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Abstract

These are notes prepared for the seminar on perverse sheaves organized by
Dr. Dawydiak during the SS 2024. The goal of this talk is to see perverse and
constructible sheaves in action with a focus on curves, especially on intersection
homology and how it relates to Poincaré duality. In particular, we will not prove
any new results today but we will see how Gm-actions and small morphisms are
used in practice.
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1 Perverse Sheaves on a Disk

We follow [Wil] in this section.
The goal of this first section is to describe a simpler description of the category of per-
verse sheaves in a simple case. Remember that we call a sheaf of complex vector spaces
F constructible on X a variety if there exists a stratification

∐
Xs of X such that F |Xs

is a
local system.
How does this look if X = D is the closed unit disk? Let U = D \ 0 ⊂ X and let
us suppose that F is constructible with respect to the stratification {0} ⊂ D, we let
i : {0} ↪→ D ←↩ U : j the complementary immersions. Then F |U = L is a local system
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and F |0 = M is a vector space.
How do M and L interact? There is a map α : M = H0({0}, i∗F) → H0({0}, i∗j∗j∗F) =

Lπ1 obtained from pulling back the natural map F → j∗j∗F and it turns out that the
triple (L,M,α) uniquely determines the constructible sheaf F . The map α precisely
gives the transition maps from a simply connected neighborhood of 0 to the punctured
neighborhood.
Hence, constructible sheaves can be described quite easily in terms of linear algebra
data, is there a similar description for perverse sheaves on curves?

We denote Perv0 the category of perverse sheaves on D which are constructible with
respect to {0} ⊂ D. The following is a special case of a theorem originally due to Verdier,
see [Ver83].

Theorem 1 Perv0 is equivalent to the category of pairs (V ,V0,µ,α,β) with V ,V0 vector
spaces, µ ∈ GL(V) and α,β maps making

V V

V0

µ−Id

α β

commute.

We will not prove this but we will describe the involved functor and give concrete de-
scriptions of V and V0 in known cases.
Let F ∈ Perv0 , at the end, the associated V will be the vector space associated to the
local system on U \ {0} and µ the monodromy action.
The key question one has to answer is how to take “stalks at 0” of a perverse sheaf, this
will be the vector space V0.

Let v : DRe<γ ↪→ D the inclusion, the triangle associated to this open inclusion and
it’s complementary closed subset gives rise to a long exact sequence

· · ·→ H−1(D,FDRe>γ
)→ H0(D, v!v!F)→ H0(D,F)→ H0(D,FDRe≥γ

)

and in this sense, the complex v!v
!F measures the difference of the sections of the sheaf

F as γ varies from positive to negative.
It turns out that v!v!F is always concentrated in degree 0 as one can easily prove, see
[Wil, prop. 8.2]. We set V0 = H0(v!v

!F).
We omit the description of the maps α and β, see [Wil, section 8.1] and [Ach21, section
4.3] for a more detailed discussion.
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Example 1 1. For instance, let F = i∗C{0}, then clearly V = 0 and from the above long
exact sequence one sees that V0 = C so the associated triangle is

0 0

V

2. If F = j∗CU[1], then by similar arguments one sees that

C C

0

3. If F = j!CU[1], then, if one traces through the construction of the maps above, we obtain

C C

C

Id 0

4. If F = j∗CU[1], then one can see that

C C

C

0 Id

2 Reminders on intersection cohomology

Fix a locally closed subvariety h : Y ↪→ X and a finite type local system L on Y.
Given h : Y → X a locally closed embedding, we defined the intermediate extension func-
tor

h!∗ : Perv(Y)→ Perv(X)

F 7→ im(pH0(h!F)→ pH0(h∗F)).

In particular, we defined the intersection cohomology complex of a pair (Y ⊂ X,L)
IC(Y,L) = h!∗(L[dim Y]). The most relevant case of this construction was the intersec-
tion cohomology of X itself which we defined as

IC(X) := IC(Xsm, CXsm
).
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When X is smooth, then the intersection cohomology complex is the trivial local system
and [Ach21, lemma 3.3.13] precisely gives Poincaré duality:

D(IC(X)) = IC(X, C∨).

In fact, this Poincaré duality holds in a slightly more general context, namely for what
are called rationally smooth varieties.

Definition 1 (Rationally Smooth Variety) An irreducible variety X is called rationally smooth
if one of the following equivalent conditions is satisfied

1. ωX = CX[2dimX]

2. IC(X) = CX[dimX]

3. For all x ∈ X we have

Hi(IC(X)x) =

1 if i = −dimX

0 else

We prove that these characterizations are in fact equivalent

Proof ([Ach21, Ex. 3.10.3]) Throughout let j : Xsm → X be the open embedding and
i : Y := X \Xsm → X the complementary closed embedding.
Suppose 1 holds true, to show 2 holds true it suffices by [Ach21, lemma 3.3.4] to show
that C[dimX] satisfies the two following properties

The support of CX[dimX] is X, CX[dimX]|Xsm
= C[dimXsm] and

i!CX[dimX] ∈ pD♭
c(Y)

≥1 and i∗CX[dimX] ∈ pD♭
c(Y)

≤−1

The first two properties are obvious since dimX = dimXsm by generic smoothness.
To prove the two last properties, first note that D(i∗CX[dimX]) = i!D(CX[dimX]) =

i!CX[dimX] and thus it suffices to prove that i∗CX[dimX] ∈ pD♭
c(Y)

≤−1 or equivalently,
that i∗CX[dimX][−1] = CY [dimX− 1] is a coconnective object in the perverse t-structure
on D♭

c(Y) .
However, Xsm is dense in X so it’s complement has positive codimension and this is
automatically satisfied.
The implication 2 =⇒ 3 is obvious and, since there always is a canonical non-zero
map C[dimX]→ IC(X), the converse direction is too.
Finally, suppose 2 holds, then

D(IC(X)) = IC(X) ⇐⇒ RHom(CX,ωX[−dimX]) = CX[dimX] ⇐⇒ ωX = CX[2dimX].

□
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As the linguistics suggest, every smooth variety is rationally smooth but there do exist
non-smooth varieties which are rationally smooth, see [BL00, theorem 10.1.1, 2].

We will see examples of varieties which are not rationally smooth once we have
more computational techniques.

3 Semismall morphisms

It is easy to see that pushforward along a finite morphism is t-exact for the perverse
t-structure, one might ask for less stringent conditions that still guarantee t-exactness.
Perhaps the easiest example of this phenomenon is the following, notice that the per-
verse t-structure on a point Spec C coincides with the canonical one, hence the projec-
tion map p : P1 → Spec C has no chance of being t-exact.
So are there conditions on a morphism of varieties that ensure it is t-exact? While such
a general result is difficult to achieve (though possible if one restricts to nice stratifica-
tions on X, see [Ach21, theorem 3.8.9]), one could at least hope for the pushforwards of
local systems to be perverse. This turns out to be the case under assumptions on the
dimension of fibers.

Definition 2 (Semismall morphisms) Let X be an irreducible variety. A morphism f : X→
Y is called

• semismall if Y admits a stratification {Yt}t∈T such that for all t ∈ T and each point
y ∈ Yt ∩ f(X) we have

dim f−1(y) ≤ 1

2
(dimX− dim Yt).

• small with respect to W ⊂ Y an open dense subset if Y admits a stratification {Yt}t∈T
such that W is a union of strata, for all y ∈ W the fiber f−1(y) is finite and for all
y ∈ Yt ∩ f(X)

dim f−1(y) <
1

2
(dimX− dim Yt)

Notice that neither of these conditions are satisfied for P1 → Spec C.
We will not prove the following theorems in today’s talk.

Theorem 2 ([Ach21, theorem 3.8.4]) Let f : X → Y be a proper semismall morphism with X

smooth and connected and let L be a local system on X, then f∗L[dimX] is perverse on Y.

The next question one might ask is whether one can give an explicit description of the
perverse sheaf appearing in this theorem.
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Theorem 3 ([Ach21, prop. 3.8.7]) Let X be a smooth connected variety, and let f : X → Y

be a proper, small morphism with respect to W ⊂ Y. Let f ′ := f|f−1(W : f−1(W) → W and
h : W ↪→ Y be the inclusion map. Then, for any finite type local system L on X we have

f∗L[dimX] = h!∗(f
′
∗L|f−1(W)[dimX]).

Proof Let i : W̄ \W ↪→ Y be the inclusion. We will need the two following facts that we
will not prove

• if F ∈ pD♭
locf(X)

≤0 then i∗(f!F) ∈ pD♭
locf(W̄ \W)≤−1

• if F ∈ pD♭
locf(X)

≥0 then i!(f∗F) ∈ pD♭
locf(W̄ \W)≥1

From the characterization of intermediate extensions we have seen, the theorem now
follows easily. □

This result is useful in computations thanks to the following lemma. The proof is an
easy exercise, one uses that the normalization map is finite so in particular small.

Lemma 4 ([HTT08, prop. 8.2.31]) Let X be a projective variety and π : X̃ → X it’s normal-
ization, then there is an isomorphism

Rπ∗ICX̃ = ICX

In particular, IH(X) = IH(X̃).

Notice that normalizations typically don’t induce isomorphisms on singular (co)homology
as the following example shows.

Example 2 ( [HTT08, Example 8.2.32]) Let C be the cuspidal cubic, recall that it’s normal-
ization is C̃ = P1 = S2. Now, C is homeomorphic to a pinched torus, whose homology is

H0(C) = H1(C) = H2(C) = C.

So H∗(C) ̸= H∗(P1). However, the above lemma implies that

IH•(C) = IH•(P1)

So singular homology and intersection homology disagree. In particular, C is not rationally
smooth.
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4 Gm-actions and a Longer Example

We now turn to a longer example in which we will compute, among other things, the
intersection cohomology sheaves of a singular variety. One key computational aspect
will be to notice that finding (semi-)small resolutions can be a useful asset in computa-
tions.
For this, we will need to understand Gm-actions on complex varieties, so throughout
let σ : Gm × X→ X be an action.
Throughout, we fix the standard embedding Gm ↪→A1 which misses the origin.

Definition 3 (Attracting Action) If for every t ∈ X, the orbit map extends to a map σ̃t : A1 →
X, we call σ attracting.

If the action is attracting, the image σ̃t(0) will always be a fixed point of the action and
the association t 7→ σ̃t(0) assembles to a well-defined map of varieties p : X 7→ XGm .

Definition 4 (Weakly Equivariant) A complex F ∈ D♭
c(X) is weakly Gm-equivariant if

σ∗F ≃ CGm
⊠F .

Theorem 5 (Homotopy of sheaves) Let σ be an attracting action on X, i : XGm ↪→ X the
natural inclusion, p : X 7→ XGm the projection and F a weakly equivariant complex on X, then
there is a natural isomorphism

p∗F → i∗F .

We will apply this in the following long example. The final goal will be to explicitly
determine the intersection cohomology on a given variety, along the way we will see
different techniques one can use to compute all kinds of relevant sheaves.

Example 3 Let X = {x ∈ Mat2×2|det x = 0} and X̃ =
{
(x,L) ∈ X× P1|L ∈ ker x

}
. There is

an obvious map q : X̃→ X, one easily sees that the fiber over 0 is P1 while q is an isomorphism
away from 0.
One easily checks that X̃ is smooth by writing out charts and it is also easy to see that X̃→ X is
a semismall morphism. We now compute pushforwards of various sheaves

q∗CX̃

We use cohomology and base change to compute the fiber over 0, recalling that P1 ≃ S2 we find

- U {0}

2 0 C

1 0 0
0 C C
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j∗CU

I will present here two different computations that lead to the correct answer, the first method
was not presented during the seminar.

Spectral Sequence Method

Notice that there is a natural Gm-action on X by scalar multiplication which extends to a Gm-
action on X̃ whose fixed points are precisely q−1(0).
Let j̃ : p−1(U) → X̃ be the natural inclusion, ĩ : P1 = X̃Gm ↪→ X̃ and p : X̃ → X̃Gm the
attraction map from above. These fit into the following diagram

X̃Gm X̃ q−1(U)

{0} X U

ĩ

p

j̃

∼

i j

We easily see that j∗j∗CU = CU and hence it suffices to compute i∗j∗CU. By tracing through
the above diagram and using proper base change for the left-hand square, one easily sees that

i∗j∗CU = RΓ ◦ ĩ∗ ◦ j̃∗CU = RΓ ◦ p∗ ◦ j̃∗CU

where the second equality follows from our result on Gm-localizations.
Now the fiber of p ◦ j̃ over a point [ℓ] ∈ P1 ≃ X̃Gm is the set of all non-zero matrices whose
kernel contain the line ℓ.
One easily sees that this set is homeomorphic to C2 \ {0} ≃ S3.
Hence p ◦ j̃ defines a S3 bundle over P1 ≃ S2, the Serre spectral sequence associated to this
bundle has E2-page

C 0 C

0 0 0

0 0 0

C 0 C

For degree reasons, this sequence collapses and we obtain the following table
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j∗CU U {0}

5 0 C

4 0 0
3 0 C

2 0 C

1 0 0
0 C C

Cohomology of GL2 method

The natural Gm-action on X given by scaling has fixed points 0, let p : X → XGm = {0} be the
attractor map. We see that

i∗j∗CU = (p ◦ j)∗CU = RΓ(U, CU)

Hence, the stalk at 0 is given by the singular cohomology of U, notice that there is a decomposi-
tion U

∐
GL2 = C4 \ 0 yields a triangle

iU∗i
!
UCC4\0 → CC4\0 → jGL2∗j

∗
GL2

CC4\0 → ·

where iU and jGL2 are the obvious closed resp. open immersions.
Since U ↪→ C4 \ 0 is a closed immersion and both varieties are smooth, the shriek pullback of the
dualizing complex is the dualizing complex ie. i!UCC4\0 = i∗uCU[−2] and thus, taking global
sections one obtains the triangle

RΓ(U, CU)[−2]→ RΓ(C4 \ 0, CC4\0)→ RΓ(GL2, CGL2
→ ·

Using that GL2 ≃ S1 × S3, one can compute RiΓ(U, CU) = Hi
sing(U, C) and hence the stalk at

0 which yields the same decomposition.

j∗CU U {0}

5 0 C

4 0 0
3 0 C

2 0 C

1 0 0
0 C C
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ωX = D(CX)

First, we note that
j∗D(CX) = D(j!CX) = D(CU) = CU[6]

To compute the stalk at 0, we will use that there is a triangle

τ≤0j∗CU → j∗CU → τ≥1j∗CU

and that τ≤0j∗CU = CX by the above computation.
Applying Verdier duality we get a triangle

D(τ≥1j∗CU)→ D(j∗CU)→ ωX → ·

Pulling back along i this yields

D(i!τ≥1j∗CU)→ D(i!j∗CU︸ ︷︷ ︸
=0

)→ i∗ωX → ·

where we used [Ach21, theorem 1.3.10].
Thus, it suffices to compute i!τ≥1j∗CU, notice that we can write

τ≥1j∗CU = i∗(i
∗τ≥1j∗CU︸ ︷︷ ︸

:=G

) = i∗G = i!G.

i!τ≥1j∗CU = i!i!G = p!i!G = G

where we again used Gm-localization. Hence, we see that i∗ωX = D(G) and we obtain the table

ωX U {0}

-3 0 C

-4 0 C

-5 0 0
-6 C C

IC(X)

To compute this, notice that the map X̃ → X is semismall, hence by the above theorem we see
that

j!∗CU = j!∗q∗Cq−1(U) = q∗CX̃.

We know how to compute the expression on the right, see the first part of this example, and this
yields
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- U {0}

2 0 C

1 0 0
0 C C

5 Non-split Filtrations on Perverse Sheaves

Recall that last talk we proved that every perverse sheaves admits a filtration by IC
sheaves and that these are precisely the simple objects of the category of perverse
sheaves.
In this last part we give an example of two such filtrations on a perverse sheaf that are
not just direct sums (ie. we show that in general the category of perverse sheaves is not
semisimple).
We fix the usual stratification {0}

∐
A1 \ 0 = A1, let i be the inclusion of the closed

stratum and j the inclusion of the complementary open stratum.
We will describe a decomposition into two IC sheaves of the perverse sheaves j∗C[1]

and j!C[1].

We start by computing the filtration on j!C[1].
Notice that there is an obvious epimorphism α : j!C[1] → j!∗C[1] and we claim that the
kernel is IC({0} ⊂ X).
Denote the kernel K, it suffices to show that it satisfies the characterization of [Ach21,
lemma 3.3.4].
Clearly, away from 0, α is an isomorphism and hence K|U = 0. It follows that the
support of K is {0} or empty. Now, notice that the kernel of α is the same as the kernel
of the map j!C[1]→ j∗C[1].
Using that j∗ is exact for the usual t-structure and that i∗j! = 0 (see [Ach21, theorem
1.3.10 a]), we find that C{0} = i∗j∗C ≃ i∗K. As {0} is a closed subset the other conditions
of the lemma are obsolete and there is a short exact sequence

0→ IC({0} ⊂ A1)→ j!C[1]→ IC(U ⊂ A1)→ 0.

Applying Verdier duality to this sequence one obtains a similar filtration on j∗C[1]

which is
0→ IC(U ⊂ A1)→ j∗C[1]→ IC({0} ⊂ A1)→ 0.

By comparing these filtrations with the examples obtained in section 1, we see that the
filtrations on j!C[1] and j∗C[1] could not have been split.
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Another way of seeing this is that there are no non-zero maps IC({0}) = i∗C{0} → j∗C[1]

and hence the filtrations could not have been split.
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