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1 Sheaf Theory

We want to study sheaves of of complex vector spaces on complex varieties endowed with
the metric topology. Let’s start with a bit of sheaf theory.

Definition 1.1. LetX be a topological space. A presheaf of C-vector spaces is a functor
F : Ouvop

X → VectC. A morphism of presheafs ϕ : F → G is a natural transformation of
functors. We denote the resulting category of presheafs on X by Presh(X).
A sheaf F is a presheaf such that the following holds. Let U =

⋃
α Uα. Then,

1. (Identity) If s ∈ F(U) such that s|α = 0 for all α, then s = 0.

2. (Gluing) If sα ∈ F(Uα) are given such that sα|Uα∩Uβ
= sβ|Uα∩Uβ

for all α and β, then
there exists s ∈ F(U) with s|Uα = sα.

A morphism of sheafs is just the morphism of presheafs. We obtain the category of sheaves
on X: Sh(X).

Example 1.2. (Constant Sheaf) Let M be a vector space. The constant presheaf on X
with value M , denoted Mpre, has values

Mpre(U) = M (1.1)

for all open U ⊂ X and restrictions

resV,U = idV (1.2)

for all inclusions U ↪−→ V . This is not a sheaf. Take e.g. X = {1, 2} with the discrete
topology. Then any sheaf with F({1}) = F({2}) = M glues to F(X) = M ⊕M .
The constant sheaf on X with value M , denoted M , is given by

M(U) = {locally constant functions s : U → M} (1.3)

and
resV,U(s) = (s|U : U → M). (1.4)

Example 1.3. (Skyscraper Sheaf) Let X be Hausdorff and x ∈ X. The skyscraper sheaf at
x with value M , denoted Mx, is

Mx(U) =

{
M, if x ∈ U

0, else
(1.5)

with obvious restriction maps.
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In order to better understand sheaves and their morphisms, we look at stalks.

Definition 1.4. Let F be a presheaf on X and x ∈ X. The stalk at x is the vector space

Fx = lim
−→
U∋x

F(U). (1.6)

For x ∈ U the image of a section s ∈ F(U) under the canonical map F(U) → Fx is denoted
sx and is called the germ of s at x. Define the support of F by supp F = {x ∈ X|Fx ̸= 0}
and the support of a section s ∈ F(U) by supp s = {x ∈ U |sx ̸= 0}.

In other words, the stalk is

Fx = {(U, s)|U ∋ x open and s ∈ F(U)}/ ∼, (1.7)

where (U, s) ∼ (U ′, s′) if and only if there exists an open V ⊂ U ∩ U ′ such that x ∈ V and
s|V = s′|V . Note that for any map of sheaves ϕ : F → G, we get an induced map of stalks
ϕx : Fx → Gx. Stalks have the following nice properties.

Lemma 1.5. Let F ∈ Sh(X) and s, t ∈ F(U). Then s = t if and only if sx = tx for all
x ∈ U .

Lemma 1.6. A morphism ϕ : F → G is an isomorphism if and only if ϕx : Fx → Gx is an
isomorphism for all x ∈ X.

Theorem 1.7. The category of sheaves of complex vector spaces Sh(X) on any topological
space X is abelian.

Before we prove this, let’s remind ourselves of a couple of things. Recall that an additive
category A is abelian if the following hold.

1. Every morphism in A has a kernel and a cokernel.

2. Every monic morphism is a kernel, and every epi is a cokernel.

We need one more standart lemma in order to define the cokernel.

Lemma 1.8. The inclusion Sh(X) → Presh(X) admits a left adjoint Presh(X) → Sh(X)
called sheafification and denoted by F 7→ F+. The canonical i : F → F+ induces an
isomorphism on stalks ix : Fx → F+

x .

We are now in position to proof the above theorem.

Proof. We can explicitely construct kernels and cokernels. The kernel of a morphism ϕ :
F → G is the sheaf given by

(kerϕ)(U) = ker(ϕU : F(U) → G(U)). (1.8)

And the cokernel is the sheafification of the presheaf which assings

U 7→ coker(ϕU : F(U) → G(U)). (1.9)

The universal property of sheafification secures that this does indeed give a cokernel. Simi-
larly one defines the image of a sheaf morphism.
Taking filtered colimits commute with taking limits, so (kerϕ)x ∼= ker(ϕx) and (coker ϕ)x ∼=
coker (ϕx). With lemma 1.5, this implies that ϕ is a monomorphism (resp. epi) if and
only if ϕx is a injective (resp. surj.) for all x ∈ X. Now lemma 1.6 guarantees that every
monomorphism is the kernel of its cokernel, and every epimorphism is the cokernel of its
kernel.
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An important fact is that taking stalks is exact.

Proposition 1.9. A sequence 0 → F → G → H → 0 in Sh(X) is exact if and only if
for every x ∈ X, the sequence 0 → Fx → Gx → Hx → 0 is exact. I.e. The stalk functor
Sh(X) → VectC is exact.

Now, since we know that Sh(X) is abelian, we can consider its derived category D(X) :=
D(Sh(X)).

Definition 1.10. Let F ∈ D(X). Define its support by

supp F =
⋃
i∈Z

supp Hi(F). (1.10)

Note once again that the above defnition makes sense, because we properly defined ker-
nels, images and cokernels of sheaves.

Definition 1.11. Let f : X → Y be a continous map.

1. For G ∈ Sh(Y ), the pullback of F denoted by f ∗G, is the sheafification of the presheaf
f ∗
pre(G) given by

f ∗
pre(G)(U) = lim

−→
V⊂Y,f(U)⊂V

G(V ). (1.11)

2. Let F ∈ Sh(X), the pushforward is the sheaf ◦f∗F given by

(◦f∗F)(U) = F(f−1(U)). (1.12)

Recall that these are adjoint to each other, i.e.

HomSh(X)(f
∗G,F) ∼= HomSh(Y )(G, ◦f∗F). (1.13)

Remark 1.12. The pullback is functorial in the sense that (g◦f)∗F = f ∗(g∗F) for f : X →
Y , g : Y → Z and F ∈ Sh(Z).

The pullback functor also behaves well with stalks.

Lemma 1.13. There is a canonical bijection of stalks (f ∗G)x = Gf(x).

The analog for the pushforward is not true.

Lemma 1.14. The pullback functor is exact.

Proof. We already know that

0 → f ∗F → f ∗G → f ∗H → 0 (1.14)

is exact if and only if
0 → (f ∗F)x → (f ∗G)x → (f ∗H)x → 0 (1.15)

is exact. As seen above this is

0 → Ff(x) → Gf(x) → Hf(x) → 0, (1.16)

which is of course exact.
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Note that this is exact since we work with sheaves of vector spaces. In general the
pullback functor is only right exact.

Example 1.15. (Pushforward) We can obtain the global section Γ(F) as the pushforward
of f : X → {pt}:

◦f∗F(pt) = F(f−1(pt)) = F(X) = Γ(F). (1.17)

The skyscraper sheaf can also be described as a pushforward. Namely let M be the constant
sheaf of the closed subspace {x} for x ∈ X and i : {x} → X the inclusion. Then the
skyscraper sheaf is Mx = ◦i∗M .

Example 1.16. (Pullback) In a similar manner we can obtain stalks as the pullback of the
map f : {pt} → X, pt 7→ x:

(f ∗F)(pt) = lim
−→

U∋f(pt)

F(U) = lim
−→
U∋x

F(U) = Fx. (1.18)

The restriction of a sheaf F to a subspace Y ⊂ X is denoted by F|Y and is given as the
sheafification of the assignment

U 7→ lim
−→

U⊂V⊂X

F(V ). (1.19)

But this is just the pullback along the inclusion i : Y → X.
Let’s compute the pullback along f : X → Y of a constant sheaf MY . We claim that
f ∗MY

∼= MX .
Let p : Y → {pt} be the projection. Then MY = p∗M , where we take M to be the sheaf
with value M on pt. By functoriality

f ∗MY
∼= f ∗(p∗M) ∼= (p ◦ f)∗(M) ∼= MX , (1.20)

where the last isomorphism holds since p ◦ f is just the projection of X to a point.

Proposition 1.17. The category Sh(X) has enough injectives.

Proof. Let F be a sheaf. For each point x ∈ X the stalk Fx is a vector space and therefore
injective. Define the sheaf I by

I(U) = Π
x∈U

Fx. (1.21)

Then the obvious map θ : F → I defined by maps s 7→ Π
x∈U

sx for s ∈ F(U) is injective

by lemma 1.5. Note that we can equivalently describe I as the product over all x ∈ X
of skyscraper sheaves Fxx

. A skyscraper sheaf Mx is injective because there is a natu-
ral isomorphism HomC(Gx,M) ∼= HomSh(X)(G,Mx). Every vector space is injective, so
HomSh(X)(−,Mx) is exact.

Lemma 1.18. The pushforward functor is left exact.

Proof. This follows from the fact that the sections functor Γ(V,−) is left exact. I.e. for
every V ⊂ Y , the sequence

0 → F(f−1(V )) → G(f−1(V )) → H(f−1(V )) (1.22)

is exact.
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Remark 1.19. We know from last talk that all left exact functors have derived functors.
Hence, by the above lemmas, the pullback and pushforward functors have derived functors.
From now on, the symbols f ∗ and f∗ denote the derived functors! Also note that as Sh(X)
has enough injectives, we get the derived Hom functor:

RHom : D−(X)op ×D+(X) → D+(VectC). (1.23)

We will need the following two propositions.

Proposition 1.20. For A ∈ D−(X) and B ∈ D+(X), there is a natural isomorphism

HomD(X)(A,B) ∼= H0(RHom(A,B)), (1.24)

and
ExtnSh(X)(A,B) ∼= Hn(RHom(A,B)) (1.25)

for A,B ∈ Sh(X).

Proposition 1.21. Let F : A → B and G : B → C be left exact functors with adapted
classes Q ⊂ A and P ⊂ B such that

F (Q) ⊂ P. (1.26)

Then the natural map R(F ◦G) → RF ◦RG is an isomorphism.

Theorem 1.22. Let f : X → Y be a continous map. For F ∈ D−(Y ) and G ∈ D+(X),
there are natural isomorphisms

RHom(f ∗F ,G) ∼= RHom(F , f∗G), (1.27)

and
HomD(X)(f

∗F ,G) ∼= HomD(Y )(F , f∗G). (1.28)

Proof. We can replace G by an injective resolution, because the category of sheaves has
enough injectives. We know that the adjointness holds in the abelian category of sheaves.
Then proposition 1.21 gives the first claim. Note that, using proposition 1.20, the first
statement immediately implies the second.

Remark 1.23. Generalising the theorem above, suppose we have F ∈ D+(X) and left exact
functors F,G, F ′, G′ and we wish to prove

RF (RG(F)) ∼= RF ′(RG′(F)). (1.29)

The plan involves two steps. First prove the statement at the level of abelian categories, i.e.
there is a natural isomorphism

F (G(F)) ∼= F ′(G′(F)), (1.30)

where F . This implies for F ∈ D+(X):

R(F ◦G)(F) ∼= R(F ′ ◦G′)(F). (1.31)

Now we need to find some adapted class P for G and G′ that fulfills the requirements of
proposition 1.21. This proposition then gives us the above statement.
However, not all functors take injective sheafs to injective sheafs. We will now see another
class.
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Definition 1.24. A sheaf F is flabby if all restriction maps F(X) → F(U) are surjective.

As expected, these turn out to be an adapted class for both the pullback and the push-
forward functor.

Proposition 1.25. Let f : X → Y and g : Y → Z be continuous. Then:

1. For F ∈ D(Z), there is a natural isomorphism (g ◦ f)∗F ∼= g∗f ∗F .

2. For F ∈ D(X), there is a natural isomorpmhism g∗f∗F ∼= (g ◦ f)∗F .

Proof. We prove this following the outline of the above remark. In the abelian category case
both statements follow immediately from the definitions. The pullback is exact, so (1) of
course holds. For (2), we note, directly from the definition of the pushforward, that f∗ sends
flabby sheafs to flabby sheafs. Then (2) follows from proposition 1.21.

Lemma 1.26. Let X be a topological space and x ∈ X. For F ∈ D+(X), there is a natural
isomorphism

Hk(Fx) ∼= lim
−→
U∋x

Hk(RΓ(F|U)). (1.32)

Example 1.27. (and exercise) Let j : C× → C be the inclusion. Then (j∗CC×)|0 ∼=
RΓ(CC×).
Using the above lemma, we have

Hk((j∗CC×)|0) ∼= lim
−→
U∋0

Hk(U, (j∗CC×)|U), (1.33)

where we adopt Achar’s notation for hypercohomolgy, i.e. Hk(X,F) = Hk(RΓ(F)). Now
notice that the restriction to open U is the pullback along the inclusion i : U → C. We have
the commutative diagram,

j−1(U) C×

U C,

g

f j

i

with obvious maps. Thus the sheaf j∗CC×)|U is the pushforward along f of the pullback
along g. But the pullback of the constant sheaf is constant. We obtain

Hk(U, (j∗CC×)|U) ∼= Hk(U, (f∗CU)). (1.34)

Note that we can assume U to be some disk centered at 0 in the above colimit. Therefore,
with f−1(U) ≃ S1 and using theorem 1.1.18 from Achar,

Hk(U, (f∗CU))
∼= Hk

sing(S1,C) ∼= Hk(C×,C). (1.35)

Hence, the cohomology is

Hk
sing(S1,C) =

{
C, if k = 0, 1

0, else
. (1.36)
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