TOWARDS CONSTRUCTIBLE SHEAVES: !-PULLBACK OF SMOOTH
MORPHISMS

A. OVALLE

In the last lectures we have introduced the !-pullback as the right adjoint of the !-pushforward.
Working with this description of the !-pullback is in general not an easy task, however in this
lecture we present a simple description of the !-pullback for smooth morphisms of varieties. Ad-
ditionally, we prove that the smooth pull-back commutes with all sheaf operations. This lecture
is part of a series of lectures of a seminar on Perverse Sheaves taking place at the University of
Bonn and is based on [Ach21| and suggestions made by Dr. Stefan Dawydiak.

Note: We saw in Lecture 3 that in order to be able to talk about f': D¥(Y)—=D*(X)
for a continuous morphism f: X —Y, we need to require X,Y to be locally compact and ° fi
to have finite cohomological dimension. In this lecture we consider continuous morphisms be-
tween varieties, which were proved to be locally compact and to have finite c-soft dimension in
the analytic topology. In Lecture 3 was also shown that ° f; has finite cohomological dimension
if Y is locally compact and X has finite c-soft dimension. Thus, in the context of this lecture
we may talk about the -pullback f' contructed as the right adjoint of the !-pushforward.

Theorem 0.1. Let f: X —Y be a smooth morphism of varieties of relative dimension d and
let F € D*(Y), then we have an isomorphism f'F ~ f*F[2d].

Proof. We prove here only the special case: Y = pt and F ~ C,,. Hence, X is a smooth variety
of dimension dim(X) = d. For a more general proof look at Theorem 1.5.11. in [Ach21].

Step 1: We first show that f!th is a rank 1 local system on X in degree —2d.

This will be done by proving that for any U < X small enough, we have RI'(U, f!th]U) ~
C[2d] and applying Theorem 1.7 of Lecture 3. By adjunction and using j* = j', we have
RE(U, Cylu) = Hom(Cy ' F'Cyp) = Hom((f © )iy, Cy).

Since f o j: U—={pt} is the structure morphism of U, we have °(f o j)Cy = I'.(Cy), so
(fojnCy = RT.(Cy) = H*(U,C). Choose U to be small enough such that U ~ R?? and recall
that H.(R?? C) = lim H(R?* R?)\ K). Since every compact K < R?? is contained in a

KcR24d compact
closed ball of radius r, B(r), we have H!(R?!,C) = E@)Hi(RQd7 R2N\B(r)) ~ H (R R4\ {}).

r>0

Thus, RL(U, f'C,|v) ~ Hom(H} (U, C),C,;) ~ Hom(C,,[—2d],C,;) ~ C[2d].
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Step 2: FACT (Poincaré duality): Let X be a smooth variety and let £ be a local system
on X. Hence, we have following isomorphism

(HE(X, £)" ~ H*7H(X, L),

where £* is the dual of £ and, H* := H*(RI'(—)) and H} := H*(RI'.(—)) denote the hyperco-
homology and the hypercohomology with compact support respectively. Note that in the case
L = Cy we obtain the usual Poincaré duality.

Step 3: Finally, we want to use steps 1 and 2 to prove that f!th ~ f*Cp [2d].
Since rank 1 local systems on X form a full subcategory of Loc(X), by the Yoneda Lemma it
suffices to prove that

(0.1) RHompx)(L, f!@pt) ~ RHompx)(L, [*C,[2d])

holds for any rank 1 local system £ on X. Let us first consider the left hand side of (0.1). Via
adjunction we obtain:

RHomD(X) (‘Cv f!gpt) = RHomD(pt)(f!'Cvat) = RHomD(pt) (RFC(E),th) = RFC(‘C>*

Let us consider now the right-hand-side of (0.1). Since f is the structure morphism of X, we
have f*C,, ~ Cx. Thus,

RHompy) (L, f*Cp[2d]) ~ RHomp gy (£, Cx[2d]) ~ RT(L*[2d]).

After taking cohomology on both sides of (0.1), we obtain H*(RHompx)(L, f!th)) =HL(X,L)*
and H'(RHompx) (L, f*C,[2d])) = H*'(X, L*).

Finally, since in (0.1) both complexes are complexes of vector spaces, they are equal if they
have the same cohomology. So Poincaré duality yields the claimed result. ]

Definition 0.2 (Dualizing complex). Let X be a variety and let ax : X — {pt} be the constant

morphism. We define the dualizing complex as:
wx = a!Xth.

Remark 0.3. Note that this definition works as well for locally compact spaces of finite c-soft
dimension.

Proposition 0.4. Let f: X —Y be a morphism of varieties. Then, f'wy ~ wy.
Proof. Follows from functoriality of the !-pullback. O
Corollary 0.5. Let X be a smooth variety of dimension d. Then, we have wx ~ Cx[2d].

Proof. Theorem 0.1 yields wx =~ a%C,;[2d] ~ Cx[2d]. O
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Theorem 0.6 (Smooth pull-back commutes with all sheaf operations.). Let f: X —Y be a
smooth morphism of varieties of relative dimension d and let

x 2. x

.

vy Loy
be a Cartesian diagram. Then, f' is smooth of relative dimension d and for F,G € D*(Y) and
H e DY(Y"), we have following natural isomorphisms:

[f(F®G) ~ f*F® f*g,
g F = [T F,
froH ~ g/ f"H,
f*RAom(F,G) ~ RAom(f*F, f*G),
g/!f*]_— ~ f'*g!f,
gt ~ g, f"H.

Proof. The statement that being smooth of relative dimension d is stable under base change
has been proved in Lecture 4 (part 2).

The first isomorphism has been proved in the second lecture (part 2) and does not require
smoothness.

The second isomorphism follows from following isomorphisms proved in Lecture 2 (Proposition
1.25.): ¢*f*F ~ (fog)*F and f*g*F ~ (go f)*F, which do not require smoothness.

The third isomorphism was already proved in Lecture 3 (Theorem 4.3.) without the assumption
of smoothness.

In Lecture 3 was shown (Proposition 5.8.) that f'R #om(F,G[—2d]) ~ R om(f*F, f'G[—2d])
holds, hence Theorem 0.1 yields following isomorphism:

RAom(f*F, f*G) ~ f*R A om(F,G[—2d])[2d] ~ f*R A om(F,G).

Now, Theorem 0.1 allows us to write f* ~ f'[—2d]. Hence, since ¢"f'F ~ (f o ¢)'F by
Proposition 5.6. of Lecture 3, we obtain

Thm 0.1 Thm 0.1
~ g o~

g f*F fF[-2d] ~ f'g' F[-2d] f*g'F.

Finally, in Lecture 3 (Proposition 5.7.) was proved that f'g.H ~ g,Lf"H for H € DT(Y").
Hence, Theorem 0.1 yields:

FrouH2d) RO floaH ~ gl i TR g pea2d).
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Theorem 0.7. Let X be a smooth, equidimensional variety and let' Y be a smooth locally closed
equidimensional subvariety. Let h: Y X be the inclusion map, and let d = dim X — dim Y.
For L € Loc(X), there is a natural isomorphism h'L ~ h*L[—2d)].

Proof. Let j: D~ X be an open disk and consider following Cartesian diagram:

VLD

lj’ ij
y "o x

Note that being open immersion is stable under base change, i.e. if j is an open immersion, so

is its base change j/. Hence, j* = j' and j* = j" and we have:
W'(L|p) = h'5'L ~ "W = (h'L)|v.

Since L is a local system, by choosing D small enough we have that £|p ~ M, is a constant
sheaf. Let dx = dim(X), thus Theorem 0.1 yields

(02) Mp = Mx|p = (ax My)|p ~ (axMyu[~2dx])|p,

where ax : X — {pt} is the structure morphism of X. Note that ax oh: Y —{pt} is the struc-
ture morphism of Y, hence h’!j!aEXMpt ~ j’!h!aEXMpt = j’!a!YMpt by Theorem 0.6. Additionally,
as has been shown in (0.2) we have j"a}, M, ~ My |y[2dy]. Thus,

(W'L)|y = j"h'L ~ W'5'L ~ 1'jlay My, [—2dx] ~ j"a}y M, [~2dx] ~ My [~2d] ~ h*L]y[—-2d].

We can cover Y with such open subsets V' and the restriction maps commute with the above
isomorphism, hence the above isomorphism implies h'L ~ h*L[—2d]. O

Example 0.8. Consider following inclusion i: Y = {0} =X = C. Hence, as was shown in
Lecture 2, we obtain i'Cy ~ i'wx[—2] ~ wy[—2] ~ Ci[-2].
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