
Towards Constructible Sheaves I

Jialong Zhang

April 28, 2024

Contents

1 Base change for products 1

2 Base change for locally trivial fibrations 2

3 Preliminaries from complex algebraic geometry 5
Recall that in last talk, we proved that for each cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

and for each F ∈ D+(X), we have a commutative diagram

g∗f!F f ′
! (g

′)∗F

g∗f∗F f ′
∗g

′
∗F

The two horizontal map are called base change morphism. We also have seen that

Proposition 0.1. If f is proper, then for each F ∈ D+(X),

g∗f∗F → f ′
∗(g

′)∗F

is an isomorphism.

Today, we will give more conditions for this base change morphism to be an isomorphism.

1 Base change for products

Let f : X → X ′ be a continuous map. Consider the following cartesian square

X × Y X

X ′ × Y X ′

pr1

f ′=f×Id f

pr1
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Proposition 1.1. Let Y be a locally contractible space, i.e., the collection of contractible space
form a basis for the topology of Y . For F ∈ D+(X), the base change map pr∗1 f∗F → f ′

∗ pr
∗
1 F is

an isomorphism.

Proof. We only prove the abelian version, i.e., pr∗1
◦f∗F → ◦f ′

∗ pr
∗
1 F is an isomoprhism. To prove

this, we need the following lemma:

Lemma 1.2. Let pr1 : X × Y → X be the projection map. Let F ∈ Sh(X). For any open set
U ⊂ X and any connected open set V ⊂ Y , we have

pr∗1 F(U × V ) ∼= F(U).

Then for all open set U ⊂ X ′ and connected open set V ⊂ Y , we have

pr∗1
◦f∗F(U × V ) = ◦f∗F(U × V ) = F(f−1(U)),

and
◦f ′

∗ pr
∗
1 F(U × V ) = pr∗1 F(f−1(U)× V ) = F(f−1(U)).

Fact: Locally contractible spaces are locally connected.
Hence the open sets of the form U ×V form a basis for X ′×Y and the two sheaf are isomorphic

on this basis. Thus they are isomorphic.

2 Base change for locally trivial fibrations

In this section, we assume that all topological are locally contractible.

Definition 2.1. A continuous map f : X × Y is called a locally trivial fibration (with fiber F )
if there is an open cover {Uα} of Y such that there is a homeomorphism f−1(U) → U × F making
the following diagram commute:

f−1(U) U × F

U

f
pr1

Note that f−1(y) is homeomorphic to F for all y ∈ Y , so f−1(y)× U is homeomorphic to f−1(U)
for each open set U ⊂ Y and point y ∈ U .

Recall the notion of local system: A sheaf L on a topological space X is called a local system
if Y admits an open cover {Uα} such that L|Uα

is a constant sheaf. We use the notion D+
loc(X) to

denote the subcategory of D+(X) whose objects are chain complex F such that Hk(F) ∈ Loc(X)
for all k ∈ Z.

By last talk, we know that if f : X → Y is a continuous map of locally contractible spaces, then
f∗ takes local systems on Y to localy systems on X and it induces a functor

f∗ : D+
loc(Y ) → D+

loc(X).

Here are more useful fact about Dloc(X).
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Fact 1: If f, g : X → Y are homotopic maps, then the pullback functors f∗, g∗ : D+
loc(Y ) →

D+
loc(X) are isomorphic.
Fact 2: If f : X → Y is a homotopy equivalence between two locally contractible spaces with

homotopy inverse g : Y → X. Then f∗ : D+
loc(Y ) → D+

loc(X) is an equivalence of categories, and
g∗ : D+

loc(X) → D+
loc(Y ) is an inverse of f∗. This along with Fact 1 show that D+(X) is a homotopy

invariant.
Fact 3: Loc(X) is closed under extensions, i.e., for each short exact sequence in Sh(X),0 →

F → G → H → 0 with F ,H ∈ Loc(X), then G ∈ Loc(X). Note that this implies that Dloc(X)
(resp. D+

loc(X), resp. D−
loc(X), resp. Db

loc(X)) is a fully triangulated subcategory of D(X) (resp.
D+(X), resp. D−(X), resp. Db(X)).

We have the following theorem:

Theorem 2.2. Let f : X → Y be a locally trivial fibration.
(1) For F ∈ D+

loc(X), f∗F ∈ D+
loc(Y ).

(2) Consider the following cartesian diagram

X ′ X

Y ′ Y

g′

f ′ f

g

Let F ∈ D+
loc(X). Then the base change g∗f∗F → f ′

∗(g
′)∗F is an isomorphism.

To prove this theorem, we need the following proposition:

Proposition 2.3. Let f : X → X ′ be a continuous map, and let Y be a contractible space. Let
y0 ∈ Y . Let f ′ = f × Id : X × Y → X ′ × Y . Consider the cartesian square

X X × Y

X ′ X ′ × Y

f

i:x 7→(x,y0)

f ′=f×Id

i′:x′ 7→(x′,y0)

For F ∈ D+
loc(X × Y ), the base change map (i′)∗f ′

∗F → f∗i
∗F is an isomorphism.

Proof of Theorem 2.2. We first assume that Y ′ = {y} for some y ∈ Y . Since f is a locally trivial
fibration, there exists a contractible open neighborhood U of y such that f−1(U) is homeomorphic
to f−1(y)× U . Consider the following diagram

f−1(y) f−1(y)× U = f−1(U) X

{y} {y} × U = U Y

i′

f |f−1(y)=:f ′′

h′

j′

f |f−1(U)=:f ′ f

i

h

j
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By Proposition above, we see that for (j′)∗F ∈ D+
loc(f

−1(y)× U), the base change map of the left
square

i∗(f ′)∗(j
′)∗F → (f ′′)∗(i

′)∗(j′)∗F = (f ′′)∗(h
′)∗F

is an isomorphism.
By Proposition 1.2.16 from Achar’s book, we see that the base change map of the right square

j∗f∗F → (f ′)∗(j
′)∗F

is an isomoprhism and hence

i∗j∗f∗F = h∗f∗F → i∗(f ′)∗(j
′)∗F

is an isomorphism. Therefore h∗f∗F → (f |f−1(y))∗(h
′)∗F is an isomorphism.

For the general case, it suffices to prove that (g∗f∗F)y′ ∼= (f ′
∗(g

′)∗F)y′ for each y′ ∈ Y ′. Consider
the following diagram

(f ′)−1(y′) X ′ X

{y′} Y ′ Y

j′

f ′|(f′)−1(y)=f ′′

h′

g′

f ′ f

j

h

g

Fact: Locally trivial fibrations are stable under base change.
By special case, we get

h∗f∗F = (g∗f∗F)y′ → f ′′
∗ (h

′)∗F

and
j∗f ′

∗(g
′)∗F = (f ′

∗(g
′)∗F)y′ → f ′′

∗ (j
′)∗(g′)∗F = f ′′

∗ (h
′)∗F

are isomorphisms. This proves statement (2). (Note that the reason why we can apply the special
case to the whole cartesian square is that (f ′)−1(y′) → X is an inclusion.)

We now prove statement (1). Let U be a contractible open subset of Y . Choose y ∈ U . Let
j : U → Y be the inclusion. Consider the following cartesian square

f−1(U) X

U Y

f |f−1(U)=:f ′

j′

f

j

Then we have
f∗F|U = j∗f∗F ∼= (f ′)∗(j

′)∗F . (1)

Since U is contractible, the inclusion i′ : f−1(y) → f−1(U) = f−1(y)×U is a homotopy equivalence
with inverse pr1 : f−1(y)× U → f−1(y). Hence (1) is turned to

f∗F|U = (f ′)∗ pr
∗
1(i

′)∗(j′)∗F = (f ′)∗ pr
∗
1(F|f−1(y)). (2)
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Consider the following cartesian square

f−1(y)× U = f−1(U) f−1(y)

{y} × U = U {y} = {pt}

ff−1(y)×Id=f |f−1(U)=f ′

pr1

af−1(y)

pr1=aU

By Proposition 1.1, equation (2) is turned into

f∗F|U = a∗U (af−1(y))∗F|f−1(y) = a∗URΓ(F|f−1(y)) = a∗U (f∗F)y.

The last equation follows the special case we proved above. Note thatHk(a∗U (f∗F)y) = a∗U (H
k(f∗F)y)

since a∗U is exact. Note that a∗U (H
k((f∗F)y) is a constant sheaf. Hence (f∗F)|U has constant co-

homology sheaves. So f∗F has locally constant cohomology sheaves. This completes the proof.

Proof of Proposition 2.3. Consider the larger diagram

X X × Y X

X ′ X ′ × Y X ′

i

f

Id

pr1

f ′ f

i′

Id

pr1

Since Y is contractible, the projection pr1 : X × Y → X is an homotopy equivalence. By Fact
2, pr∗1 : D+

loc(X) → D+
loc(X × Y ) is an equivalence of categories. Therefore F = pr∗1(G) for some

G ∈ D+
loc(X). By Proposition 1.1, the base change map

pr∗1 f∗G → f ′
∗ pr

∗
1 G = f ′

∗F

is an isomorphism. Consider the following commutative diagram

Id∗X′ f∗G = (i′)∗ pr∗1 f∗G (i′)∗f ′
∗ pr

∗
1 G = (i′)∗f ′

∗F

f ′′
∗ Id∗X G = f ′′∗

∗ F

∼=

∼=

Therefore the base change map
(i′)∗f ′

∗F → f∗i
∗F

is an isomorphism. This completes the proof.

3 Preliminaries from complex algebraic geometry

We now introduction some notions from complex algebraic geometry and see its connection with
the functors introduced before.
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A variety is a quasiprojective complex algebraic variety, i.e., a subset of some projective space Pn

that is locally closed in the Zariski topology. Note that there are now two topologies on a variety—
the Zariski topology and the analytic topology induced by the analytic topology on Pn. Sheaves will
always be considered with respect to the analytic topology since the analytic topology is much better
suited to applying results from Talk 1-3. The dimension of a variety is its algebraic dimension,
i.e., dimension as a variety. Smooth varieties are always assumed to be equidimensional, i.e., all
connected components have the same dimension.

Theorem 3.1. In the analytic topology, every variety is locally compact, locally contractible, and
of finite c-soft dimension.

Definition 3.2. Let X be a locally compact space. We say that X has c-soft dimension ≤ n if
the functor ◦aX! has cohomological dimension ≤ n.

Fact: X has c-soft dimension ≤ n if and only if every sheaf admits a c-soft resolution of length
≤ n.

Definition 3.3. A morphism f : X → Y of varieties is proper if the preimages of compact sets
are compact. It is finite if it is proper and quasi-finite.

Example 3.4. Every closed immersion are finite. Every polynomial morphisms C → C is finite.
Open immersions are quasi-finite and not proper.
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