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1 t-Exactness under Morphism with Bounded Fiber Dimensions

In this note, we consider only varieties X or Y over the field C, and the coefficient ring of local systems and
constructible sheaves are also C. We write Hi(A) for the i-th cohomology object of a chain complex A. We
write Hi(X,F) for the i -th sheaf (hyper) homology of a topological space X with coefficients in a sheaf (or
chain complex of sheaves) F .

In a previous discussion (talk 10), we explored the perverse t-structure on Db
c (X,C) and the behavior of

perversity under immersions. Specifically, we proved the following lemma:

Lemma 1.1. Let j : U → X be an open embedding, and let i : Z → X be a closed embedding.

(1) j∗ is t-exact, i.e., j∗(pD≥0
c (X)) ⊆ pD≥0

c (U) and j∗(pD≤0
c (X)) ⊆ pD≤0

c (U).

(2) j! is right t-exact, i.e., j!(
pD≤0

c (U)) ⊆ pD≤0
c (X).

(3) j∗ is left t-exact, i.e., j∗(
pD≥0

c (U)) ⊆ pD≥0
c (X).

(4) i∗ is t-exact, i.e., i∗(
pD≥0

c (X)) ⊆ pD≥0
c (Z) and i∗(

pD≤0
c (X)) ⊆ pD≤0

c (Z).

(5) i∗ is right t-exact, i.e., i∗(pD≤0
c (X)) ⊆ pD≤0

c (Z).

(6) i! is left t-exact, i.e., i!(pD≥0
c (X)) ⊆ pD≥0

c (Z).

In the current discussion, we aim to find the behavior of perversity under functors defined by morphisms
with bounded fiber dimensions. We will establish the t-exactness of smooth pullback and quasi-finite affine
pushforward. The primary reference is chapters 3.5-3.6 of [Ach21]. The main theorem is as follows.

Theorem 1.2. Let f be a morphism with fibers of dimension ≤ d, then

(a) f∗[d] and f![d] are right t-exact for the perverse t-structures on Db
c (X) and Db

c (Y ),

(b) f ![−d] and f∗[−d] are left t-exact for the perverse t-structures on Db
c (X) and Db

c (Y ),

(c) The functors (pHdf∗, pH−df∗) and (pHdf!,
pH−df !) form adjoint pairs between Perv(X) and Perv(Y ).
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Consequently, we immediately affirm that a smooth pullback is t-exact, as f∗ ∼= f ![−2d].

Corollary 1.3. ([Ach21] Proposition 3.6.1 and Lemma 3.6.2)
Suppose f is smooth of relative dimension d. Then f† := f∗[d] = f ![−d] is t-exact. The functor pH−df∗
serves as its right adjoint.

To establish the main theorem, it is essential to thoroughly analyze the formal implications of adjoint functors
and t-structures within the triangulated category. Once we have done this, we can streamline proving the
main theorem by demonstrating the right t-exactness of f∗[d].

The first lemma asserts that taking the heart, the left-exact (or right-exact) functor in the triangulated
category becomes a left-exact (or right-exact) functor in the Abelian category.

Lemma 1.4. ([Ach21] Lemma A 7,14)
Let T1 and T2 be triangulated categories equipped with t-structures. And let C1 and C2 denote their hearts
respectively. Let F : T1 → T2 be a triangulated functor.

(1) If F is left t-exact, then the functor tH0 ◦ F : C1 → C2 is left exact.

(2) If F is right t-exact, then the functor tH0 ◦ F : C1 → C2 is right exact.

The following lemma addresses the relationship between the adjoint pair and the t-exactness, serving as a
broadened version of the connection between adjoint pairs and exactness, specifically within the Abelian
category.

Lemma 1.5. If T1 and T2 are triangulated categories equipped with t-structures, and a triangulated functor
G : T1 → T2 is left adjoint to another triangulated functor F : T2 → T1, then G is right t-exact if and only if
F is left t-exact.

Proof. Given that G is right t-exact, we can deduce that for any F ∈ T ≤−1
1 , we have G(F) ∈ T ≤−1

2 .

Let’s consider G ∈ T ≥0
2 . Then, for any F ∈ T ≤−1

1 , we can establish the following hom-set bijection using
adjointness:

HomT2(F , FG) ∼= HomT1(GF ,G) ∼= 0,

and the t-structure axiom implies the last equality. Consequently, using the Lemma [Ach21]A.7.3, we get

FG ∈ T ≥0
1 .

Comparable statements can demonstrate the opposite direction.

Upon investigating t-exactness under Verdier duality, one can derive it through a formal argument involving
a dualizing functor. A dualizing functor denoted as D is a contravariant functor, which interchanges the
connective (≤ 0) and co-connective (≥ 0) parts of a given t-structure with the property that D2 = id.

Lemma 1.6. Let Ti (1 ≤ i ≤ 2) represent the triangulated categories as described previously, and let Di

denote the dualizing functors on Ti, For a triangulated functor F : T2 → T1, the composition D1 ◦ F ◦D2 is
right (left) t-exact if and only if F is left (right) t-exact.

Proof. Upon the assumption that D1 ◦F ◦D2 is right (left) t-exact, the objective is to demonstrate that for

any G ∈ T ≥0
2 , FG ∈ T ≥0

1 . This is equivalent to proving that for any F ∈ T ≤−1
2 , HomT1

(F , FG) ∼= 0 using
the lemma [Ach21]A.7.3. Leveraging the property D2 = id, we have

HomT1
(F , FG) ∼= HomT1

(D2
1F , D2

1FG) = D1(HomT1
(D1FG, D1F)) = D1(HomT1

((D1FD2)(D2G), D1F)),
(1)

It should be noted that D2G ∈ T ≤0
2 . Consequently, we infer that (D1FD2)(D2G) ∈ T ≤0

1 based on the right

t-exactness property of D1 ◦ F ◦D2. Considering that D1F ∈ T ≥1
1 , the equation (1) = 0 is an outcome of

the axiom of t-structure.

Similar assertions can demonstrate the opposite direction.
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We can begin proof of the main theorem 1.2.

Proof of Theorem 1.2. By directly utilizing lemmas, we can complete the task by demonstrating that the
functor f∗[d] is right t-exact. Assuming the right t-exactness of f∗[d], we can infer that its right adjoint
functor, f∗[−d], exhibits left t-exactness by Lemma 1.5. Furthermore, using Lemma 1.6 facilitates the
demonstration that f ![−d] ∼= Df∗[d]D is left t-exact, thus establishing the validity of statement (b). The
adjunct f![d] ⊣ f ![−d] suggests that f![d] is right t-exact as per Lemma 1.5, thus substantiating statement
(a). The application of Lemma 1.4 allows us to validate statement (c).

To show that the functor f∗[d] is right t-exact, we begin by noting that, by the assumption on fibers, for
any locally closed variety Z ∈ Y , it holds that dim f−1(Z) ≤ dimZ + d. Consequently, for a constructible
sheaf F on Y , we have

dim supp f∗F ≤ dim suppF + d,

Moreover, for F ∈ pDb
c (Y,C)≤0, where dim suppHi(F) ≤ −i for any i, we find that

dim suppHi(f∗F [d]) = dim supp f∗(Hi(F [d]) ≤ −(i+ d) + d = −i,

Consequently, it follows that the functor f∗[d] is right t-exact.

2 t-Exactness under Affine Morphism

We aim to demonstrate that an affine pushforward is the right t-exact for perverse t-structure. The primary
theorem is as follows:

Theorem 2.1. Let f : X → Y be an affine morphism. Then the functor f∗ : D
b
c (X,C) → Db

c (Y,C) is right
t-exact concerning the perverse t-structure and the functor f! : D

b
c (X,C) → Db

c (Y,C) is left t-exact concerning
the perverse t-structure.

In particular, combing with Theorem 1.2 we obtain

Corollary 2.2. If f is quasi-finite affine, then f∗ and f! are t-exact.

Before delving into the proof, we will provide a few examples.

Example 2.1. The open immersion j : C× → C is both affine and quasi-finite. We can show that j∗CC× [1]
and j!CC× [1] are perverse by computing the stalks, since Dj∗CC× [1] ∼= j!CC× [1].

j∗CC× [1] {0} C×

H0 C 0
H−1 C C

Dj∗CC× [1] {0} C×

H0 0 0
H−1 0 C

Now, we provide a counterexample.

Example 2.2. The algebraic Hartogs lemma implies that O(C2 \ {0}) is isomorphic to the O(C2). As a
result, the embedding j : C2 \ {0} ↪→ C2 is not an affine morphism. We can show that neither j∗CC2\{0}[2]
nor j!CC2\{0}[2] is a perverse sheaf.

The motivation comes from the calculation of the cohomology of the stalk in {0} of the sheaf j∗CC2\{0}. By

taking a open neighborhood of {0} and open base change like case of C in talk 2, we will find Hk(j∗CC2\{0}|0)
is isomorphic to Hk(S3,C). In particular,

H3(j∗CC2\{0}|{0}) ∼= H3(S3,C) ∼= C,
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Then H1(j∗CC2\{0}[2]|{0}) is nontrivial, which is impossible for a perverse sheaf.

Since one can calculate j!CC2\{0}[2]
∼= Dj∗CC2\{0}[2],, neither j∗CC2\{0}[2] nor j!CC2\{0}[2] is perverse.

We can also formally imply our arguments by perverse cohomology. By the open-closed triangle, we have the
following two distinguished triangles:

j!CC2\{0}[2] → CC2 [2] → i∗C{0}[2]; i∗C{0}[−2] → C[2] → j∗CC2\{0}[2],

Notice i∗C{0} is perverse due to the property that i is closed embedding, and C[2] is perverse serving as shifted
local system on C2. Upon application of the perverse cohomology pH∗, the resulting short exact sequences in
the Abelian category of perverse sheaf are as follows:

pH−2(C[2]) ∼= 0 → pH−2(i∗C{0}[2])
∼= i∗C{0} → pH−1(j!CC2\{0}[2]);

pH2(j∗CC2\{0}[2]) →
pH2(i∗C{0}[−2]) ∼= i∗C{0} → pH2(C[2]) ∼= 0,

In particular, neither j∗CC2\{0}[2] nor j!CC2\{0}[2] is perverse, since they exhibit nontrivial perverse coho-
mology in nonzero degrees.

If we assume the following criterion, the main theorem2.1 is immediate from the property of affine morphism.

Lemma 2.3 ([Ach21] Theorem 3.5.3). Let X be a variety and let F ∈ Db
c (X). Then, the following are

equivalent.

1. (1) F ∈ pD≤0
c (X).

2. (2) For any affine open subvariety U ⊆ X, we have RΓ(U,F|U ) ∈ Db(C−Modfg)≤0.

Finally, we can prove the theorem 2.1.

Proof of Theorem 2.1. In the context of a coefficient ring of constructible sheaves being C, we can establish
that f! ∼= Df∗D holds true. From this, we can infer that the left t-exactness of f! is equivalent to the right
t-exactness of f∗ by Lemma 1.6. Let’s consider F ∈ pD≤0

c (X). According to the lemma 2.3, it suffices to
prove that for any affine open subvariety U ⊆ Y , RΓ(U, f∗F|U ) ∈ Db(C−Modfg)≤0.

We know that f−1(U) is also affine because f is affine. Using the open / smooth base change, we obtain
RΓ(U, f∗F|U ) ∼= RΓ(f−1(U),F). By lemma 2.3, it follows that RΓ(f−1(U),F) ∈ Db(C − Modfg)≤0.
Consequently, we can declare that for U ⊆ Y , RΓ(U, f∗F|U ) ∈ Db(C−Modfg)≤0.

We will start the proof of this criterion after some statements on the cohomology bound. To begin with, we
will demonstrate the existence of an affine open U ⊆ X such that Hdim suppF (U,F|U ) ̸= 0. We will use this
to establish a criterion for a constructible sheaf in pD≤0

c (X). Finally, we can prove the main theorem 2.1.

We will now present some results on the cohomology bound.

Theorem 2.4 ([Ach21] Theorem 2.74, 2.75). If F is constructible, then Hi(X,F) and Hi
c(X,F) vanish for

i > 2 dimX.

From this we can deduce a result concerning the cohomology bound of f∗ and f!.

Corollary 2.5. Let f : X → Y be a morphism of varieties, and F is constructible. Then cohomology sheaves
Hi(f∗F) and Hi(f!F) vanish for i > 2 dimX.

In addition, Artin’s vanishing theorem addresses the cohomological bound on an affine variety X in the
following way:

Theorem 2.6. ([Ach21] Theorem 2.6.2)
If X is affine and F is constructible, then Hi(X,F) and Hi

c(X,F) are 0 for i > dim supp(F). Specifically,
Hi(X,F) and Hi

c(X,F) are 0 for i > dimX.
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Then, we outline a non-vanishing theorem on an open affine variety.

Proposition 2.1 ([Ach21] Theorem 3.5.1). If the dimension of the support of the constructible sheaf F
is denoted by n, then there exists an affine open subvariety U ⊆ X such that the n-th cohomology group
Hn(U,F|U ) is nonzero.

Sketch. Without loss of generality, we assume that X is an affine variety. Let dimX = m. It is evident that
m ≥ n = dim suppF . Now, we proceed by induction on n.

When n = 0: we have H0(X,F) ∼= Γ(X,F) ∼=
⊕

x∈suppF Fx ̸= 0. When n > 0, we will proceed with
induction on m.

Step 1 To reduce the case to X = Am, we use the Noether normalization theorem to establish a finite
morphism f : X → Am. Subsequently, f∗F is constructible, and supp(f∗F) = f(suppF). In particular,
through open base change, if we take any open affine U ′ ⊆ Am and let U = f−1(U ′), the isomorphism
Hn(U,F|U ) ∼= Hn(U ′, (f∗F)|U ′) is notable. Consequently, demonstrating the result for X = Am

suffices.

Step 2 Reduction to the casem = n. Select a sufficiently small open affine subvariety U such that the following
conditions hold:

(1) F|U forms a local system

(2) Z := X \U is affine closed subvariety such that the restriction of projection p : Am → Am−1 to Z
is a finite surjection of degree ≥ 2.

Now, if m > n, then F|U must be zero and suppF ⊆ Z, Therefore, by step 1, we can reduce the proof
to the case m = n.

Step 3 Select a non-empty irreducible affine smooth open subvariety V0 ⊆ Am−1 through [Ach21] Lemma 2.5.4
such that the following properties hold.

(a) Z0 := V0 × A1
⋂
Z is a simple normal crossing divisor in V0 × A1, and it is finite surjective étale

over V0.

(b) the map pr1 : V0 × A1 → V0 is a transverse locally trivial fibration with respect to Z0.

Denote U0 := p−1(V0)
⋂
U ,which is affine as the intersection of two affine varieties. In particular,

by property (b), the pullback of projection p : U → Am−1 along V0, which we denote as q : U0 =
p−1(V0)

⋂
U → V0, is locally trivial fibration. It can be denoted as a pullback diagram.

U0 U

V0 Am−1

q p

Hence, through [Ach21] 2.4.5, q∗(F|U0) ∈ Db
locf (V0,C) and for any y ∈ V0, q∗(F|U0)y

∼= RΓ(F|q−1(y)).

According to property (1) in step 2 and the above property of locally trivial fibration, F ′ := H1(q∗(F|U0))
is a local system on V0. Denote q−1(y) = p−1(y)

⋂
U0. Using property (2) in step 2 and property (a)

in Step 3, q−1(y) is a complement of at least two points in A1. By the calculation in [Ach21] Lemma
B 3.6 in A1, H1(q−1(y),F|q−1(y)) ̸= 0, which shows that F ′ ̸= 0.

Upon explicit calculation on [Ach21] lemma B.3.6 or Artin’s vanishing theorem 2.6, we can deduce
Hk(q∗(F|U0

)) vanishes for k ≥ 2. Consequently the trunction-distinguished triangle to q∗(F|U0
) reduces

to
H0(q∗(F|U0)) → q∗(F|U0) → F ′[−1],
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Subsequencly, we can use the induction hypothesis to F ′ and get an affine open subvariety V1 ⊆ V0 ⊂
Am−1 such that Hm−1(V1,F ′|V1) ̸= 0. Let U1 := q−1(V1)

⋂
U0, which is affine as an intersection of two

affine varieties. It can be viewed as the pullback diagram:

U1 U0 U

V1 V0 Am−1

r qq p

After restricting the truncation-distinguished triangle to V1, we obtain the following exact sequence:

0 ∼= Hm(V1,H
0(q∗(F|U0))) → Hm(V1, q∗(F|U0)) → Hm−1(V1,F ′) → 0 ∼= Hm+1(V1,H

0(q∗(F|U0))),

Here Hm(V1,H
0(q∗(F|U0

))) ∼= 0 and Hm+1(V1,H
0(q∗(F|U0

))) ∼= 0 since we apply Artin’s vanishing
theorem to the constructible sheaf H0(q∗(F|U0)) on m− 1 diminsional open affine subvariety V1.

As a result, using open base change, Hm(U1,F|U1
) ∼= Hm(V1, q∗(F|U0

)) ∼= Hm−1(V1,F ′) ̸= 0.

Following this proposition, we can derive a lemma that helps validate perversity.

Lemma 2.7 ([Ach21]). Theorem 3.5.2) Let F ∈ pD≤0
c (X). For any affine open subvariety U ⊂ X, we

have the complex of finite-dimensional vector space RΓ(U,F|U ) ∈ Db(C − Modfg)≤0. Moreover, if F /∈
pD≤−1

c (X), then there exists an affine open subvariety U ⊂ X such that H0(U,F|U ) ̸= 0.

Proof. To prove the first half argument when U=X, we can utilize a spectral sequence that converges on the
E2 page, given by the following:

Epq
2 = Hq(X,Hp(F)) => Hp+q(X,F),

Since F is an element of pD≤0
c (X), it follows that dim suppHp(F) ≤ −p. According to Artin’s vanishing,

i.e. Theorem 2.6, Hq(X,Hp(F)) = 0 for q > −p, which means p + q > 0. Thus, due to the convergence of
the spectral sequence, we can conclude Hp+q(X,F ) = 0 if p+ q > 0.

In the context of the second statement, we are looking at a truncation-distinguished triangle for a perverse
t-structure, which means the sequence

pτ≤−1F → F → pτ≥0F ,

From this, we observe that pτ≥0F is a nonzero perverse sheaf, based on the assumption that F does not
belong to pD≤−1

c (X) and that F ∈ pD≤0
c (X).

In the case where there is an affine open subvariety U ⊂ X such that H0(U, pτ≥0F|U ) ̸= 0, we can conclude
that H0(U,F|U ) ̸= 0 since H1(U, pτ≤−1F|U ) = 0 based on the first part of the argument. This discussion
simplifies the assertion to the case where F is perverse. Additionally, every perverse sheaf has a simple
perverse quotient, allowing us to simplify to F = IC(V,L) simple perverse, where V is smooth locally closed
and L is a finite type local system. Specifically, the support of IC(V,L) is V . We can further simplify the
proof by replacing X with V , assuming that V is open dense in X and affine. We can find the desired U
using the proposition 2.1.

Finally, we come to the proof of the criterion on the upper boundedness of the constructible sheaf.
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Proof of Lemma 2.3. The first argument implies the second by Lemma 2.7.

Let us prove the other direction. Suppose F /∈ pD≤0
c (X). Since the perverse t-structure is bounded, take

the smallest positive integer n such that F ∈ pD≤n
c (X) and F /∈ pD≤n−1

c (X). Consequently, it satisfies the
condition of the second argument in Lemma 2.7. It implies that there exists an affine open subvariety U ⊆ X
such that Hn(U,F|U ) ̸= 0, which contradicts to the assumption that RΓ(U,F|U ) ∈ Db(C−Modfg)≤0.

3 Smooth Descent

Perverse sheaves satisfy the descent for the smooth topology ([Ach21] Section 3.7), which means that they
can be glued together from perverse sheaves on an open cover, which is another way that perverse sheaves
behave like sheaves. In particular, a morphism of perverse sheaf can be glued from an open cover. This
behavior of the perverse sheaf differs from that of the constructible sheaf, which does not satisfy the smooth
descent. I will illustrate this by showing a counterexample.

Example 3.1. Considering the constant sheaf CP1 on P1. By the equivalent definition of sheaf cohomology,

H2(P1,CP1) ∼= HomDb
c (P1)(CP1 ,CP1 [2]),

In particular, there is a nonzero morphism α ∈ HomDb
c (P1)(CP1 ,CP1 [2]) since H2(P1,CP1) ∼= C. However if

we restrict α to any subvariety A1, it is trivial in Mor(Db
c (A1)) since H2(A1,CA1) ∼= 0 from the contractility

of A1 under complex analytic topology. As P1 admits an open an affine cover given by subvarieties isomorphic
to A1, α cannot be obtained by gluing on this open cover.

For an exact meaning, we first need to recall the descent data.

Definition 3.1. Let f : X → Y be a smooth surjective morphism of relative dimension d, and let F ∈
Perv(X). Recall that we denote f† := f∗[d]. A descent data for F with respect to f is an isomorphism

ϕ : pr†1F ∼= pr†2F in Perv(X ×Y X)

such that the following diagram in Perv(X ×Y X ×Y X) follows

pr†1F pr†3F

pr†2F

pr†13ϕ

pr†12ϕ

pr†23ϕ

Then, an essential interpretation that perverse sheaves satisfy descent for the smooth topology is the following
property.

Theorem 3.1. (Part of [Ach21] Theorem 3.7.4) Given any descent data for F concerning smooth surjective
f , there is a G ∈ Perv(Y ) such that F ∼= f†G.

Remark 3.1. We can upgrade the descent data to a category Desc(X, f) by defining the morphism between
the descent datum. A morphism between descent datum h : (F1, ϕ1) → (F2, ϕ2) is a morphism of perverse
sheaves h : F1 → F2 such that the diagram

pr†1F1 pr†2F1

pr†1F2 pr†2F2

ϕ1

pr†1ϕ pr†2ϕ

ϕ2
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Taking G ∈ Perv(Y ), there is canonical descent data for f†G given by the isomorphism f ◦ pr1 = f ◦ pr2. In
fact, pr∗1(f

∗(G)) ∼= (f ◦ pr1)∗(G) = (f ◦ pr2)∗(G) ∼= pr∗2(f
∗(G)).

All above makes sure we have a functor

f† : Perv(Y ) → Desc(X, f),

In addition, this functor induces an equivalence of category by [Ach21] Theorem 3.7.4.
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