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Motivation

In this talk we will introduce the notion of a local system. Local systems are par-
ticularly easy sheaves, and under favourable circumstances their data is equivalent
to a representation of the fundamental group of the underlying space.

We will also get to know proper pushforward, yet another functor between cat-
egories of sheaves, and the right adjoint to its derived functor. We will see that
properness is a nice property as it will give us several useful base change isomor-
phisms.

1 Local systems

Definition 1.1. A sheaf L on a topological space X is called a local system if there
is an open cover {Uα}α such that L|Uα

is a constant sheaf for all α. By LocX ⊂ ShX
we denote the full subcategory of local systems on X. We say a local system L on
X is of finite type if Lx is a finite-dimensional C-vector space for all x ∈ X. The
full subcategory of finite-type local systems on X is denoted LocftX.

Remark 1.2. A few quick observations:

1. Let f : X → Y be continuous, then f ∗ takes local systems on Y to local
systems on X. This is because f ∗ takes constant sheaves to constant sheaves.

2. If X is connected and L is a local system on X, then all stalks of L are
isomorphic.

Remark 1.3. Here is a short reminder of an important property of constant sheaves:
If MX is a constant sheaf on a connected, locally connected space X, then the map
Γ(X,MX) → MX,x is an isomorphism for all x ∈ X, and both can be canonically
identified with M .

Proposition 1.4. Suppose X is connected and locally connected. Then the constant
sheaf functor is fully faithful.

Proof. We have Hom(MX , NX)
∼= HomC(M,Γ(X,NX))

∼= HomC(M,N), the former
due to adjunction, the latter due to 1.3

Proposition 1.5. If X is locally connected, then LocX is an abelian subcategory
of ShX.

Proof. Let ϕ : L → L′ be a morphism of local systems. Let x ∈ X and pick an open
connected neighbourhood U of x such that L|U and L′|U are constant. Because of
Proposition 1.4, both kerϕ|U and cokerϕ|U are also constant.
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Example 1.6. Let X = C \ {0}. We define the sheaf F ∈ ShX via

F(U) = {λg | λ ∈ C, g : U → C holomorphic such that g(z)2 = z}

Then F is a local system, because locally around any x ∈ X there exists a unique
(up to sign) holomorphic square root function g. However F is not itself a constant
sheaf, as it has no nontrivial global sections.

We end this section with a useful criterion to spot local systems. For a proof,
we refer to [Ach20], Lemma 1.7.5.

Lemma 1.7. Let F be a presheaf on X, let U ⊂ X be open. Consider the following
two conditions:

1. Every x ∈ U has a basis of neighbourhoods V ⊂ U such that F(U)→ F(V ) is
an isomorphism.

2. The sheaf F+|U is isomorphic to the constant sheaf with value F(U).

Condition (1) implies condition (2). If F is a sheaf and U is connected and locally
connected, the converse also holds.

2 The monodromy representation

We will now investigate how our concept of local systems ties up with representations
of the fundamental group of spaces. Since paths and homotopies are all about unit
intervals and cubes, the following will be helpful:

Lemma 2.1. Every local system on [0, 1] or [0, 1]× [0, 1] is a constant sheaf.

Proof. We only give the proof for [0, 1]. Let L be a local system on [0, 1]. Because
of compactness, we can find finitely many intervals U1, ..., Un such that L|Ui

are
constant sheaves. Withous loss of generality assume that 0 ∈ U1 and that Ui contains
the right endpoint of Ui−1. Define Vi := U1 ∪ · · · ∪ Ui. Hence the Vi are connected
open sets with 0 ∈ Vi, and obviously Vn = [0, 1]. By induction, we will show that
L|Vi

are all constant sheaves.
The induction beginning holds by assumption. Now let i > 1. Vi−1 and Ui are

both intervals, hence Vi−1∩Ui is also connected (and locally connected). By Remark
1.3, the restriction maps

L(Vi−1) −→ L(Vi−1 ∩ Ui)←− L(Ui)

are both isomorphisms. From Vi = Vi−1 ∪ Ui we see that L(Vi)
∼=−→ L(Vi−1) and

L(Vi)
∼=−→ L(Ui) are isomorphisms. By Lemma 1.7, L|Vi

is constant.
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Given a local system L on X and a path γ : [0, 1] → X, we define the map
ρ(γ) : Lγ(1) → Lγ(0) via the composition

Lγ(1)
∼= (γ∗L)1

∼=←− Γ(γ∗L)
∼=−→ (γ∗L)0 ∼= Lγ(0)

where the middle two isomorphisms come from Remark 1.3, since γ∗L is a local
system on [0, 1], hence constant by the above lemma. To turn this idea into a rep-
resentation of the fundamental group, this better behave well under concatenation
and homotopies of paths, and indeed it does.

Lemma 2.2. Let L be a local system on X. The followings holds:

1. If γ : [0, 1]→ X is a constant path in x, then ρ(γ) = idLx.

2. If γ, γ′ : [0, 1]→ X are paths with γ(1) = γ′(0), then ρ(γ ∗ γ′) = ρ(γ) ◦ ρ(γ′).

3. If γ, γ′ : [0, 1]→ X are homotopic paths with common endpoints, then ρ(γ) =
ρ(γ′).

Proof. Part 1 is obvious. For part 2, one can consider the following commutative
diagram:

((γ ∗ γ′)∗L)1 Γ((γ ∗ γ′)∗L) ((γ ∗ γ′)∗L) 1
2

Γ((γ ∗ γ′)∗L) ((γ ∗ γ′)∗L)0

Lγ′(1) Γ((γ ∗ γ′)∗L|[ 1
2
,1]) Γ((γ ∗ γ′)∗L|[0, 1

2
]) Lγ(0)

Γ((γ′)∗L) Γ(γ∗L)

∼= ∼= ∼= ∼=

∼=∼= ∼= ∼=
∼= ∼=

Now suppose H is a homotopy between γ and γ′, explicitly H : [0, 1]× [0, 1]→ X
such that H(t, 0) = γ(t), H(t, 1) = γ′(t), H(0, s) = x0 and H(1, s) = x1, where
x0 = γ(0) = γ′(0) and x1 = γ(1) = γ′(1). Then we get the following commutative
diagram, from with part 3 follows.

Γ(H∗L) Γ((H∗L)|{0}×[0,1])Γ((H∗L)|{1}×[0,1])

Lx1 Γ(γ∗L) = Γ((H∗L)|[0,1]×{0}) Lx0

Lx1 Γ((γ′)∗L) = Γ((H∗L)|[0,1]×{1}) Lx0

∼= ∼=

∼= ∼=

∼= ∼=

∼ =
∼ =
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Definition 2.3. Let L be a local system on a space X. For any basepoint x0 ∈ X,
the above construction defines the so called monodromy representation of π1(X, x0)
on the stalk Lx0 , given by [γ] 7→ ρ(γ).

We get the functor

Monx0 : LocX → C[π1(X, x0)] -Mod (1)

Obviously it sends finite-type local systems to finite-dimensional representations.

Theorem 2.4. Let X be connected, locally path-connected and semilocally simply
connected. Then 1 is an equivalence of categories, as is its restriction to finite-type
local systems.

Proof. Since connected and locally path-connected implies path-connected, we once
and for all fix a path αx : [0, 1] → X such that αx(0) = x0 and αx(1) = x. We
choose αx0 to be the constant path.

Given a C[π1(X, x0)]-module M , we define for U ⊂ X open:

Q(M)(U) := {s : U →M | ∀γ : [0, 1]→ U s(γ(0)) = [αγ(0) ∗ γ ∗ α−1
γ(1)] · s(γ(1))}

Then one has to check that this is a local system on X and is inverse to the functor
Monx0 .

For calculations, the following proposition is of much importance.

Proposition 2.5. Let f : X → Y be a continuous map of spaces.

1. Suppose that f preserves basepoints x0 ∈ X and y0 ∈ Y and that X and Y are
connected, locally path-connected and semilocally simply connected. Then we
have a natural isomorphism for L ∈ LocY :

Monx0(f
∗L) ∼= Res

C[π1(Y,y0)] -Mod
C[π1(X,x0)] -ModMony0 L

2. If f is a covering map and X and Y are locally path-connected and locally
simply connected. Then ◦f∗ restricts to an exact functor f∗ : LocX → LocY .

3. Suppose that f is a covering map preserving basepoints x0 ∈ X and y0 ∈ Y ,
and that X and Y are connected, locally path-connected and locally simply
connected. Then there is a natural isomorphism for L ∈ LocX:

Mony0(f∗L) ∼= HomC[π1(X,x0)](C[π1(Y, y0)],Monx0(L))

Proof. For part 1 and 3, note that we get an algebra map C[π1(X, x0)]→ C[π1(Y, y0)]
induced by [γ] 7→ [f ◦γ]. Part 1 then follows from the observation that the action of
[f ◦ γ] on Ly0

∼= (f ∗L)x0 is the same as the action of [γ] on f ∗L via the isomorphism
(f ◦ γ)∗L ∼= γ∗(f ∗L). Given part 2, part 3 is a formal consequence from Theorem
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2.4 and that f∗ is right adjoint to f
∗, whereas HomC[π1(X,x0)](C[π1(Y, y0)],−) is right

adjoint to Res
C[π1(Y,y0)] -Mod
C[π1(X,x0)] -Mod.

As for part 2, we first show that ◦f∗ sends local systems to local systems. Let L
be a local system on X. Pick y ∈ Y and U ⊂ Y an open neighbourhood such that
f−1(U) is the disjoint union of open sets (Vα)α all of which are homeomorphic to
U . By shrinking U if necessary, we may assume U and hence all Vα to be connected
and simply connected. Due to the construction of the inverse functor in Theorem
2.4, any local system on U or on Vα is constant.

Define Mα := L(Vα), so that L|Vα
∼= MαVα

. Then we find

◦f∗(L)(U) = L(f−1(U)) =
∏
α

Mα,

and this formula still holds if we restrict to some smaller connected U ′ ⊂ U . Lemma
1.7 implies that ◦f∗L is a local system.

To proof exactness, it suffices to check that ◦f∗ sends surjective maps to surjective
maps. Let ϕ : L → M be a surjective map between local systems on X. Because
of the above and Proposition 1.5, ϕ|Vα is surjective. Then (◦f∗ϕ)U can be identified
with

∏
α ϕ|Vα , which is surjective.

Example 2.6. As a computational example, we consider X = C \ {0} and the map
f : X → X, z 7→ z2. This clearly satifies the assumptions of Proposition 2.5, part
3. We choose 1 as a base point and consider the pushforward of the constant sheaf
CX .

Then we have C[π1(X, 1)] ∼= C[t, t−1] with the endomorphism of C-algebras given
by t 7→ t2. Proposition 2.5 yields

Mon1(f∗CX)
∼= HomC[t,t−1](C[t, t−1],C),

where t acts by identity on C and on C[t, t−1] by multiplication with t2. Now
Mon1(f∗CX) turns into a C[t, t−1]-module via the rule (tϕ)(x) = ϕ(tx) for any x ∈
C[t, t−1]. Note that such a ϕ is uniquely determined by ϕ(1) and ϕ(t), and that
tϕ(t) = ϕ(t2) = ϕ(1) due to C[t, t−1]-linearity.

Hence Mon1(f∗CX) is a two-dimensional representation over C with basis (e1, e2)
such that t acts by swapping the basis vectors.

3 Proper pushforward

We say a continous map f : X → Y is proper if it is universally closed. If both spaces
are locally compact (so in particular Hausdorff), this is equivalent to preimages of
compact sets being compact, or even to all fibers of f being compact. This will be
our main setting in the future.

Definition 3.1. Let f : X → Y be continuous and let F be a sheaf on X. The
proper push-forward of F along f is the sheaf ◦f!F ∈ ShY defined by

◦f!F(U) := {s ∈ F(f−1(U) | f |supp s : supp s→ U is proper}
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Proper push-forward is a functor ShX → ShY . Given a morphism α : F → G,
we first get a morphism ◦f∗α : ◦f∗F → ◦f∗G, given on U by αf−1(U). If we now pick
some s ∈ F(f−1(U)) such that f |supp s is proper, then

suppαf−1(U)(s) = {x ∈ f−1(U) | αx(sx) ̸= 0} ⊂ supp s

and this inclusion of a closed subset is proper.

Definition 3.2. Let F be a sheaf on a space X. We define its global sections with
compact support as

Γc(X,F) := {s ∈ Γ(X,F) : supp s is compact}

Remark 3.3. As we have manifestly defined ◦f!F as a subfunctor of ◦f∗F , we get
a natural transformation

◦f!F → ◦f∗F (2)

Our next goal is to describe the stalks of ◦f!F .

Lemma 3.4. Let X be a space, Z a subspace and F a sheaf on X. Consider the
canonical morphism

ψ : lim
→

Γ(U,F)→ Γ(Z,F|Z)

where U ranges over all open neighbourhoods of Z. ψ is injective, and if X is
Hausdorff and Z is compact, then ψ is an isomorphism.

Proof. Suppose s ∈ Γ(U,F) is zero in Γ(Z,F|Z), then sx = 0 for all x ∈ Z. Hence
s must already be zero on an open neighbourhood of Z.

Now let s ∈ Γ(Z,F|Z) and assume Z is compact. Hence we can find a finite open
cover

⋃n
i=1 Ui ⊃ Z and si ∈ Γ(Ui,F) such that s|Ui∩Z = si|Ui∩Z . We can further find

open Vi such that
⋃n

i=1 Vi ⊃ Z and Vi ⊂ Ui. For x ∈ X, let I(x) = {i ∈ {1, ..., n} :
x ∈ Vi} and

W = {x ∈
n⋃

i=1

Vi : six = sjx for any i, j ∈ I(x)}

Every x has a neighbourhood Wx such that I(y) ⊂ I(x) for every y ∈ Wx, hence
W is open. By construction W contains Z. Because of si|W∩Vi∩Vj

= sj|W∩Vi∩Vj
, we

can glue them to a section s̃ ∈ Γ(W,F). This section satisfies s̃|W∩Vi
= si|W∩Vi

, and
hence ψ(s̃) = s.

Proposition 3.5. Suppose X and Y are locally compact and f : X → Y is contin-
uous, and let F ∈ ShX. Then for all y ∈ Y , the canonical morphism

α : (◦f!F)y → Γc(f
−1(y),F|f−1(y))

is an isomorphism.
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Proof. For injectivity, let V be an open neighbourhood of y and t ∈ Γ(V, ◦f!F),
which is defined by some s ∈ Γ(f−1(V ),F). If α(t) = 0, then supp s ∩ f−1(y) ̸= ∅,
hence y /∈ f(supp s), which is closed. Pick some neighbourhood V ′ of y inside V
such that f(supp s) ∩ V ′ = ∅, hence supp s ∩ f−1(V ′) = ∅, hence t = 0.

For surjectivity, let s ∈ Γc(f
−1(y),F|f−1(y)) and K = supp s, which is compact.

By Lemma 3.4 we find an open neighbourhood U of K and t ∈ Γ(U,F) such that
t|K = s|K . By shrinking U , we can further assume t|U∩f−1(y) = s|U∩f−1(y). Let V

be an open neighbourhood of K such that V ⊂ U is compact. Then y /∈ f(V ∩
supp t \ V ), which is compact, hence we find an open neighbourhood W of y with
W ∩ f(V ∩ supp t \ V ) = ∅, which implies f−1(W ) ∩ V ∩ supp t ⊂ V .

Now we define s̃ ∈ Γ(f−1(W ),F) by

s̃|f−1(W )\(supp t∩V ) = 0

s̃|f−1(W )∩V = t|f−1(W )∩V

This is indeed well-defined, and one can check that f is proper on supp s̃ and that
α(s̃) = s.

The description of the stalks of ◦f!F immediately shows that ◦f! is a left-exact
functor, since pullback is exact and the functor Γc is left-exact just as Γ is.

Definition 3.6. Let f : X → Y be continuous with X and Y locally compact. By
f! we denote the derived functor of ◦f!:

f! = R(◦f!) : D
+(X)→ D+(Y )

Definition 3.7. Let X be locally compact. A sheaf F on X is called c-soft if for
every compact K ⊂ X, the map Γ(X,F)→ Γ(K,F|K) is surjective.

Why do we care about c-soft sheaves? If f : X → Y is continuous with X and Y
locally compact, then c-soft sheaves are an adapted class for ◦f!, and

◦f! takes c-soft
sheaves on X to c-soft sheaves on Y . For a proof we refer to [KS94], 2.5.6 to 2.5.9.

Proposition 3.8. Suppose X, Y and Z are locally compact and f : X → Y ,
g : Y → Z are continuous. Then for F ∈ D+(X), there is a natural isomorphism

g!f!F ∼= (g ◦ f)!F

Proof. For the abelian version, we unravel the definitions:

◦(g ◦ f)!F(U) = {s ∈ Γ(f−1(g−1(U)),F) | g ◦ f : supp s→ U proper} (3)

◦g!
◦f!F(U) = {t ∈ Γ(g−1(U), ◦f!F) | g : supp t→ U proper}, (4)

where t is itself given by some s ∈ Γ(f−1(g−1(U)),F) such that f : supp s→ g−1(U)
is proper.
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Now suppose we have a section t in 4 given by s as above. Then because f :
supp s → U is proper, f(supp s) = supp t and hence g ◦ f : supp s → U is also
proper.

On the other hand, suppose we have a section u in 3 given by s ∈
Γ(f−1(g−1(U)),F) such that g ◦ f : supp s → U is proper. This also defines a
section t ∈ Γ(g−1(U), ◦f∗F).

We first show that f : supp s→ g−1(U) is proper. For that, pick y ∈ g−1(U), then
by assumption f−1(g−1(g(y))) is compact and contains f−1(y), which is closed and
hence also compact. This shows that t ∈ Γ(g−1(U), ◦f!F) and also that f(supp s) =
supp t.

Now we show that g : supp t → U is proper. For that, we pick y ∈ U , then by
the above g−1(y) ∩ supp t = g−1(y) ∩ f(supp s). This shows that g−1(y) ∩ supp t ⊂
f(f−1(g−1(y) ∩ supp t)), and the latter is compact, hence g−1(y) ∩ supp t is also
compact.

All of this shows that u is also a section in 4.
For the derived version, we make use of the fact that c-soft sheaves are an adapted

class for ◦f! and that it sends c-soft sheaves to c-soft sheaves. The result follows by
general facts about derived functors.

Proposition 3.9. Suppose X and Y are locally compact and f : X → Y is contin-
uous, and let F ∈ D+(X). Then for all y ∈ Y , we have

(f!F)y ∼= RΓc(F|f−1(y))

Proof. The abelian-category version was shown in Proposition 3.5. For the derived
version, we replace F ∈ D+(X) by a c-soft resolution.

Theorem 3.10 (Projection formula). Let f : X → Y be a continuous map of
locally compact spaces and let F ∈ D+(X) and G ∈ D+(Y ), then we have a natural
isomorphism

f!F ⊗ G
∼=→ f!(F ⊗ f ∗G)

Proof. See [Ach20], Theorem 1.4.9.

4 Proper base change

For the whole section, we are given a Cartesian diagram of topological spaces of the
form

X ′ X

Y ′ Y

g′

f ′ f

g (5)

with h := f ◦ g′ = g ◦ f ′.
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Lemma 4.1. In the Cartesian square 5, for F ∈ D+(X ′) there is a natural trans-
formation

f!g
′
∗F g∗f

′
!F

f∗g
′
∗F h∗F g∗f

′
∗F

2 2

∼= ∼=

Proof. For the abelian-category version, we have to show that there is a (necessarily
unique) natural transformation of the form

◦f!
◦g′∗F ◦g∗

◦f ′
!F

◦h∗F

Pick s ∈ (◦f!
◦g′∗F)(U) which is defined by some v ∈ F(h−1(U)), which in turn

defines a section u ∈ (◦g′∗F)(f−1(U)) such that f : suppu→ U is proper. Consider
the base change

W suppu

g−1(U) U

g′

f ′ f

g

where W is the appropriate subspace in X ′. Since properness is preserved under
base change, the map W → g−1(U) is proper. However, supp v ⊂ W is a closed
subset, hence f ′ : supp v → g−1(U) is also proper. Hence s is also a section of
◦g∗

◦f ′
!F .

Passing to derived functors, we get the following diagram as we in general only
get a natural transformation R(F ◦G)→ RF ◦RG:

R(◦f!
◦g′∗)(F) R(◦g∗

◦f ′
! )(F)

R(◦f∗
◦g′∗)(F) R(◦g∗

◦f ′
∗)(F)

f!g
′
∗F

f∗g
′
∗F

g∗f
′
!F

g∗f
′
∗F

2 22 2

m1 m2

m3 m4

We already know the natural transformations m3 and m4 are isomorphisms. Since
◦g′∗ takes injective sheaves to injective sheaves, m1 is also an isomorphism. Thus we
get the desired diagram - note that m2 need not be an isomorphism.
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Lemma 4.2. In the Cartesian square 5, for F ∈ D+(X) there is a natural commu-
tative diagram

g∗f!F f ′
! (g

′)∗F

g∗f∗F f ′
∗(g

′)∗F

2 2

Proof. Apply Lemma 4.1 to (g′)∗F , apply g∗ to the resulting diagram and use the
adjunction maps id→ g′∗(g

′)∗ and g∗g∗ → id. We thus obtain the following commu-
tative diagram

g∗f!F g∗f!g
′
∗(g

′)∗F g∗g∗f
′
! (g

′)∗F f ′
! (g

′)∗F

g∗f∗F g∗f∗g
′
∗(g

′)∗F g∗g∗f
′
∗(g

′)∗F f ′
∗(g

′)∗F
∼=

Theorem 4.3 (Proper base change). Consider the Cartesian square 5 and assume
all spaces are locally compact. For any F ∈ D+(X), the base change map g∗f!F →
f ′
! (g

′)∗F from Lemma 4.2 is an isomorphism.

Proof. We first note an important special case, namely when g is the inclusion of a
point {y} into Y and X ′ is identified with f−1(y) ⊂ X. In this case the base change
map is simply the identity

(f!F)y ∼= RΓc(F|f−1(y))

which we have already proven in Proposition 3.9.
In the general case, it is enough to that the induced map on stalks is an isomor-

phism for every y ∈ Y ′. Consider the following Cartesian squares

X ′ X

Y ′ Y

(f ′)−1(y)

{y}

g′

f ′ f

g

i′

i

a(f ′)−1(y)

h′

h
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This gives rise to a commutative diagram

(g∗f!F)y (f ′
! (g

′)∗F)y RΓc(((g
′)∗F)|(f ′)−1(y))

h∗f!F RΓc((h
′)∗F)

∼ =

∼=

b1

b2

The maps b1 and b2 are isomorphisms by the discussed special case above, hence the
map in question is also an isomorphism.

Theorem 4.4 (Proper base change). In the Cartesian square 5 assume that f is
proper. For any F ∈ D+(X), the base change map g∗f∗F → f ′

∗(g
′)∗F from Lemma

4.2 is an isomorphism.

Proof. The proof follows the same pattern as that of Theorem 4.3. One first proofs
as a special case that

(f∗F)y ∼= RΓ(F|f−1(y))

by proving the abelian-category version and then using a flabby resolution for F .

We can neither exchange f! with f∗ in Theorem 4.3 nor drop the properness
assumption in Theorem 4.4, as the following example shows.

Example 4.5. Consider the following Cartesian diagram.

∅ C \ {0}

{0} C

g′

f ′ f

g

where f and g are the obvious inclusions. Note that f is not proper. Consider the
constant sheaf C on C \ {0}. Then f ′

∗(g
′)∗C = 0, but we saw in the last talk that

g∗f∗F = (f∗F)0 ∼= RΓ(C), which is not 0.

5 The right adjoint to f!

In this section we will get to know the right adjoint to f!. This is the first instance
that we will see of a functor defined between derived categories that is itself not a
derived functor.

Definition 5.1. Let X be locally compact. We say X has c-soft dimension ≤ n if
every sheaf F ∈ ShX admits a c-soft resolution of length at most n.
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Proposition 5.2. Let M be a real n-dimensional manifold and X ⊂ M locally
closed. Then X has c-soft dimension ≤ n.

Remark 5.3. If X has c-soft dimension ≤ n and f : X → Y is continuous with Y
locally compact, then ◦f! has cohomological dimension ≤ n. Hence in this setting
it makes sense to speak of the derived functor f! : D

−(X)→ D−(Y ). We will need
this in the following.

Theorem 5.4. Let f : X → Y be continuous with X and Y locally compact, and
assume ◦f! has finite cohomological dimension. Then there exists a triangulated
functor

f ! : D+(Y )→ D+(X)

such that for F ∈ D−(X) and G ∈ D+(Y ) the following holds:

RHom(f!F ,G) ∼= f∗RHom(F , f !G)
RHom(f!F ,G) ∼= RHom(F , f !G)
Hom(f!F ,G) ∼= Hom(F , f !G)

Proof. First some heuristics to motivate the construction of f !: Assume the theorem
to hold and that for G ∈ ShY , f !G is again a sheaf. To describe f !G, we have to
describe its section for some open subset U ⊂ X. Write jU : U → X for the
inclusion. Then

(f !G)(U) ∼= Γ(j!Uf
!G) ∼= Hom(CU , j

!
Uf

!G) ∼= Hom(f!jU !CU ,G).

In more generality, if F is a sheaf on X, then Hom(F , f !G) is described by

Hom(F , f !G)(U) = Hom(F|U , (f !G)|U) ∼= Hom(jU !j
∗
UF , f !G) ∼= Hom(f!(F⊗jU !CU),G),

which is a formula that doesn’t make use of f !.
As for the construction of f !, we first fix a finite c-soft (and in our setting

automatically flat) resolution K of the constant sheaf CX .
For F ∈ Ch−(ShX)) and G ∈ Ch+(ShY ) we let E(F ,G) be the following chain

complex of presheaves on X

E(F ,G)(U) = chHom(◦f!(F ⊗ jU !(K|U)),G)

where jU : U → X is the inclusion of U ⊂ X. Then one can show that this is a
chain complex of sheaves, so that we get a functor

E : K−(ShX)op ×K+(ShY )→ K+(ShX)

There are the following natural isomorphisms:

E(F ,G) ∼= chHom(F , E(CX ,G))
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chHom(◦f!(F ⊗K),G) ∼= ◦f∗E(F ,G)

Then one shows that this functor admits a derived functor

RE : D−(X)op ×D+(Y )→ D+(X)

For F ∈ D−(X) and G ∈ D+(Y ) there are natural isomorphisms

RE(F ,G) ∼= RHom(F , RE(CX ,G))

RHom(f!F ,G) ∼= f∗RE(F ,G)

We define the functor f ! : D+(Y )→ D+(X) by setting

f !G := RE(CX ,G),

and by the above isomorphisms, this indeed gives us the right adjoint to f!.

It needs to be emphasized that this is our first encounter with a triangulated
functor between derived categories that isn’t the derived functor of a functor between
abelian categories. The following three statements about f ! can all be deduced from
Theorem 5.4 and from Proposition 3.8, respectively Theorem 4.3 respectively the
projection formula.

Remark 5.5. Remember that for a continuous map f : X → Y of locally compact
spaces, the projection formula says that for F ∈ D+(X) and G ∈ D+(Y ), we have
a natural isomorphism

f!F ⊗ G
∼=→ f!(F ⊗ f ∗G)

Proposition 5.6. Let f : X → Y and g : Y → Z be continuous maps of locally
compact spaces. Assume that ◦f! and

◦g! have finite cohomological dimension. Then
for F ∈ D+(Z), we have a natural isomorphism

f !g!F ∼= (g ◦ f)!F

Proposition 5.7. Suppose we have a Cartesian square 5 between locally compact
spaces. Assume ◦f! has finite cohomological dimension.

1. For F ∈ D+(Y ), there is a natural map (g′)∗f !F → (f ′)!g∗F

2. For F ∈ D+(Y ′) there is natural commutative diagram

g′!(f
′)!F f !g!F

g′∗(f
′)!F f !g∗F

∼=

2 2
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Proposition 5.8. Let f : X → Y be a continuous map of locally compact spaces.
Assume that ◦f! has finite cohomological dimension. For F ∈ Db(Y ) and G ∈ D+(Y )
there is natural isomorphism

f !RHom(F ,G) ∼= RHom(f ∗F , f !G)

Proof. Note that we require F ∈ Db(Y ) because F has to be bounded below to
be able to be put into RHom, and bounded above for the projection formula to
hold.
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