TOWARDS CONSTRUCTIBLE SHEAVES: !-PULLBACK OF SMOOTH MORPHISMS

A. OVALLE

In the last lectures we have introduced the !-pullback as the right adjoint of the !-pushforward. Working with this description of the !-pullback is in general not an easy task, however in this lecture we present a simple description of the !-pullback for smooth morphisms of varieties. Additionally, we prove that the smooth pull-back commutes with all sheaf operations. This lecture is part of a series of lectures of a seminar on Perverse Sheaves taking place at the University of Bonn and is based on [Ach21] and suggestions made by Dr. Stefan Dawydiak.

Note: We saw in Lecture 3 that in order to be able to talk about $f^!: D^+(Y) \longrightarrow D^+(X)$ for a continuous morphism $f: X \longrightarrow Y$, we need to require X, Y to be locally compact and ${}^{\circ}f_!$ to have finite cohomological dimension. In this lecture we consider continuous morphisms between varieties, which were proved to be locally compact and to have finite c-soft dimension in the analytic topology. In Lecture 3 was also shown that ${}^{\circ}f_!$ has finite cohomological dimension if Y is locally compact and X has finite c-soft dimension. Thus, in the context of this lecture we may talk about the !-pullback $f^!$ contructed as the right adjoint of the !-pushforward.

Theorem 0.1. Let $f: X \longrightarrow Y$ be a smooth morphism of varieties of relative dimension d and let $\mathcal{F} \in D^b(Y)$, then we have an isomorphism $f^! \mathcal{F} \simeq f^* \mathcal{F}[2d]$.

Proof. We prove here only the special case: Y = pt and $\mathcal{F} \simeq \underline{\mathbb{C}}_{pt}$. Hence, X is a smooth variety of dimension $\dim(X) = d$. For a more general proof look at Theorem 1.5.11. in [Ach21].

Step 1: We first show that $f^{!}\mathbb{C}_{pt}$ is a rank 1 local system on X in degree -2d.

This will be done by proving that for any $U \subset X$ small enough, we have $R\Gamma(U, f^!\underline{\mathbb{C}}_{pt}|_U) \simeq \underline{\mathbb{C}}[2d]$ and applying Theorem 1.7 of Lecture 3. By adjunction and using $j^* = j^!$, we have $R\Gamma(U, f^!\underline{\mathbb{C}}_{pt}|_U) \simeq \operatorname{Hom}(\underline{\mathbb{C}}_U, j^!f^!\underline{\mathbb{C}}_{pt}) \simeq \operatorname{Hom}((f \circ j)_!\underline{\mathbb{C}}_U, \underline{\mathbb{C}}_{pt}).$

Since $f \circ j: U \longrightarrow \{pt\}$ is the structure morphism of U, we have $^{\circ}(f \circ j)!\underline{\mathbb{C}}_U = \Gamma_c(\underline{\mathbb{C}}_U)$, so $(f \circ j)!\underline{\mathbb{C}}_U = R\Gamma_c(\underline{\mathbb{C}}_U) = H_c^*(U, \mathbb{C})$. Choose U to be small enough such that $U \simeq \mathbb{R}^{2d}$ and recall that $H_c^i(\mathbb{R}^{2d}, \mathbb{C}) = \varinjlim_{K \subset \mathbb{R}^{2d} \text{ compact}} H^i(\mathbb{R}^{2d}, \mathbb{R}^{2d} \setminus K)$. Since every compact $K \subset \mathbb{R}^{2d}$ is contained in a

closed ball of radius $r, \overline{B(r)}$, we have $H^i_c(\mathbb{R}^{2d}, \mathbb{C}) = \lim_{\substack{r \ge 0 \\ r \ge 0}} H^i(\mathbb{R}^{2d}, \mathbb{R}^{2d} \setminus \overline{B(r)}) \simeq H^i(\mathbb{R}^{2d}, \mathbb{R}^{2d} \setminus \{*\}).$ Thus, $R\Gamma(U, f^!\underline{\mathbb{C}}_{pt}|_U) \simeq \operatorname{Hom}(H^*_c(U, \mathbb{C}), \underline{\mathbb{C}}_{pt}) \simeq \operatorname{Hom}(\underline{\mathbb{C}}_{pt}[-2d], \underline{\mathbb{C}}_{pt}) \simeq \underline{\mathbb{C}}[2d].$ Step 2: FACT (Poincaré duality): Let X be a smooth variety and let \mathcal{L} be a local system on X. Hence, we have following isomorphism

$$(\mathbf{H}_{c}^{k}(X,\mathcal{L}^{*}))^{*} \simeq \mathbf{H}^{2d-k}(X,\mathcal{L}),$$

where \mathcal{L}^* is the dual of \mathcal{L} and, $\mathbf{H}^* \coloneqq H^*(R\Gamma(-))$ and $\mathbf{H}^*_c \coloneqq H^*(R\Gamma_c(-))$ denote the hypercohomology and the hypercohomology with compact support respectively. Note that in the case $\mathcal{L} = \underline{\mathbb{C}}_X$ we obtain the usual Poincaré duality.

Step 3: Finally, we want to use steps 1 and 2 to prove that $f! \underline{\mathbb{C}}_{pt} \simeq f^* \underline{\mathbb{C}}_{pt}[2d]$. Since rank 1 local systems on X form a full subcategory of Loc(X), by the Yoneda Lemma it suffices to prove that

(0.1)
$$RHom_{D(X)}(\mathcal{L}, f^{!}\underline{\mathbb{C}}_{pt}) \simeq RHom_{D(X)}(\mathcal{L}, f^{*}\underline{\mathbb{C}}_{pt}[2d])$$

holds for any rank 1 local system \mathcal{L} on X. Let us first consider the left hand side of (0.1). Via adjunction we obtain:

$$RHom_{D(X)}(\mathcal{L}, f^{!}\underline{\mathbb{C}}_{pt}) \simeq RHom_{D(pt)}(f_{!}\mathcal{L}, \underline{\mathbb{C}}_{pt}) \simeq RHom_{D(pt)}(R\Gamma_{c}(\mathcal{L}), \underline{\mathbb{C}}_{pt}) \simeq R\Gamma_{c}(\mathcal{L})^{*}.$$

Let us consider now the right-hand-side of (0.1). Since f is the structure morphism of X, we have $f^* \underline{\mathbb{C}}_{pt} \simeq \underline{\mathbb{C}}_X$. Thus,

$$RHom_{D(pt)}(\mathcal{L}, f^*\underline{\mathbb{C}}_{pt}[2d]) \simeq RHom_{D(pt)}(\mathcal{L}, \underline{\mathbb{C}}_X[2d]) \simeq R\Gamma(\mathcal{L}^*[2d]).$$

After taking cohomology on both sides of (0.1), we obtain $H^i(RHom_{D(X)}(\mathcal{L}, f^!\underline{\mathbb{C}}_{pt})) = \mathbf{H}^i_c(X, \mathcal{L})^*$ and $H^i(RHom_{D(X)}(\mathcal{L}, f^*\underline{\mathbb{C}}_{pt}[2d])) = \mathbf{H}^{2d-i}(X, \mathcal{L}^*).$

Finally, since in (0.1) both complexes are complexes of vector spaces, they are equal if they have the same cohomology. So Poincaré duality yields the claimed result.

Definition 0.2 (Dualizing complex). Let X be a variety and let $a_X : X \longrightarrow \{pt\}$ be the constant morphism. We define the dualizing complex as:

$$\omega_X \coloneqq a_X^! \underline{\mathbb{C}}_{pt}.$$

Remark 0.3. Note that this definition works as well for locally compact spaces of finite c-soft dimension.

Proposition 0.4. Let $f: X \longrightarrow Y$ be a morphism of varieties. Then, $f^! \omega_Y \simeq \omega_X$.

Proof. Follows from functoriality of the !-pullback.

Corollary 0.5. Let X be a smooth variety of dimension d. Then, we have $\omega_X \simeq \underline{\mathbb{C}}_X[2d]$.

Proof. Theorem 0.1 yields $\omega_X \simeq a_X^* \underline{\mathbb{C}}_{pt}[2d] \simeq \underline{\mathbb{C}}_X[2d].$

Theorem 0.6 (Smooth pull-back commutes with all sheaf operations.). Let $f: X \longrightarrow Y$ be a smooth morphism of varieties of relative dimension d and let

be a Cartesian diagram. Then, f' is smooth of relative dimension d and for $\mathcal{F}, \mathcal{G} \in D^b(Y)$ and $\mathcal{H} \in D^b(Y')$, we have following natural isomorphisms:

$$\begin{aligned} f^*(\mathcal{F}\otimes\mathcal{G})&\simeq f^*\mathcal{F}\otimes f^*\mathcal{G},\\ g'^*f^*\mathcal{F}&\simeq f'^*g^*\mathcal{F},\\ f^*g_!\mathcal{H}&\simeq g'_!f'^*\mathcal{H},\\ f^*R\,\mathscr{H}\mathrm{om}(\mathcal{F},\mathcal{G})&\simeq R\,\mathscr{H}\mathrm{om}(f^*\mathcal{F},f^*\mathcal{G}),\\ g'^!f^*\mathcal{F}&\simeq f'^*g^!\mathcal{F},\\ f^*g_*\mathcal{H}&\simeq g'_*f'^*\mathcal{H}. \end{aligned}$$

Proof. The statement that being smooth of relative dimension d is stable under base change has been proved in Lecture 4 (part 2).

The first isomorphism has been proved in the second lecture (part 2) and does not require smoothness.

The second isomorphism follows from following isomorphisms proved in Lecture 2 (Proposition 1.25.): $g'^* f^* \mathcal{F} \simeq (f \circ g')^* \mathcal{F}$ and $f'^* g^* \mathcal{F} \simeq (g \circ f')^* \mathcal{F}$, which do not require smoothness.

The third isomorphism was already proved in Lecture 3 (Theorem 4.3.) without the assumption of smoothness.

In Lecture 3 was shown (Proposition 5.8.) that $f^! R \mathscr{H} \operatorname{om}(\mathcal{F}, \mathcal{G}[-2d]) \simeq R \mathscr{H} \operatorname{om}(f^* \mathcal{F}, f^! \mathcal{G}[-2d])$ holds, hence Theorem 0.1 yields following isomorphism:

 $R\mathscr{H}\mathrm{om}(f^*\mathcal{F}, f^*\mathcal{G}) \simeq f^*R\mathscr{H}\mathrm{om}(\mathcal{F}, \mathcal{G}[-2d])[2d] \simeq f^*R\mathscr{H}\mathrm{om}(\mathcal{F}, \mathcal{G}).$

Now, Theorem 0.1 allows us to write $f^* \simeq f^! [-2d]$. Hence, since $g'^! f^! \mathcal{F} \simeq (f \circ g')^! \mathcal{F}$ by Proposition 5.6. of Lecture 3, we obtain

$$g'^! f^* \mathcal{F} \stackrel{\text{Thm } 0.1}{\simeq} g'^! f^! \mathcal{F}[-2d] \simeq f'^! g^! \mathcal{F}[-2d] \stackrel{\text{Thm } 0.1}{\simeq} f'^* g^! \mathcal{F}.$$

Finally, in Lecture 3 (Proposition 5.7.) was proved that $f'g_*\mathcal{H} \simeq g'_*f''\mathcal{H}$ for $\mathcal{H} \in D^+(Y')$. Hence, Theorem 0.1 yields:

$$f^*g_*\mathcal{H}[2d] \stackrel{\mathrm{Thm \ } 0.1}{\simeq} f^!g_*\mathcal{H} \simeq g'_*f'^!\mathcal{H} \stackrel{\mathrm{Thm \ } 0.1}{\simeq} g'_*f'^*\mathcal{H}[2d].$$

A. OVALLE

Theorem 0.7. Let X be a smooth, equidimensional variety and let Y be a smooth locally closed equidimensional subvariety. Let $h: Y \longrightarrow X$ be the inclusion map, and let $d = \dim X - \dim Y$. For $\mathcal{L} \in \operatorname{Loc}(X)$, there is a natural isomorphism $h^{!}\mathcal{L} \simeq h^{*}\mathcal{L}[-2d]$.

Proof. Let $j: D \hookrightarrow X$ be an open disk and consider following Cartesian diagram:

$$V \xrightarrow{h'} D$$

$$\downarrow^{j'} \qquad \downarrow^{j}$$

$$Y \xrightarrow{h} X$$

Note that being open immersion is stable under base change, i.e. if j is an open immersion, so is its base change j'. Hence, $j^* = j'$ and $j'^* = j''$ and we have:

$$h'^{!}(\mathcal{L}|_{D}) = h'^{!}j^{!}\mathcal{L} \simeq j'^{!}h^{!}\mathcal{L} = (h^{!}\mathcal{L})|_{V}.$$

Since \mathcal{L} is a local system, by choosing D small enough we have that $\mathcal{L}|_D \simeq \underline{M}_D$ is a constant sheaf. Let $d_X = \dim(X)$, thus Theorem 0.1 yields

(0.2)
$$\underline{M}_D \simeq \underline{M}_X|_D \simeq (a_X^* \underline{M}_{pt})|_D \simeq (a_X^! \underline{M}_{pt}[-2d_X])|_D,$$

where $a_X: X \longrightarrow \{pt\}$ is the structure morphism of X. Note that $a_X \circ h: Y \longrightarrow \{pt\}$ is the structure morphism of Y, hence $h'! j! a'_X \underline{M}_{pt} \simeq j'! h! a'_X \underline{M}_{pt} = j'! a'_Y \underline{M}_{pt}$ by Theorem 0.6. Additionally, as has been shown in (0.2) we have $j'! a'_Y \underline{M}_{pt} \simeq \underline{M}_Y |_V [2d_Y]$. Thus,

$$(h^{!}\mathcal{L})|_{V} = j'^{!}h^{!}\mathcal{L} \simeq h'^{!}j^{!}\mathcal{L} \simeq h'^{!}j^{!}a_{X}^{!}\underline{M}_{pt}[-2d_{X}] \simeq j'^{!}a_{Y}^{!}\underline{M}_{pt}[-2d_{X}] \simeq \underline{M}_{V}[-2d] \simeq h^{*}\mathcal{L}|_{V}[-2d].$$

We can cover Y with such open subsets V and the restriction maps commute with the above isomorphism, hence the above isomorphism implies $h^! \mathcal{L} \simeq h^* \mathcal{L}[-2d]$.

Example 0.8. Consider following inclusion $i: Y = \{0\} \hookrightarrow X = \mathbb{C}$. Hence, as was shown in Lecture 2, we obtain $i! \underline{\mathbb{C}}_X \simeq i! \omega_X [-2] \simeq \omega_{pt} [-2] \simeq \underline{\mathbb{C}}_{pt} [-2]$.

References

[Ach21] P.N. Achar. *Perverse sheaves and applications to representation theory*. Mathematical surveys and monographs. American mathematical society, 2021.