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1 Root systems

The following examples are taken mostly from [8] where they are stated without most of the calculations.
Similar stated examples are in [7].
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1.1 Root space decomposition

This introductory section is as brief as possible; for a complete introduction see [5] or [7].

Definition 1. If g is a complex Lie algebra, then we obtain a bilinear form B : g× g→ C, the Killing form
by B(X,Y ) = tr(ad (X)ad (Y )).

Theorem 1 (Cartan’s criterion for solvability). A complex Lie algebra is solvable if and only if B(g, [g, g]) = 0.

A more complete statement is that the trace form B0(X,Y ) = tr(XY ) = 0 for all X ∈ [g, g] when g is
linear. One then obtains the theorem by using that ad is a faithful representation of g/Z(g), and Z(g) is
already solvable.

Definition 2. A Lie algebra is semisimple if it has no solvable ideals. That is, Rad(g) = 0. A Lie algebra is
simple when it has no nontrivial proper ideals and is not abelian.

Theorem 2 (Cartan’s criterion for semisimplicity). Let g be a complex Lie algebra. Then g is semisimple if
and only if B is non-degenerate.

Theorem 3 (Weyl’s theorem). Complex representations of a semisimple complex Lie algebra are completely
reducible.

Corollary 1. A complex Lie algebra is semisimple if and only if it is a direct sum

g = g1 ⊕ · · · ⊕ gn

of simple ideals gi.

There are two ways to obtain the root space decomposition from here. One can define the Jordan-Chevally
decomposition and show it is preserved by representations, so that a maximal toral or nilpotent subalgebra
will act by semisimple elements. This approach is in [5]. An alternative is as follows. The Killing form
is associative, meaning B(ad (X)(Y ), Z) = B(Y, ad (X)(Z)) (this is a calculation with the Jacobi identity).
Therefore if we can find a subspace on which B is real and positive-definite, we would have that ad (X) is
diagonalizable, and we could find a decomposition into eigenspaces.

Definition 3. For a nilpotent subalgebra h ⊂ g, define for each λ ∈ h∗ the space

gλ = {X ∈ g | [H,X] = λ(H)(X) ∀H ∈ h} .

If gλ 6= 0, we call λ a root and gλ a root space. We say h is a Cartan subalgebra if h = g0. We write ∆ ⊂ h∗

for the set of roots.

With work, one can show that if h = g0, then h is maximal toral, so e.g. [5] begins by defining roots as
lying in the dual space of a fixed maximal toral subalgebra h. There are also other characterizations:

Proposition 1 ([8] Lec. 5 Proposition 1.3). The following hold:

1. A Zariski generic element of g is semisimple;

2. The centralizer Zg(X) = {Y ∈ g | [X,Y ] = 0} is abelian, and a Cartan subalgebra;

3. Any two Cartan subalgebras are conjugate by an element of G, where G is the associated Lie group.
(This requires algebraic closure.)

Remark 1. Over R, the conjugacy of Cartan subalgebras is more complicated, but there are only finitely-many
conjugacy classes (at least for nice enough real Lie groups).
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Example 1. We pick forms such that so(n,C) is the set of skew-symmetric matrices with respect to the main
antidiagonal. More precisely, it is the Lie algebra of the indefinite special orthogonal group of matrices, the
identity component of the group determinant one real matrices preserving the quadratic form corresponding
to the antidiagonal matrix of 1s.

Thus if n = 2m+ 1 is odd, we take the real form so(m+ 1,m) so that e.g so(5,C) is viewed as having
real form so(3, 2). This will make computations much more illustrative.

• For g = sl(n,C), for a semisimple element we can take X with all eigenvalues distinct. Then any Cartan
subalgebra is the subalgebra of elements diagonal in some basis, by the above proposition.

• For g = so(n,C), we can pick a semisimple element as in the last example. We can take h to the all
diagonal matrices in so(n,C), so H ∈ h is of the form H = diag(x1, . . . , xm,−xm, . . . ,−x1) if n = 2m
is even, and H = diag(x1, . . . , xm, 0,−xm, . . . ,−x1) if n = 2m+ 1.

Theorem 4. Let g be semisimple over C (or a general algebraically closed field of characteristic zero). We
have

g = h⊕
⊕
α∈∆

gα,

as we have h = g0. Moreover, dim gλ = 1 for all λ, and

[gα, gβ ] ⊂


0 if α+ β 6∈ ∆

h if α+ β = 0

gα+β if α+ β ∈ ∆

.

Proof. The fact [gα, gβ ] ⊂ gα+β follows from the Jacobi identity, and the other facts about containment
follow from this one.

The above can also be obtained by asking that h is just maximal toral, after which one must show that
Zg(h) = h. And now two final definitions to be used nowhere below.

Definition 4. Every connected parabolic subgroup P of algebraic group G is the semidirect product of its
unipotent radical and a reductive group. This reductive group is the Levi subgroup of P . In the Langlands
decomposition P = MAN , the Levi component is MA.

Theorem 5 (Levi). Any real finite-dimensional Lie algebra is the semidirect product of its radical and a
semisimple algebra called the Levi subalgebra.

1.2 Roots, coroots, and reflections

Definition 5. A base or simple system Π of a root system ∆ is a basis of ∆ such that every root can
be written as an integer linear combination of elements of ∆ such that all coefficients are nonnegative or
nonpositive. Roots in a base are called simple roots.

Definition 6. A root is positive if and only if when written in terms of a base, its coefficients are all
nonnegative. Note that positivity depends on a choice of base. If a root α ∈ h∗ is positive, then fixing the
basis {H1, . . . ,Hm} of h dual to Π, we have α(H1) = · · · = α(Hk) = 0 and α(Hk+1) > 0 for some k. For
g = sl(n,C), the converse is true [7]. We write ∆+ ⊂ ∆ for the positive roots.

The trace form B0 is a real multiple of the Killing form.

Proposition 2. If h is a Cartan subalgebra, B �h×h is nondegenerate.

Proof. A calculation using the associativity of B shows that gα is orthogonal to gβ with respect to B for all
α, β such that α+ β 6= 0. Therefore an element orthogonal to g0 = h is also orthogonal to every gα, so is zero
because B is nondegenerate.
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This gives us a way to obtain an inner product on h∗, via

(α, β) := B(Hα, Hβ),

where Hβ is such that β(H) = B(H,Hβ). Therefore we can define the reflection

sα : β 7→ β − 2(α, β)

(α, α)
β. (1)

Note that sα(α) = −α. Indeed, sα reflects about a hyperplane Pα perpendicular to α.

Example 2. • Type An−1 root systems. As in the above example, let g = sl(n,C) and let εi ∈ h∗

take Eii 7→ 1 and take all other matrices to zero. The formula

ad (H)(Eij) = (εi(H)− εj(H))Eij

shows that εi − εj are the roots (i 6= j), with root space spanned by Eij . Note that for g = sl(n,C) we
will have ε1 + · · ·+ εn = 0.

• Type Bn root systems. Let g = so(2n + 1,C) (recall the conventions chosen in example 1). The
roots are now ±εi ± εj for i 6= j, and ±εi. This follows for the same reason as type Dn below, except
now we have the possibility e.g.x1

0
−x1

0 1 0
0 0 −1
0 0 0

−
0 1 0

0 0 −1
0 0 0

x1

0
−x1

 =

0 x1 0
0 0 −x1

0 0 0

 .

The point here is the the −1 entry can “hide” thanks to the diagonal zero in H.

• Type Cn root systems. If g = sp(2n,C), the roots are ±εi ± εj for i 6= j, and ±2εi.

• Type Dn root systems. If g = so(2n,C) (recall the conventions chosen in example 1), the roots are
±εi ± εj for i 6= j and i, j ∈ {1, . . . , n}. This again follows from the above formula. A good example
calculation is
x1

x2

−x2

−x1


1

−1

−
1

−1



x1

x2

−x2

−x1

 =

x2 − x1

−(x2 − x1)

 .

Therefore E12 −E43 lies the root space for −ε1 + ε2. Note matrices like E12 −E43 together with the
antidiagonal monomial matrices form a basis of g.

Given this description of the roots, it is easy to now write down choices of base, and hence choices of
simple roots.

Example 3. • Type An root systems. We can pick n simple roots αi = εi − εi+1. Then e.g. if j > i
we have

εi − εj = (εi − εi+1) + (εi+1 − εi+2) + · · · − (εj−1 − εj).

• Type Bn root systems. We can pick n simple roots αi = εi − εi+1 for i < n together with αn = εn.
Then if n = 4 e.g.

−ε1 − ε3 = −αi − α2 − 2α3 − 2α4.

• Type Cn root systems. We can pick n simple roots αi = εi − εi+1 for i < n together with αn = 2εn.
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• Type Dn root systems. We can pick n simple roots αi = εi − εi+1 for i < n together with
αn = εn−1 + εn. Then e.g. n = 3 so 2n = 6,

ε1 + ε3 = ε1 − ε2 + ε2 + ε3.

Example 4. For sl(3,C), we have six possible bases. Note that #S3 = 3! = 6, which is no accident (see
theorem 8). From examples 2 and 3, we have roots ±α = ±(ε2 − ε3) = ±(ε1 + 2ε2), ±β = ±(ε1 − ε3) =
±(2ε1 + ε2), and ±γ = ±(ε1 − ε2). Note that β = α+ γ and α and γ are simple. Note the positive roots are
∆+ = {α, β, γ}. The bases are:

Π1 = {α, γ}, Π2 = {α,−β}, Π3 = {β,−γ}, Π4 = {−α,−γ}, Π5 = {−α, β}, Π6 = {−β,−γ}.

Note that the base Π1 in the figure above arises as the set of all indecomposable roots on the positive side
of Pβ , i.e. all indecomposable roots µ such that (µ, β) > 0. We say such a root is indecomposable when it
cannot be written as the sum of two roots also on the positive side of Pβ . It is a fact [5] that all bases arise
this way. Therefore in situations where the root system can be drawn, this affords a way to compute bases
geometrically.

If α ∈ ∆, then −α ∈ ∆, either by definition or by the observation that otherwise, gα is orthogonal to all
of g with respect to the Killing form, which is nondegenerate. Therefore our decomposition is

g = h⊕
⊕
α∈∆+

gα ⊕
⊕
α∈∆−

g−α.

Set n+ :=
⊕

α∈∆+ gα, the sum of the positive root spaces relative to some base Π. Note that under the bases
of the above example, n+ is strictly upper-triangular. For in sl(n,C) positivity of λ = εi − εj is equivalent to
i < j, so gλ is spanned by Eij , which lies above the main diagonal. Note that as n+ has only positive weights,
it is nilpotent; either because weight strings have finite length, or more concretely because n is strictly upper
triangular in the given basis. Note that we have g = n− ⊕ h⊕ n+.

Definition 7. The Borel subalgebra associated to h and Π is

b := h⊕ n+.

It is solvable but not nilpotent, as h acts of course by scalars under ad .

Therefore choosing a base, which includes choosing a set of positive roots, chooses a Borel subalgebra.
Exponentiating (for Lie groups) it also chooses a Borel subgroup. We recall that for algebraic groups when
the field is algebraically closed, all Borel subgroups are conjugate.

Definition 8. Any subalgebra q fitting into a filtration b ⊂ q ⊂ g is called parabolic. Recall this condition
on the group level is one of the equivalent definitions of a parabolic subgroup.

In the same way that Borel subalgebras are (up to conjugacy) upper triangular (thanks either to Lie’s
theorem or to the above concrete discussion), parabolic subalgebras are block-upper-triangular. For sl(3,C),
this leaves few options for each parabolic subalgebra; there is room to add only a single 2 × 2 block. For
sl(2,C) there is no room at all for such a filtration.

Theorem 6. The parabolic subalgebras q contained in b are parametrized by the set of subsets of Π. The
correspondence sends

Π′ ⊂ Π 7→ qΠ′ := b⊕
⊕

α∈span Π′

g−α,

where the right-hand side means by definition the subalgebra generated by all gα, α ∈ Π, and g−β, β ∈ Π′; the
span notation is abused here.
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Figure 1: The root system A2. The shaded region is the fundamental Weyl chamber relative to the base
Π1 = {α, γ} (i.e. in theorem 8 we identify W with the orbit W ·Π1, so the shaded region corresponds to the
identity). The + symbols indicate which sides of the hyperplanes Pµ are “positive” with respect to the inner
product coming from the trace form. Note this chamber contains neither α nor γ! Indeed, it is contains (see
the remark following theorem 7) precisely roots pairing strictly positively with α and γ; equivalently, lying on
the positive sides of the Pγ and Pα.

Example 5. For sl(3,C), chose the base Π = Π1 = {α, γ}. This determines positive roots {α, β = α+ γ, γ},
and hence the Borel subalgebra of upper triangular matrices, in accordance with example 2. The parabolic
subalgebras are therefore

∅ ↔ b
{α} ↔ b⊕ g−α
{γ} ↔ b⊕ g−γ
Π1 ↔ g
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1.2.1 Abstract root systems

Definition 9. An abstract (reduced) root system is a Euclidean space E with a choice of symmetric bilinear
form, and a finite subset ∆ ⊂ E \ {0}. For α ∈ ∆, write α∨ = 2α

(α,α) (c.f. proposition 4). A root system must

satisfy the axioms

1. The only scalar multiples of α ∈ ∆ also in ∆ are ±α.

2. The map sβ : v 7→ v − (β∨, v)β is an automorphism and maps ∆→ ∆.

3. ∆ spans E.

4. We have (α∨, β) ∈ Z for all α, β ∈ ∆.

Remark 2. There is some redundancy in these axioms [5].

If we take (·, ·) to be the trace or Killing forms, we see our root systems above are abstract root systems
[5], [8].

1.2.2 Coroots, fundamental weights and Cartan matrices

From a root system we obtain an Cartan matrix with entries nij = α∨i (αj). In particular the diagonal entries
are

α∨i (αi) = (α∨i , αi) = 2
(αi, αi)

(αi, αi)
= 2.

Because the Weyl group (see below) acts on ∆, the Cartan matrix is defined up to conjugation by a monomial
matrix (frequently just a permutation matrix), corresponding to different choices of base.

Note that we do not have α∨i (αj) = α∨j (αi) unless ‖αi‖2 = ‖αj‖2.

Definition 10. An abstract Cartan matrix is a square matrix A such that

1. aii = 2;

2. aij ≤ 0 if i 6= j;

3. aij = 0 ⇐⇒ aji = 0.

The aij are the Cartan integers.

Note this means the Cartan matrix is the matrix corresponding to the form (·, ·) with respect to the
standard basis. In other words

(α, β) = αTAβ.

The negative off-diagonal entries correspond to the fact that the difference αi − αj for αi 6= αj in Π is not a
root; one coefficient is positive and the other is negative. The Cartan matrix determines ∆ up to isomorphism
of root spaces, and there is an algorithm for recovering ∆ from the matrix [5]. One can also define Lie
algebras directly from the matrix [8].

From a Cartan matrix A, draw vertices for every simple root i.e. n vertices if A is n × n. Then draw
aijaji edges between the vertices for αi and αj . The edges become oriented if we draw an arrow from the
longer root to the shorter root. We recall that the only possible values of ‖β‖2/‖α‖2 are 1, 2, and 3 [5].

Example 6 (Cartan matrix for sl(3,C) with respect to the trace form). We take the first base from example
4.

By example 3, the matrix will be 2× 2, and as our form is symmetric, we will need to calculate only one
inner product to fill out the matrix completely, the one corresponding to the off-diagonal entries. Picking the
base {α1 = ε1 − ε2, α2 = ε2 − ε3} we have, using (2),

(α1, α2) = B0(Hα1
, Hα2

) = tr

1
−1

0

0
1
−1

 = tr

0
−1

0

 = −1 ≤ 0.
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Therefore the Cartan matrix is (assuming for now ‖α1‖ = ‖α2‖)(
2 −1
−1 2

)
so the Dynkin diagram starts out as (the edge should actually connect the two vertices if typeset properly)

• •

so to finish we need just calculate the lengths. We have

‖α1‖2 = B0(α1, α1) = tr

1
−1

0

1
−1

0

 = tr

1
1

0

 = 2

and likewise for ‖α2‖. Therefore the roots have the same length and we draw no arrows. The A2 diagram is
then

• •

Example 7 (Dynkin diagram and Cartan matrix for type B2). See the above examples and example 3 for
set-up. If we take g = so(5,C) (recall the conventions chosen in example 1) and α1 = ε1 − ε2 and α2 = ε2, we
have

(α1, α2) = tr




1/2
−1/2

0
1/2

−1/2




0
1/2

0
−1/2

0


 = −1/2.

Now the lengths are

‖α1‖2 = (α1, α1) = tr




1/2
−1/2

0
1/2

−1/2




1/2
−1/2

0
1/2

−1/2


 = 1

and

‖α2‖2 = (α2, α2) = tr




0
1/2

0
−1/2

0




0
1/2

0
−1/2

0


 = 1/2.

Therefore we have

α∨2 (α1) =
2(α2, α1)

(α2, α2)
= 2 · 2 ·

(
−1

2

)
= −2

while

α∨1 (α2) = 2 · 1 ·
(
−1

2

)
= −1.

Therefore the Cartan matrix is

(
2 −1
−2 2

)
and the Dynkin diagram is

• •\
/

For more, see [5] or [7].
This next terminology is from [1] which used different notation than the other references for this section.

We have tried to translate it.
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Remark 3. A complete table [4] of Dynkin diagrams shows that for small n, some types coincide. This is
an explanation of the exceptional isomorphisms, e.g.

• Diagrams A1, B1 and C1 coincide, so sl(2,C) ' so(3,C) ' sp(2,C) ⊆ sl(2,C);

• Diagrams B2 and C2 coincide, so so(5,C) ' sp(4,C) ⊂ sl(4,C);

• Correctly, understood, the D2 diagram is two vertices with no edge between them, and so D2 ' A1×A1

and so(4,C) ' sl(2,C)⊕ sl(2,C);

• Diagrams A3 = D3 so sl(4,C) ' so(6,C).

Definition 11. Let Π be a base of ∆.

• A coroot is an element α∨ for α ∈ ∆ a root. Then ∆∨ is a root system [5], and Π∨ gives a basis.

• Define ωi ∈ h∗ by ωi(α
∨
j ) = δij , so the ωi give a dual basis to the α∨j . We call the ωi the fundamental

weights. We write Π̂ for this basis for the corresponding basis.

• The coweights are dual to the fundamental weights. We write
(

Π̂
)∗

.

The fundamental weights are not the basis of roots, despite being dual to the coroots. Indeed, a root
pairs with with coroots by evaluation as (α∨j , αi) = nij to form entries of the Cartan matrix. In particular
(α∨i , αi) = 2, not 1.

Example 8. We give an idea of what fundamental weights look like. See [8], and [3] for more detailed
calculations.

• Fundamental weights for g = sln+1. In this case we have ωi =
∑i
j=2 εj . We have

ωi(α
∨
j ) =

i∑
k=1

εk(Ej − Ej+1) =


1 if i = j

0 if i > j i.e. i ≥ j + 1

0 ifi < j

.

• Fundamental weights for g = so2n+1. In this case we have ωi =
∑i
j=1 εj if i < n and ωn = 1

2

∑n
j=1 εj .

1.2.3 Roots vs weights

The preservation of the Jordan-Chevally decomposition shows that h acts semisimply even when the represen-
tation of g is not ad . In this case we still get a decomposition into spaces corresponding to elements λ ∈ h∗,
but now we call the λ weights. The roots are the weights of the adjoint representation. In general the weight
spaces need not be one-dimensional, but the highest weight space will be [5].

1.2.4 Roots at the group level

Sometimes roots are defined as multiplicative characters on a maximal torus of the group G. Then e.g.
corresponding to the root α of sl(3,C) sending

α :

h1

h2

−h1 − h2

 7→ h1 − h2

we have the “root” eh1

eh2

e−h1−h2

 7→ eh1/eh2 = eh1−h2 ,

so the multiplicative “root” on G is obtained by exponentiation of the actual root α.
This example is from a course given by Kamnitzer. The below material can be found in [6] as notes for a

different course.
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Example 9. Consider the algebraic group G = GLn(C). Recalling the only morphism of algebraic groups
C× → C× is z 7→ zn, we have that any multiplicative character of a maximal torus T ' (C×)n → C× is of
the form

λ : diag(t1, . . . , tn) 7→ tλ1
1 · · · tλn

n

for λi ∈ Zn. We can then call the tuple (λi) ∈ Zn a weight. Note we still have a natural action by permutation
of Sn, which is good as GLn(C) is type An−1 as an algebraic group.

The positive roots corresponding to “exponentiations” of the positive roots (with respect to the upper-
triangular Borel subgroup) εi − εj for j > i are tuples α = (0, . . . , 0, 1, 0, . . . , 0,−1, 0 . . . , 0). They send
diag(t1, . . . , tn) 7→ ti/tj .

The condition of λ being dominant then translates to λ ∈ Zn+ := {(λ1, . . . , λn |λ1 ≥ λ2 ≥ · · · ≥ λn}.
Indeed, the dot product gives us a pairing and if α is as above

(µ, α) = µi − µj ≥ 0.

Therefore the increasing condition on the µi are equivalent to lying inside the Weyl chamber defined by the
simple roots βi = (0, . . . , 0, 1,−1, 0, . . . , 0), which is what it should mean to be dominant.

In this context it is helpful to use lemma A of [5] §10.3 to understand length: The length of some w ∈ Sn

is # {(i, j) | i > j and wi < wj}, i.e. the number of positive roots α such that wα < 0.

1.3 The Weyl group

Definition 12. Given a root system ∆ ⊂ E, the subgroup W ⊂ O(E) generated by the simple reflections
(1) is the Weyl group of ∆.

If g = sl(n,C), taking the trace form B0 as the inner product on E ⊃ ∆ amounts to taking the dot
product. For λ = εi − εj , we take Hλ = Eii − Ejj . Indeed, if n = 4 and λ = ε1 − ε2, we have e.g.

B0(H,Hλ) = tr



a

b
c

d




1
−1

0
0


 = tr


a
−b

0
0

 = a− b. (2)

A corollary of the second root space axiom is that the Weyl group permutes the roots in ∆. In particular, it
is finite and naturally a subgroup of S#∆.

Example 10. Throughout, we do the calculations below writing roots in terms of the matrices Eij as above.
We identify α with Hα via B0.

• Weyl groups for type An−1. If we take the dot product as the inner product on E as above, then
(β, β) = 2 for any β ∈ ∆, so β∨ = β. Then sβ sends

sβ : v 7→ v −B0(Hβ∨ , v)Hβ =



v1

...
vi
vi+1

...
vn


− (vi − vi+1)



0
...
1
−1
...
0


=



v1

...
vi − vi + vi+1

vi+1 − vi+1 + vi
...
vn


=



v1

...
vi+1

vi
...
vn


, (3)

We see that the simple roots εi − εi+1 correspond to simple transpositions, and that W = Sn. Note the
simple transpositions generate Sn. Note the root β is sent by sβ to −β.
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• Weyl groups for type Bn and Cn. In this case the Weyl group is Sn n (Z/2Z)×n. The factors
Z/2Z switch the signs of the basis vectors εi. Indeed, if g = so(7,C) (type B3) (recall the conventions
chosen in example 1) and α = ε3, then

Hε3 = diag(0, 0, 1/2, 0,−1/2, 0, 0)

and ε∨n = 4εn. Then we have

sα : v 7→ v −B0(Hα∨ , v)Hα =



v1

v2

v3

0
−v3

−v2

−v1


− tr





0
0
2
0
−2
0
0





v1

v2

v3

0
−v3

−v2

−v1







0
0

1/2
0
−1/2

0
0


=



v1

v2

−v3

0
v3

−v2

−v1


, (4)

where we again write column vectors for diagonal matrices. Thus sεn and its conjugates act by elements
of Sn, permuting pairs of entries (vi,−vi) 7→ (vj ,−vj) by swapping entries across the middle diagonal
0 entry.

• Weyl groups for type Dn. In this case we obtain the index two normal subgroup of Sn n (Z/2Z)×n

consisting of matched (i.e. mirrored on the second half of the main diagonal) permutations, and elements
which change an even number of signs. Indeed, if g = so(6,C) (type D3) (recall the conventions chosen
in example 1), we have α = α3 = ε2 + ε3, and we see

Hα =


0

1/2
1/2

−1/2
−1/2

0

 ,

so that α∨ = 2α.

sα : v 7→ v −B0(Hα∨ , v)Hα =


v1

v2

v3

−v3

−v2

−v1

− tr




0
1
1
−1
−1
0




v1

v2

v3

−v3

−v2

−v1






0

1/2
1/2
−1/2
−1/2

0



=


v1

v2

v3

−v3

−v2

−v1

− (2v2 + 2v3)


0

1/2
1/2
−1/2
−1/2

0



=


v1

−v3

v2

−v2

v3

v1

 ,

where we again write column vectors for diagonal matrices. Then we see that W is as claimed, as we
can now compose this sα with permutations.
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1.3.1 Weyl Chambers

The hyperplanes α⊥ across which sα reflects divide E into Weyl chambers. The interiors of these chambers,
i.e. without the walls, are the open Weyl chambers.

Definition 13. An element of E is

• regular if it lies in the complement of the walls;

• dominant if it lies in the closure of a Weyl chamber corresponding to a fixed base;

• strongly dominant if it lies inside the the interior of a Weyl chamber.

The term dominant is motivated by the fact that σλ ≤ λ for all σ in the Weyl group (see below).
Every root is conjugate to a unique dominant root. One uses (3) from the below theorem and the fact that

every point in E is conjugate to a point in the closure of the Weyl chamber for a fixed base, then following
[5], one extends ≤ to all of E by allowing coefficients in R, take σ such that σµ is maximal; it will land in the
closure.

Every regular root is therefore in exactly one Weyl chamber, and two regular roots define the same Weyl
chamber iff they on the same side of every Wall. One can show (recall example 4) that the set of simple roots
which pair positively with some fixed element γ ∈ E is a base, so

Theorem 7. Weyl chambers are in bijection with bases.

If a chamber C is defined by a base Π, then C = {µ ∈ Φ | (α, µ) > 0 ∀α ∈ Π}.
Viewing W as reflecting across the hyperplane Pα = α⊥, we have

Lemma 1. The reflection sα sends α 7→ −α and permutes the other positive roots when α is simple.

This lemma as proved in [5] uses the property that all coefficients relative to a base are nonnegative or
nonpositive.

Theorem 8. 1. W permutes the Weyl chambers simply transitively;

2. If dimE = n, i.e. the number of simple roots is always n, then every chamber has n walls. Therefore
there are roots α1, . . . , αn such that the chamber is {v ∈ E | (αi, v) ≥ 0 ∀i = 1, . . . , n};

3. Each Weyl chamber is a fundamental domain for W . In fact if σµ = λ for µ, λ in the closure of the
same chamber, σ is a product of reflections fixing λ;

4. The simple reflections sαi generate W .

A proof is in [5]. Some notes are:

Proof. Transitivity is visually clear, and no chamber can be stabilized; W reflects across the walls. The last
item is proved using the third.

Definition 14. The Bruhat order on W is the relation ≺, where we write u ≺ w if w = sβk
· · · sβ1u with

`(w) > `(sβk−1
· · · sβ1u) > · · · > `(u) for roots βi. [8] specifies the roots need not be simple. The longest

element is written w0. The shortest is the identity.

See example 18 for an example longest element.

Lemma 2. 1. If u ≺ w then u · 0 > w · 0, where the dot action is u · λ = u(λ+ ρ)− ρ;

2. If u is obtained by deleting reflections in a reduced expression for w, then u ≺ w.

3. u ≺ w iff w0w ≺ w0u, so multiplying by w0 is an antitone automorphism of W as a set.
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We sketch the proof of 1 and 3.
Let α ∈ Π be simple in some fixed base. We claim if w = sαu with `(sαu) = `(u) + 1, then u · 0−w · 0 > 0.

We have

u · ρ− ρ− (w · ρ− ρ) = ρ−
`(u)∑
i=1

γi − ρ− (sαu)ρ+ ρ = −
`(u)∑
i=1

γi + α+ sα ·
`(u)∑
i=1

γi, (5)

where if u = sν1 · · · sνn , the γi are ν1, sν1(ν2), sν1sν2(ν3), and so on. Note γi > 0. If α 6= γi for all i, then the
coefficient of α in (5) is nonegative, so because Π is a base, the root (5) is positive. We cannot have α = ν1

by the length hypothesis, and we cannot have α = sν1(ν2) etc., as sν1 sends Π into a different Weyl chamber.
We likewise cannot have α = ν2, and so on. This shows 1.

We claim `(w0u) = `(w0) − `(u). If u(β) < 0 for β > 0, then (w0u)(β) = w0(uβ) > 0. Therefore
`(w0u) ≤ `(w0)− `(u) = #∆+ − `(u). But w0 still flips every positive root λ such that vλ > 0, so we have
equality. Now 3 follows from the definition of the Bruhat order.

Example 11. When W = Sn, we have u ≺ w iff m(u)ij ≥ m(w)ij for all i, j, where

m(w)ij = # {r ≤ j |w(f) ≤ i} .

The Bruhat order is used in many places when studying Hecke algebras. The proof of existence of
Kazhdan-Lusztig bases given in [8] uses induction on the Bruhat order.

1.3.2 The Weyl group as a subquotient for compact Lie groups

In the case of algebraic groups or compact Lie groups (for noncompact groups see below) we can define the
“analytic” Weyl group as NG(T )/ZG(T ), the normalizer modulo the centralizer of a chosen maximal torus.
Then if w̄ is an equivalence class, it acts on roots λ by

(w̄λ)(H) = λ(Ad(w)−1(H)) = λ(w−1Hw).

Theorem 9. The analytic and algebraic Weyl groups coincide for compact Lie groups and algebraic groups.

For more examples like the below and a proof of the theorem, see [7].

Example 12. Let G be the real Lie group SU(n+ 1). We show that NG(T )/T is isomorphic to Sn, the Weyl
group of type An. Indeed, we can take T to be the diagonal matrices in G. Belonging to G is equivalent to the
entries lying each lying on the complex unit circle. Then G acts on Cn+1 unitarily, so sends orthonormal bases
to orthonormal bases. As a representation of the abelian group T , Cn+1 decomposes into one-dimensional
subrepresentations, which clearly must be the coordinate axes. Therefore if gtg−1 = t′ for some t′ ∈ T then
gt = t′g so gv is an eigenvector of t′ when v is an eigenvector of t. Therefore g permutes the coordinate axes
and there is a monomial matrix w such that gw = 1. That is, if

g


t1

t2
. . .

tn
t−1
1 · · · t−1

n

 g−1 =


t′1

t′2
. . .

tn
(t′1)−1 · · · (t′n)−1

 ,

then we see g differs from a permutation matrix by an element of T , if at all. Therefore we can take
W ∈ Sn+1 ↪→ SU(n+ 1) and the claim is proved.

1.3.3 The Weyl group as a subquotient for noncompact Lie groups

For non-compact groups, one defines the “analytic” Weyl group, and the algebraic Weyl group, in a more
complicated way. Let θ and Θ be a chosen Cartan involution on g and G, respectively. Then we obtain the
Cartan decomposition g = k⊕ p of g into eigenspaces corresponding to 1 and −1, respectively. Let a be a
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maximal abelian subspace of p, and let A be the closed subgroup with Lie algebra a. There is an inner product
on g as a real vector space for which every adX for X ∈ p is symmetric, and so we obtain a decomposition of
the real Lie algebra g into root spaces for a. This turns out to give an abstract root system in the sense of
these notes. Let W (a)alg,nc be its abstract Weyl group. Using a fixed maximal compact subgroup K, we can
set W (A : G) := NK(a)/ZK(a).

Theorem 10. The groups W (a)alg,nc and W (A : G) are isomorphic for a non-compact real linear connected
reductive Lie group.

It is this group W = W (A : G) that appears in the Bruhat decomposition in 3.
One can define the still more subtle notion of a Weyl group with respect to a Θ-stable Cartan subgroup,

which is by definition the centralizer of a θ-stable Cartan subalgebra, a subalgebra h of g maximal among
abelian θ-stable subalgebras of g. These subgroups need not be conjugate. If G = SL(2,R), then the group H1

of 2×2 real rotation matrices and the subgroup H of matrices ±diag(et, e−t) form two non-conjugate θ-stable
subalgebras of sl(2,R). Using the notion of compact forms, one can show that after complexifying hC ⊂ gC

gives a root space decomposition of gC and we have an abstract Weyl group W (hC : gC), and an analytic
Weyl group W (H : G) = NK(H)/ZK(H). Some work shows we have an inclusion W (H : G) ⊂W (hC : gC)
but in general this inclusion is strict: for different H the group W (H : G) can change but W (hC : gC) is
independent of h.

Example 13. Let G = SL(2,R), and H and H1 be as above. Then W (H1 : G) = 1 and W (H : G) ' Z/2Z.
Indeed, H1 = K, and a direct calculation shows that

NK(H) =

{(
±1

±1

)
,

(
±1

∓1

)}
' Z/4Z,

and that ZK(H) = {±1} ' Z/2Z so the quotient is isomorphic to Z/2Z also.

We can also define the Weyl group as a subquotient of finite groups of Lie type.

Example 14. Let G = GUn(Fq) =
{
g ∈ GLn(Fq2)

∣∣ ḡTJg = J
}

be the finite unitary group. Here J is
the antidiagonal matrix of 1s and ḡ = Frq(g) is the image of the Frobenius morphism. Assume that q
is sufficiently large; say, so that q - n. Let T ⊂ G be the subgroup of diagonal matrices. Note that if
t = diag(a1, . . . , an) ∈ T , then

ai = (aqn+1−i)
−1. (6)

We show that
NG(T )/T ' Sbn2 c n (Z/2Z)×b

n
2 c

is the Weyl group of type Bbn2 c. Now, G preserves the Hermitian form for J and Frq, i.e. acts unitarily on
(Fq2)n, and T is abelian, and it follows from follows from q being large enough that the only one-dimensional
subspaces stable under T are the coordinate axes, as there is an element in T with pairwise distinct entries.
Therefore we can calculate that if gtg−1 = t′, then g can permute the first bn2 c coordinate axes and the
corresponding axes in the last bn2 c, or swap symmetric pairs (e.g. first and n-th coordinate axes, second

and (n − 1)-st). Let s ∈ Sbn2 c and f ∈ (Z/2Z)×b
n
2 c (viewed as block matrices of transpositions) be the

corresponding matrices, which lie also in G. Another calculation using (6) shows that if g ∈ NG(T ) scales
any coordinate axis, then g differs from sf by an element of T .

Proposition 3 (Bruhat decomposition). Let G be a connected affine reductive algebraic group (hypothesis of
[2]), a semisimple complex Lie group (hypothesis of [4]), a linear connected reductive real Lie group (hypothesis
of [7]) or a finite group of Lie type (hypothesis of [8]). Then

G =
∐

[w]∈W

BwB

The idea, especially for groups like SL(n,R) where W is a symmetric group, is that transpositions (simple
reflections) si flip upper triangular entries to lower triangular entries, and the longest element flips the most
(see example 18). In this way we get the whole group.
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Remark 4. The Bruhat decomposition is linked to the flag variety G/B via the Schubert cells. See 2.3.2.

Definition 15. The double costs BwB ⊂ G are the Bruhat cells of G. Some authors such as [4] appear to
call the Schubert cells Bruhat cells.

For G = GL(n,C) (and GLn as an algebraic group over Q, see below) we get therefore a bijection between
parabolic subgroups and partitions of n; one just picks how big each block on the diagonal should be. The
second point in the example below shows that for other groups, not every block-upper-triangular matrix
corresponds to a parabolic subgroup, so only certain partitions are possible. Note that B corresponds to the
partition (1, . . . , 1) and parabolic subgroups for other partitions stabilize partial flags. The bijection is as
follows [1]: Note that GLn is an algebraic group is type An so we can take simple roots αi ∈ Π as in 3. Call
these Π0 in an amalgamtion of the notation of [7] and [1]. Then we have

{partitions (n1, . . . , np) of n} ←→ {standard parabolics P ⊃ P0}
←→ {subsets ΠP

0 = {α ∈ ∆0 | i 6= n1 + n2 + · · ·+ nk ∀1 ≤ k < p}}.

Example 15. Let G = GL4. Then the parabolic subgroup of matrices
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


corresponds to the partition (2, 1, 1) of n = 4. Recall from 6 that this parabolic subgroup (viewed as
corresponding its Lie algebra) is obtained by adding −α1 = ε2 − ε1 corresponding to E21. Indeed, we have
that i 6= n1 + n2 =⇒ i 6= 3 and i 6= n1 =⇒ i 6= 2, so i = 1 and ΠP

0 = {α1} as required.

Recall parabolic subalgebras were obtained by adding in some negative roots, and are block-upper-
triangular. This corresponds exactly to the flipping:

Example 16. • Let G = SL(3,C). Then the parabolic subalgebras are q = b⊕ g−α and q = b⊕ g−γ in
the notation from example 5. We have γ = ε1 − ε2, which we called α1 in example 3. It has eigenspace
spanned by E12 as explained in example 2. We have

BsαB =


∗ ∗ ∗∗ ∗

∗

0 1
1 0

1

∗ ∗ ∗∗ ∗
∗

 =


∗ ∗ ∗∗ ∗ ∗

∗

 ,

which differs from B precisely by an entry in E21. The corresponding parabolic subgroup is then

P = (BsαB)
∐

B.

Note the “flipping” language is figurative; while a new nonzero entry appears in the double coset,
multiplying on the left or right by a permutation matrix corresponds of course to a swapping of whole
row or columns.

• For G = GUn(Fq), we get different looking parabolic subgroups, as we have different simple reflections,
they are “mirrored” or “matched” as mentioned above. If we choose simple roots for Bbn2 c as before,
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then αi = εi − εi+1 is simple and corresponds to [w] = (i i+ 1) in W by example 14. We then have

BwB

=





∗ · · · ∗
∗

. . .

. . .
...

∗





1
. . .

0 1
1 0

. . .

0 1
1 0

. . .

1





∗ · · · ∗
∗

. . .

. . .
...

∗





=





∗ · · · ∗
. . .

∗ ∗
∗ ∗

. . .
...

∗ ∗
∗ ∗

. . .

∗





.

The corresponding parabolic subgroup is then (BwB)
∐
B again.

Definition 16. The subgroup WX of a Weyl group Wgenerated by a subset X ⊂ S of the simple reflections
is called a parabolic subgroup of W .

If X ⊂ Π corresponds to a parabolic subgroup P = MAN up of G, then WX is the Weyl group of M .

2 Root data

See [2] and [9].

2.1 Root data

Definition 17. A root datum is a tuple (X,Φ, X∨,Φ∨) where

• X and X∨ are finitely-generated abelian groups;

• There is a perfect pairing 〈·, ·〉 : X ×X∨ → Z;

• Φ ⊂ X and Φ∨ ⊂ X∨ are finite subsets with a bijection Φ→ Φ∨, α 7→ α∨. The following two axioms
must be satisfied:

1. 〈α, α∨〉 = 2 for all α ∈ Φ;

2. sα(Φ) = Φ and sα∨(Φ∨) = Φ∨ for all α ∈ Φ, where

sα(x) = β − 〈x, α∨〉α and sα∨(y) = y − 〈α, y〉α∨

for all x ∈ X and y ∈ X∨.
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Note the resemblance of the sα and sα∨ to the reflections in (1), and recall that in definition 9 we defined
α∨ = 2α

(α,α) .

Proposition 4. Let (X,Φ, X∨,Φ∨) be a root datum and define p : X → X∨ by p(x) =
∑
α∈Φ 〈x, α∨〉α∨.

Then

1. 〈x, p(x)〉 ≥ 0 for all x ∈ X and 〈β, p(β)〉 > 0 for all β ∈ Φ;

2. 〈sβ(x), p(sβ(x))〉 = 〈x, p(x)〉 for all x ∈ X;

3. 〈β, p(β)〉β∨ = 2p(β), so that

β∨ =
2p(β)

〈β, p(β)〉
;

4. p induces a Q-linear isomorphism QΦ→ QΦ∨.

Root data arise from connected reductive algebraic groups:

Theorem 11. Let G be connected reductive with maximal torus T . Then (X∗(T ),Φ, X∗(T ),Φ∨) is a root
datum. Here the roots Φ = Φ(T, T ) ⊂ X∗(T ) \ {0} are all nontrivial characters α such that

gα = {X ∈ g |Ad(t)X = α(t)X ∀t ∈ T} 6= ∅.

The required pairing is the natural one: 〈λ, µ〉 = λ ◦ µ : Gm → T → Gm.
Clearly, a root datum is not a root system; there is no automatic real vector space structure. However,

if V = RΦ is the subspace generated by Φ in X ⊗Z R, then V is a root system [2] §14.7. Note we have
(X ⊗Z Q) ⊗Z R = X ⊗Z (Q ⊗Z R) = X ⊗Z R, so by the next proposition V = X ⊗Z R iff G is semisimple,
in the setting when our root datum arises from an algebraic group as above. When V = X ⊗Z R, (X,Φ)
determines (X,Φ, X∨,Φ∨).

Theorem 12. Let G be connected reductive with a maximal torus T , roots Φ and coroots Φ∨ with respect to
T . Then the following are equivalent:

1. G is semisimple;

2. QΦ = X∗(T )⊗Z Q;

3. QΦ∨ = X∗(T )⊗Z Q;

4. G = 〈Uα | α ∈ Φ〉;

5. G = [G,G].

See [9] §8.1 for a proof. The theorem uses the notation of [9] where, Gα := ZG(Tα), Tα = (kerα)0, and
LieUα = gα. Alternatively, Uα is the unipotent part of the Borel subgroup Bα of Gα containing T . We have
LieBα = t⊕ gα. This sets up the group-level linear algebraic group version of reducing many statements to
statements for SL2 via “sl2-triples.”

Theorem 13. Two connected reductive algebraic groups are isomorphic iff their root data are isomorphic.

Theorem 14 (An analogue of Lie’s theorems.). Given a root datum, there exists a (connected) reductive
group with that root datum.

See again [9].

2.2 The Langlands dual group

This theorem allows one to define the Langlands dual LG of a connected reductive group G; LG is the group
whose root datum is (X∨,Φ∨, X,Φ) is the dual root datum of G. Note that this really is a root datum. This
duality corresponds to duality as lattices [1], so when G is “large”, LG is “small.”

17



2.3 The flag variety

In this section we write Φ+ and not ∆+ for the positive roots. This section is based on courses by Joel
Kamnitzer (for which some handwritten notes are available at http://www.math.toronto.edu/~jkamnitz/
courses/flagvarieties/index.html) and Florian Herzig. Some material is in [4].

2.3.1 Bruhat decomposition revisited

Each double coset BwB in the Bruhat decomposition of a reductive algebraic group G is an orbit under the
action map B × B → G given by (b1, b2) · g = b1gb2, so is locally closed. We can describe the closure of a
double coset as

BwB =
⋃
w′≺w

Bw′B,

where ≺ is the Bruhat partial order. By the Bruhat decomposition we have

G/B =
∐
w∈W

BwB/B

Let Uα be as is in theorem 12. Then the multiplication map∏
α>0

w−1α<0

Uα → Bu

is a closed immersion of varieties. (This is especially clear on the Lie algebra level from the direct sum
structure of b.) The image is a subvariety Uw. We have an isomorphism of varieties

Uw ×B → BwB

by
(u, b) 7→ (uwb),

identifying the coset w with any of its representatives as we have been doing. Consulting calculation (8), we
have

BwB = BuTwB = BuwTB = BuwB = Uw
∏
α>0

w−1α>0

UαwB = Uww
∏
α>0

w−1α>0

Uw−1α,

and
∏

α>0
w−1α>0

Uw−1α ⊂ B. This shows that BwB/B ' Uw as varieties, and Uw is affine. Now we have

dim(BwB/B) = dim(Uw) = #
{
α ∈ Φ

∣∣α > 0 and w−1α < 0
}

= `(w). (7)

Definition 18. Let G be a connected algebraic group. As a set, the flag variety of G is Fl = Fl(G) := G/B
for a Borel subgroup B of G.

Remark 5. As all Borel subgroups are conjugate and equal to their own normalizers, we have a bijection
G/B → {Borel subgroups B′ ⊂ G} given by gB 7→ gBg−1.

Example 17. Let G = GLn and B = Bn. Then the flag variety is the set of all flags

E• = (0 ( E1 ( E2 ( · · · ( En = kn).
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2.3.2 Schubert cells

For this section we specialize to G = GLn(C), taking B = Bn, T to be the diagonal matrices, and identifying
W (G,T ) with Sn.

Definition 19. Flags V• andW• are in relative position w ∈ Sn if dim(Vi∩Wj) = m(w)ij = # {r ≤ j |w(f) ≤ i}.
Define the Schubert cell

Xw = {V• ∈ Fl |E• and V• are in relative position for w} ,

where E• is the standard flag with Ei = span{e1, . . . , ei} for the standard basis of Cn.

Equivalently, Xw = B ·Ew• , where Ewi = span{ew(1), . . . , ew(i)}. We can also define Schubert cells from
Bruhat cells, with Xw = BwB/B. Recall that for Weyl group Sn, we have w ≺ u in the Bruhat order iff
m(w)ij ≥ m(u)ij . Let w0 be the longest element of W , so that `(w0) = #Φ+ = # {α > 0 |w0α < 0}. Then
w0Bw

−1
0 is a Borel subgroup of G, corresponding to the roots Φ−. Indeed, say b = t ⊕

⊕
α∈Φ+ gα. Then

Lie(Ad(w0)B) = Ad(w0)b, and for X ∈ Ad(w0)gα and t in T , let w−1
0 tw0 = t′, so that

Ad(t)Ad(w0)X = tw0Xw
−1
0 t−1 (8)

= w0t
′X(t′)−1w−1

0

= w0α(t′)Xw−1
0

= α(t′)w0Xw
−1
0

= α(w−1
0 tw0)w0Xw

−1
0

= (w0α)(t)w0Xw
−1
0 .

Example 18. With G, B, and T as above, the longest element w0 is the coset of the antidiagonal matrix of
1s, which conjugates upper-triangular matrices to lower-triangular.

By the last paragraph and (7), we then have

dim(Bw0B/B) = #Φ+ = dim(G/B) = dim(Fl).

Now, G/B = Fl is irreducible, so Bw0B/B is open because it is locally closed. We call this dense Schubert
cell Bw0B/B = Xw0

the big cell.

Example 19. For GL3, we have simple reflections {s1, s2} and Weyl groupW =
〈
s1, s2

∣∣ s2
1 = s2

2 = (s1s2)3 = 1
〉
.

The longest element is then w0 = s1s2s1 = s2s1s2 with length `(w0) = 3. We draw the picture

w0 ` = 3

s1s2 s2s1 ` = 2

s1 s2 ` = 1

1 ` = 0.

People also draw pictures like
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Ew0
•

Es1s2• Es2s1•

Es1• Es2•

E•,

Xs2s1

Xs2
Xs1

which are apparently related to moment maps.

3 Adelic groups

These notes relate to a course given by Arthur, based on [1]. We highlight only a few things. In the case of real
Lie groups, the Lie algebra a of a maximal abelian subgroup A i.e. the thing appearing in the decomposition
G = KAK is a place to do analysis. One can do things such as endow it with useful coordinates and study
the asymptotics of certain functions, e.g. the τ -spherical functions [7]. For an adelic group defined over Q,
the Lie algebra is also defined over Q, but following the above example would like to work in a real vector
space.

It is a fact that we can write G(A) = NP (A)MP (A)K where NP is the unipotent radical of a standard
(i.e. containing the usual upper-triangular Borel subgroup) parabolic P , MP is its Levi component, and
K is a maximal compact subgroup. This is a version of the Iwasawa decomposition and is proved by the
usual Gramm-Schmidt argument at the archimedean place, and with a p-adic analogue elsewhere. We define
X(MP )Q := Hom(MP ,Gm), where the morphisms are those of algebraic groups over Q. Then our surrogate
Lie algebra is

aP := HomZ(X(MP )Q,R)

and
a∗P = X(MP )Q ⊗Z R.

3.1 Weyl sets

At certain places the notion of Weyl set is needed.

Definition 20. For two standard parabolic subgroups P and P ′ the Weyl set W (aP , aP ′) is the set of
restrictions of the Weyl group (as defined using the upper-triangular Borel) which give linear isomorphisms
aP ⊂ a0

∼−→ aP ′ ⊂ a0. Here a0 is the analogue of the Lie algebra for a fixed minimal parabolic subgroup P0

of G.

Example 20. Let G = GLn, and let (n1, . . . , np) and (n′1, . . . n
′
p′) be partitions of n with corresponding

parabolic subgroups P and P ′. Then the Weyl set is empty if p 6= p′, as the parabolic subalgebras will have
different dimensions; this becomes clear after drawing some pictures (n = 4 works well) to see how many
negative roots must be added to b for each size block used. If p = p′, then

W (aP , aP ′) =
{
w ∈ Sp

∣∣n′i = nw(i)

}
.

Indeed, unless P and P ′ have the same number of blocks of the same size, they will not even have the same
dimension. One can see this by overlaying the two block patterns and deforming one into another. When
an m×m block is shifted to m− 1×m− 1, m flipped roots are lost. To remain a partition of n, another
block must from m′ ×m′ to m′ + 1×m′ + 1, and for the number of roots to remain the same we must have
m′ = m− 1. Finally, if the block structures are the same, the elements of the Weyl set permute the blocks.

Remark 6. The above claims are true, but the justification is our own and is uncertain.
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As with the Weyl group in many other cases, the set W (aP , aP ′) being nonempty controls the equivalence
of some induced representations. See [1] §7.
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