constant cohomology sheaves of finite type, so the same is true for f∗F|f−1(Yt), and
hence is true for each f∗F|Xs

. Therefore f∗F is constructible.

Proposition 2.3. Let h : Y → X be an inclusion of a locally closed subvariety. For any F ∈ Db
c(X), we

have h!F ∈ Db
c(X). In particular, if Y is closed, then h∗F ∈ Db

c(X).

Proof. We may assume F is constructible with respect to some stratification S for which Y is a union of
strata. If Xs ⊂ Y , then (h!F)|Xs

∼= F|Xs
, and this lies in Db

locf (X) by assumption. If Xs ⊈ Y , then
(h!F)|Xs = 0 since Xs ∩ Y = ∅.

Proposition 2.4. Let S be a stratification of X. If F and G are objects in Db
S (X), then so is F⊗LG. In

particular, if F and G are objects in Db
c(X), then so is F⊗LG.

Proof. Since (F⊗LG)|Xs
∼= (F|Xs)⊗L(G|Xs), it suffices to prove the next lemma.

Lemma 2.5. Let X be a smooth and connected variety. If F and G are objects in Db
locf (X), then so is

F⊗LG.

Proof. Because Db
locf (X) is a full triangulated subcategory, we may use truncation and induction on the

number of nonzero cohomology sheaves of F . So we can reduce to the case where F is just a sheaf (i.e., a
local system of finite type). By choosing an open neighborhood of each point where F is a constant sheaf, we
may assume F = M for some C−vector space M . In particular, M is free, and ⊗L is just the usual tensor
product. So our result follows from the isomorphism ([Ach21, Proposition1.4.4]) C⊗ G→̃G.

Finally we recall some results from algebraic geometry. Recall from Talk 2 or [Ach21, Section1.2] that a
continuous map f : X → Y is proper if it is universally closed. If X and Y are locally compact, then the
following conditions are all equivalent:

(1) f is proper
(2) If K ⊂ Y is compact, then the set f−1(K) is also compact
(3) f is a closed map, and f−1(y) is compact for every point y ∈ Y .
We also have the notion of a proper morphism between schemes. In the case of varieties, this will imply

our definition above of a proper map between locally compact spaces.
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Theorem 2.6 (Nagata’s compactification theorem). Let X → Y be a morphism of varieties. There exists
a variety X̃, an open embedding j : X → X̃, and a proper morphism f̃ : X̃ → Y such that the following is
commutative:

X Y

X̃

f

j

f̃

See [Ach21, Section2.1] for more discussion and references for this and the Ehresmann’s fibration theorem
below.

Definition 2.2. Let X, Y be smooth manifolds. A differentiable map f : X → Y is said to be a differ-
entiable locally trivial fibration (with fiber F ) if for each y ∈ Y , there is a neighborhood y ∈ U and a
diffeomorphism b : f−1(U)→̃F ×U such that pr2 ◦ b = f |f−1(U), where pr2 is the projection from F ×U to U .

Theorem 2.7 (Ehresmann’s fibration theorem). Let f : X → Y be a smooth, surjective, proper morphism
of smooth varieties. Then f is a differentiable locally trivial fibration.

References

[Hum12] James E Humphreys. Linear algebraic groups. Vol. 21. Springer Science & Business Media, 2012.

[Ach21] Pramod N Achar. Perverse sheaves and applications to representation theory. Vol. 258. American
Mathematical Soc., 2021.

[AF23] David Anderson and William Fulton. Equivariant cohomology in algebraic geometry. Cambridge
University Press, 2023.

5


	Stratifications and filtrations by smooth varieties
	Constructible sheaves

