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This document contains solutions to (almost) every exercise in the 1999 printing of Kempf’s Algebraic
varieties. When not overly onerous to typeset, it has been endeavoured to make them complete. These
solutions may of course contain errors or typos. Please report any of these to stefand@math.utoronto.ca.
Some sections contain additional notes or exposition, mostly checking exercises left to the reader in the main
text.
update version

1. Algebraic varieties: definition and existence.

1.1. Spaces with functions.

1.1.1. Let f : X1 → X2 be continuous. Then if V ⊂ X2 is open and g : V → k is continuous we have
f∗(g)(x) = (g ◦ f)(x) : f−1(V )→ k is continuous on an open subset, hence regular. Therefore
f is a morphism.

1.1.2. The identity map id: X1 → X1 is continuous and id∗(g) = g, so it pulls back regular functions
to regular functions and is a morphism. If ϕ : X1 → X2 and ψ : X2 → X3 are morphisms,
then ψ ◦ ϕ is continuous. If f : V ⊂ X3 → k, we have

(ψ ◦ ϕ)∗(f)(v) = ϕ∗(ψ∗(f))(v)

for v ∈ (ψ ◦ ϕ)−1(V ) is regular. Therefore spaces with functions form a category.

1.1.3. Let ι : U ↪→ X be inclusion of a subspace. Then ι∗g = g ◦ ι = g �U is regular if g is. Therefore
ι is a morphism as it is continuous by definition. If g : Y → U is a morphism, by the above
ι ◦ g also is. If ι ◦ g is a morphism, let f be regular on U , so that f ◦ ι is regular on X. Then
(ι ◦ g)∗(f)(y) = f(ι(g(y)) = f �U (g(y)) = (g∗ι∗f)(y) = (g∗f)(y) is regular. Therefore g is a
morphism.

1.1.4. Let f : X → Y . Say f is a morphism. We have
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Therefore if f is a morphism then ια ◦ fα is, so fα is. If fα is a morphism for all α, then let
g be regular on X so that g �Vα is regular for all α. Then f∗αg �Vα is regular for all α. As
fα = f ◦ jα we have

f∗αg �Vα= (f ◦ jα)∗g �V α= j∗αf
∗g �Vα ,

so f∗g �Vα is regular on each Uα and is regular.

1.2. Varieties.

1.2.1. We claim k[P1] = k for k algebraically closed. If g(x) = p(x)/q(x) has no poles then q | p as k
is algebraically closed, and g is a polynomial. A polynomial with no pole at ∞ is constant.

1.2.2. Let f be regular on U = A1\{x1, . . . , xn}. Then f(x) = p(x)∏
(x−xi)mi , soD(f) = {x | f(x) 6= 0} =

A1 \ {ξ1, . . . , xr}, the roots of p, which is open. Further, 1
f =

∏
(x−xi)mi
p(x) is regular.

If U =
⋃
Uα =

⋃
(A1 \ {x1

α, . . . , x
nα
α } and f is regular on U , then f = p(x)∏

(x−yi) with the yi
among the xαj . Then f is regular on each Uα. Conversely if fα has no poles in any Uα, f has

no poles in U . Therefore A1 is a space with functions.

1.2.3. Use theorem 1.3.1. If P1 is affine, by the theorem P1 = SpecA and A ' k[P1] = k. but Spec k
is a point where P1 is not; it contains at least 0, 1 ∈ k and ∞.

1.2.4. This is uniqueness of representing objects of representable functors: X ' Y as affine varieties
iff k[X] ' k[Y ]. This uniqueness follows from the Yoneda lemma.

1.3. The existence of affine varieties.

1.3.2 todo

1.3.3 We have 0 ∈
√

0, and if a, b ∈
√

0, then a + b is, by the binomial theorem. If a ∈
√

0 and
b ∈ A, then as our rings are commutative, (ab)n = anbn = 0bn = 0 for some n. So

√
0 is an

ideal. Clearly if A = {0} then A =
√

0. Conversely, if A =
√

0 then for some n, 1n = 1 = 0,
so A is the zero ring.

1.3.4 Let A = k[X1, . . . , Xn] = K[X1] ⊕ · · · ⊕ k[Xn], and because Hom(·, ·) is additive, SpecA =
HomK−Alð(A, k) =

⊕
i Hom(k[Xi], k) = kn. Likewise if A = k[X1, . . . Xn]/(f1, . . . , fm) then

SpecA = {x ∈ kn | fi(x) = 0 for some i}.
1.3.5 If {b1, . . . , bn} generate A, then A(a) is generated by bi

a , so is finitely-generated. It has no
nilpotents as if bn/an = 0 in A(a) then there is m such that am(bna− 0an) = bnam = 0, so
that (ba)maxm,n = 0 and ba = 0. then b/a = 0 in the localization.

1.3.6 First, D(a1) ∩ D(a2) = D(a1a2) because if x is in the intersection, then x(a1) 6= 0 and
x(a2) 6= 0, so x(a1a2) = x(a1)x(a2) 6= 0 because fields are integral domains.
Clearly {D(A)}a∈A is a cover, in fact, D(1) = SpecA. It now follows by elementary topology
from the intersection property that we have a base.

1.4. The Nullstellensatz.

1.4.4 There are several useful versions of Nakayama’s lemma. Its first real use will occur in chapter 5,
and it will be used to prove results of the flavour “it’s enough to check things about morphisms
of vector bundles on fibres.”

Lemma 1 (Nakayama’s lemma for local rings). Let A be a local ring with maximal ideal I,
M a finitely- generated A-module such that M = I ·M . Then M = 0.

Proof. The proof is by induction on the number of generators. If M is generated by a single
element then m then m = im for some i ∈ I, and i 6= 0 implies (1− i)m = 0, but 1− i is a
unit. In general if m1, . . . ,mn be a set of generators. Then we have m1 = i1x1 for x1 ∈ M
and i1 ∈ I. Now x1 =

∑
j ajmj for aj ∈ A, and so m1 =

∑
j ijmj for ij ∈ I. If a1 6= 0, then
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(1 − i1) is a unit, and we have (1 − i1)m1 =
∑
j 6=1 ijmj . In either case, M is generated by

n− 1 elements, and we are done by induction.

Lemma 2 (Nakayama’s lemma in CRing). Let A be any commuatative ring with identity, I
be an ideal of A, and M be a finitely-generated A-module such that M = I ·M . Then there is
a ∈ 1 + I such that aM = 0.

See the section 7.2.7 in Vakil’s The Rising Sea for a proof of several version’s of Nakayama’s
lemma, or §4.1 of Eisenbud’s Commutative Algebra with a View Toward Algebraic Geometry.

1.4.9 We claim points in a variety are closed. If x ∈ SpecA is a point in an affine variety, then by
maximality of the ideal kerx, the Nullstellensatz says that {x} is closed. Now if X =

⋃n
i=1Xi

is a variety with an affine open cover and x ∈ X, then without loss of generality x ∈ X1 and
is closed in this open set. Therefore there is C ⊂ X closed such that {x} = C ∩X1. Taking
unions over the Xi, we can assume that x 6∈ Xj for j > 1. Then {x} = C∩(

⋃n
i=2Xi)

c ⊂ C∩X1

is a closed set in X.

1.5. The rest of the proof of existence of affine varieties/subvarieties.

1.5.1. todo

1.5.2. Affine varieties are functors k−Alg→ Set and morphisms are natural transformations. The
Yoneda lemma now says that the functor Spec: k−Alg→ AffVarop is fully-faithful, and it is
obviously essentially surjective (it is by definition surjective on objects). Therefore we have an
equivalence of categories.

1.5.3. We claim a subset X ⊂ Y of a space with functions is naturally a space with functions, and
the inclusion ι : X ↪→ Y is a morphism. If X is a space with functions, let V ⊂ Y be open, so
that

ι∗ : k[V ]→ k[ι−1(V )] = k[V ∩X]

f 7→ f �V ∩X

but V ∩X is open in X, and this is precisely what regular functions on X look like according
to page 9 of Kempf.
Let U =

⋃
β Uβ ⊂ X. Say f is regular on U . Then there is U =

⋃
α(X ∩ Vα) such that

f(y) = gα(y) for all y ∈ X ∩ Vα. So Uβ =
⋃
α(X ∩ Vα ∩ Uβ) and if y ∈ X ∩ Vα ∩ Uβ, then

f(y) = gα(y), so f �Uβ is regular.
If all f �Uβ are regular, then for all β, Uβ =

⋃
α(X ∩ Vα,β) such that fβ(y) = gα,β(y) on

X ∩ Vα,β for regular gα,β . Then U =
⋃
α,β(X ∩ Vα,β and restricted to any X ∩ Vα,β , f = gα,β

is regular, so f is regular on U .
Next we must show 1

f is regular on D(f). Let U =
⋃
α(X ∩ Vα) so that we have f �X∩Vα= gα

and gα is regular on Vα ⊂ Y . Then

D(f) =
⋃
α

(D(gα) ∩X)

is open in X, and on D(f) ∩X ∩ Vα, 1
gα

= 1
f�X∩Vα

is regular, and D(f) =
⋃
αD(f) ∩ Vα ∩X

is a union of open sets in X on which 1
f is regular, so 1

f is regular on D(f) ⊂ X.

1.5.5 We show that Spec(A/I) has the induced structure of a space with functions. That the Zariski
topology on Spec(A/I) is the subspace topology coming from the Zariski topology on SpecA
is the correspondence theorem for ideals (and in particular for prime/maximal ideals).
Let U ⊂ Spec(A/I) be open and f ∈ k[U ]. Then we can cover U with sets D([hα]) for
[hα] ∈ A/I, and we have

U =
⋃
α

D([hα]) =
⋃
α

Spec(A/I) ∩D(hα).

For each α we have f |D([hα]) = [gα] for some [gα] ∈ (A/I)[hα] = Ahα/Ihα (equality as rings).
This shows that Spec(A/I) has the induced space with functions structure.
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1.5.7 Let X ⊂ Y be a subspace of a space with functions. We claim Z → X is a morphism iff
Z → X → Y is a morphism, for all Z. Let ι : X ↪→ Y . Then if Z → X, the composite
Z → X ↪→ Y is a morphism. If Z → X ↪→ Y is a morphism with ϕ : Z → X, let f be regular
on U ⊂ X. Then U =

⋃
α(X ∩ Vα) and f �Vα= gα is regular on Vα ⊂ Y . So

(ι ◦ ϕ)∗gα = (ι ◦ ϕ)∗(f �V α) = ϕ∗(�X∩Vα) = (ϕ∗f) �ϕ−1(X∩Vα)

is regular on (ι ◦ ϕ)∗f �Vα= ϕ−1(X ∩ Vα). Then
⋃
α ϕ
−1(X ∩ Vα) = ϕ−1(U) and ϕ is a

morphism because ϕ∗f is regular.

1.6. An and Pn.

1.6.2 If A2 \ {0} was affine, we would have A2 \ {0} ' A2 as affine varieties, because they have
the same coordinate algebras by the lemma. Let ϕ : A2 → A2 \ {0} be the isomorphism, and
consider the isomorphism ϕ∗ : k[X1, X2] → k[X1, X2]. Considering the natural grading, we
see ϕ∗ is determined by

X1 7→ a1X1 + b1X2 + c1 X2 7→ a2X1 + b2X2 + c2.

We can recover ϕ by (abusing notation)

ϕ(X1, X2) = (ϕ∗(X1), ϕ∗(X2)) = (a1X1 + b1X2 + c1, a2X1 + b2X2 + c2) 6= 0.

That ϕ∗ is surjective says that det

(
a1 a2

b1 b2

)
6= 0, but this contradicts ϕ avoiding the origin.

1.6.4 We claim all morphisms Pn → X whereX is quasi-affine are constant. We have Pn → X ↪→ Am,
so it enough to show that all morphisms Pn → Am are constant ∀m,n. For n = 0 the answer

is obvious. Projecting onto the i-th coordinate of Am gives Pn f→ Am → A1 i.e. an element of
k[Pn] = k. Therefore f is constant.

Remark 1. Compare this to the proof that there an no compact complex submanifolds of Cn.

1.6.5 We claim closed subsetsX ⊂ Pn are precisely the sets {(X0, . . . , Xn) | fi(X0, . . . , Xn) = 0 ∀i ∈ I}
and some index set I, where the fi are homogeneous polynomials. Say {fi}i are homogeneous
polynomials and let X be defined by the above. Then

π−1(X) =
{

(Y0, . . . , Yn) ∈ An+1 \ {0}
∣∣ fi(Y0, . . . , Yn) = 0 ∀i

}
,

and so π−1(X) is closed; it is
⋂
i zeros(fi). Conversely, say X ⊂ P1 is closed. Then π−1(X) is

closed by definition and there are polynomials fi such that

π−1(X) =
{

(Y0, . . . Yn)
∣∣ fi(Y0, . . . , Yn) = 0 ∀i, ∃λ ∈ k× s.t. (Y0, . . . , Yn) = λ(X0, . . . , Xn)

}
where (Xi) is a point in X. The fact that fi(λy) = fi(y) = 0 proves the homogeneous
components of the fi vanish on X. Conversely, if these components vanish, fi vanishes.
Therefore (in the notation of the lemma)

X = {x = (X0, . . . , Xn) ∈ Pn | fi,j(x) = 0 ∀0 ≤ j ≤ deg fi, i ∈ I} .

Lemma 3. Let k be infinite and f be as above. Then each homogeneous summand of f
vanishes on X.

Proof. Let x ∈ X and let fi denote (in constrast to the above) the degree i (homogeneous)
component of f . Then

f(λx) = λdeg ffdeg f (x) + · · ·+ λf1(x) + f0 = 0

for all λ ∈ k. That is, the polynomial

gx(t) = fdeg f (x)tdeg f + · · ·+ f1(x)t+ f0

has infinitely many zeros, hence is the zero polynomial.
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Remark 2. The fi,j should be exactly the generators of the homogeneous ideal defining X as
a subvariety.

2. The preparation lemma and some consequences.

2.2 The Hilbert basis theorem.

2.2.1 We claim all ideals of a ring A are finitely-generated iff all submodules of finitely-generated
A-modules are finitely- generated. Ideals of A are A-submodules of the finitely-generated
A-module A, so the second condition implies the first. Conversely, if M is an A-module with
one generator, then M ' A/I for an ideal I ⊂ A as A-modules. One checks that A-submodules
of A/I are ideals of A/I, hence if N ⊂M is a submodule, then by the correspondence theorem,
M is finitely-generated, as ideals of A are. Now let M be generated by {x1, . . . , xn}. If N ⊂M
is a proper submodule than without loss of generality xn 6∈ N . Therefore N ⊂ 〈x1, . . . , xn−1〉,
and by induction the A-module 〈x1, . . . , xn−1〉 has all submodules finitely-generated.

2.3 Irreducible components.

2.3.6 We claim any topological space X is irreducible iff any non-empty open subset is dense. Let
X be irreducible and U ⊂ X nonempty and open. Then X = U ∪ (X \ U) = U ∪ (X \ U).
Clearly X 6= X \ U , so X = U . Conversely, let X = X1 ∪X2 be a union of closed subsets.
If X 6= X1, then X \X1 is nonempty open, hence dense. Therefore X \X1 = X2 \X1 = X.
Then (X2 \X1) ⊂ X2, and so X ⊂ X2 and X = X2.

2.3.7 Let X be irreducible and U ⊂ X be open. We claim U is irreducible. Let V ⊂ U be open,
so V is open in X. Then V = X and so the closure of V in U is U . By the above, U is
irreducible.

2.3.8 Let X be covered by open irreducible subsets. We claim X is connected iff it is irreducible.
Say X =

⋃
α Uα as above and X is connected with X = X1 ∪ X2 for closed Xi. Then

X =
⋃
α(X1 ∩ Uα) ∪

⋃
α(X2 ∩ Uα). and for each α, Uα = (X1 ∩ Uα) ∪ (X2 ∩ Uα). These sets

are closed in Uα so either Uα ⊂ X1 or Uα ⊂ X2. Therefore

Xi =
⋃
α

Uα⊂Xi

Uα

and the Xi are open and closed. Therefore X = X1 or X = X2. Conversely, irreducible spaces
are always connected.

2.3.9 Let {Ui} be an open cover of a Noetherian space X. We claim the components of X are
precisely the closures of the components of the Ui. Let Y be a component of some U = Ui.
Then Y ⊂ X is closed and irreducible. If Y ⊂ Z ⊂ X for a component Z, then

Y = Y ∩ U ⊂ U ∩ Z ⊂ X,

and U ∩ Z is irreducible because it’s open in Z, and closed in Ui as Z is closed. Therefore
Y = U ∩ Z so Y = U ∩ Z = Z as open sets are dense in Z. This says Y is an component.
Conversely, if Y a component of X, write Ui = Zi,1 ∪ · · · ∪Zi,1. Then Y ∩Ui is irreducible and
closed in Ui. If Y is not a component of Ui, by 2.3.4 without loss of generality Y ∩ Ui ⊂ Zi,1.
By irreducibility of Y , Y ∩ Ui = Y ⊂ Zi,1, so Y = Zi,1 and Y is the closure of a component of
Ui. If Y ∩ Ui is a component of Ui, then Y = Y ∩ Ui anyway.

2.4 Affine and finite morphisms.

2.4.2 (a) We claim the inclusion i : X ↪→ Y of a closed subvariety is finite. Let Y =
⋃n
i=1 Ui with

Ui = SpecAi, so that i−1(Uj) = Uj ∩X is a closed subspace of Uj , hence affine. We have

k[Uj ∩X] = k[Spec(Ai/Ii)] = Ai/Ii,

where Ii is the ideal of vanishing for X ∩ Ui. Therefore i is finite, as Ai/Ii is a finitely-
generated A-module.
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(b) Let f be a regular function on X. We claim i : D(f) ↪→ X is an affine morphism. Write X =⋃n
i=1 Ui via an affine open cover, so that i−1(Ui) = D(f)∩Ui = {x ∈ X | f(x) 6= 0 ∀x ∈ SpecAi}

is open in Ui = Spec(Ai). This set is precisely Spec((Ai)f�Ui ), where f �Ui is the element
of Ai defined by the map φ and the regular function f �Ui .

2.5 Dimension.

2.5.6 Let X =
⋃n
i=1 Ui be a variety with an affine cover. We claim dimX = maxi dimUi. Clearly

dimUi ≤ dimXi, so max dimUi ≤ dimX. Say

Xp ( · · ·X1 ( X0 ⊂ X

is a chain in X. Then Xi ∩ U is irreducible, and closed in U for any U such that U ∩Xp 6= ∅
(by assumption, one of the Ui will do). Thus we have

Xp ∩X ( · · · ( X0 ∩ U,

and dimX ≤ dimU ≤ maxi dimUi, whence equality.

2.5.7 Let Z ⊂ X be a closed subset of an irreducible variety. We claim dimZ = dimX iff Z = X.
Say dimZ = dimX = p but Z ( X. There is therefore a chain

Yp ( Yp−1 ( · · · ( Y0 ⊆ Z

in Z, and as X is irreducible, we get the chain

Yp ( Yp−1 ( · · · ( Y0 ( X

of length p+ 1 in X. This is a contradiction. The converse is obvious.

2.6 Hypersurfaces and the principal ideal theorem.

2.6.6 (The converse to the principal ideal theorem is false.) ConsideringH =
{

(X,Y, Z)
∣∣XY − Z2 = 0

}
⊂

A3, we see H includes the line L = {(X,Y, Z) |X = Z = 0}. (Carefully, this is noting that
(XY −Z2) ⊂ (X,Z) and the ideal (X,Z) is the L.) Note g(X,Y, Z)) = XY −Z2 is regular, so
H is a hypersurface of with dimH = 2 and dimL = 1 = 3−2. In k[H] = k[X,Y, Z]/(XY −Z2),
I(L) is generated by X̄ and .Z̄, and this ideal is not principal (consider the natural grading
on the quotient).

touch up?

3. Products; separated and complete varieties.

3.1. Products.

3.1.2

3.1.4 Let X and Y be quasi-affine. Then for some m,n, we have X ⊂ U ⊂ An and Y ⊂ V ⊂ An.
We have X × Y ⊂ U × V ⊂ An, and U × V is open in product An × Am. Thus X × Y is
locally closed,and X × Y is quasi-affine.

3.1.5 We claim An ' A1 × · · ·A1. It is enough to show that k[X] ⊗k k[Y ] ' k[X,Y ]. Define
k[X]× k[Y ]→ k[XY ] by (P,Q) 7→ PQ. This is bilinear, so induces a map out of the tensor
product. It is easy to see this map is a bijection.

3.1.6 We claim dim(X×Y ) = dimX+ dimY for varieties X and Y . If this holds for affine varieties,
then by the proof of 3.1.3, dimXi × Yj = dimXi + dimYj , so

dim(X × Y ) = max
i,j

dim(Xi × Yj) = max
i

dimXi + max
j

dimYj = dimX + dimY

by the last section. For affine varieties, we must show that there is a finite surjective morphism
X � AdimX , so that X × Y � AdimX+dimY , after which we appeal to the claim for affine
spaces. The claim for affine spaces follows from 3.1.5.
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To prove the claim, note by the Noether normalization lemma, we can find k[X1, . . . , XdimX ] ↪→
k[X] an integral extension, so that X � AdimX is a surjective finite morphism. Therefore
X × Y � An+m is also surjective of finite type, and so dim(X × Y ) = dimAn+m = n+m by
3.1.2 and 2.5.2 taken together.
If X and Y are irreducible and that X×Y = Z1∪Z2. We have morphisms ιy : X → (X×Y ) :=
Z sending x 7→ (x, y), so Xi :=

⋂
y∈Y ι

−1
y (Zi) ⊂ X is closed. Now, {x} × Y is irreducible, and

for all x we have x× Y = ((x× Y )∩Z1)∪ ((x× Y )∩Z2). Therefore x× Y ⊂ Z1 or Z2. That
is, x× Y ⊂ Z1 ∪ Z2 , whence without loss of generality X = X1. Then Z = Z1.

3.2. Products of projective varieties.

3.3. Graphs of morphisms and seperatedness

3.3.1. Obviously (f, 1Y )−1(∆Y )−1 = {(x, y) | f(x) = y}, which is the claim.

3.3.3 The Segre embedding is given explicitly as

S : ([X0 : X1 : · · · : Xn], [Y0 : · · · : Yn]→ [X0Y0 : X0Y1 : · · · : X1Y0 : · · · : XiYj : · · · : XnYn]

and so when (X) = (Y ), Xi = Yi and XiYj = YiXj . Therefore ∆Pn = S(Pn×Pn)∩{Zij = Zji}
in Pnm+n+m.

3.3.6 Let f, g : X → Y be morphisms, where Y is separated. If f = g on an open dense set, f = g
everywhere. Let U be open dense in X and consider ϕ : X → Y ×Y given by x 7→ (f(x), g(x)).
Then ϕ(U) ⊂ ∆Y×Y and ϕ is continuous, so

ϕ(Ū) = ϕ(X) ⊂ ϕ(U) ⊂ ∆Y = ∆Y ,

and f = g on all of X.

3.3.7 Let h : O → Y , where O ⊂ X is dense open, and Y is separated. We claim there is a maximal
open set to which h extends as a morphism, and that this extension is unique. Build the usual
partial order by “extends” on pairs (U, f) where U ⊃ O is open and f extends h. Given a chain,
taking the union gives an upper bound. By Zorn’s lemma, there is a maximal element (U, f).
Thus h has at least one maximal extension. Given another one (U, f ′), we have f ′ = h = f on
O which is dense in particular in U , so f = f ′ is unique.

3.5 Cones and projective varieties.

3.5.2 Mimicking the proof of the claim in the proof of lemma 1.6.1, one shows that D(f) is isomorphic
to Spec(k[C(X)](f))degree 0.

3.7 Complete varieties.

3.7.1 Let X be complete and Z ⊂ X be closed. Then

∆Z = ∆X ∩ (Z × Z)

as before and Z is separated. Given closed Z ′ ⊂ Z × Y , note that Z × Y ⊂ X × Y is closed,
so that Z ′ ⊂ X × Y is closed. Thus πY (Z ′) is closed in Y , and this is equal to the projection
from Z × Y .
Say X is complete and Y is separated, and ϕ : X → Y is a morphism. First we show that ϕ(X)
is separated. By lemma 3.3.2, graph(ϕ×ϕ) is closed in X×Y ×Y , because Y ×Y is separated
(which holds by the same lemma). As X is complete, πY×Y (graph(ϕ×ϕ)) = ∆ϕ(X) ⊂ Y ×Y is
closed in Y ×Y , and by the same logic, ϕ(X) is closed in Y . Therefore ∆ϕ(X) ⊂ ϕ(X)×ϕ(X)
is closed.
Now let W be any variety and let Z ⊂ ϕ(X)×W be closed. Consider the morphism

ψ = ϕ× id : X ×W → ϕ(X)×W.

Note that ψ−1(Z) is closed in the source, and that πW (ψ−1(Z)) = πW (Z) is closed in W .
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Remark 3. Being separated is a Hausdorff-like condition, and being complete is therefore a
compact-like condition.

3.7.3 Let X = U ∩ C ⊂ An be a quasi-affine complete variety. Then we claim X is a finite set. It is
enough to show that irreducible quasi-affine complete varieties are points and then use that
varieties are Noetherian spaces. Consider a coordinate Xi on An. Then if k[C] = k[An]/I,
consider [Xi] �U , which is a regular function on an irreducible complete variety, hence is
constant. This holds for each i, so the components of X are points.

Remark 4. This also is reminiscent of the classification of embedded compact complex sub-
manifolds of Cn.

Remark 5. Abelian varieties, defined in the next section of Kempf, are irreducible complete
algebraic groups, in particular, varieties. This gives a source of examples of algebraic groups
which are not linear, by the last exercise.

3.10 Blowup of An at the origin.

3.10.1 (a) We claim Z = {(p, `) | p ∈ `} ⊂ An × Pn−1 is a closed subvariety. Note that Zc =
{(p, `) | p 6∈ `} ⊂ (An \ {0}) × Pn−1 is the preimage of ∆c

Pn−1 under the map f : An \
{0})× Pn−1 → Pn−1 × Pn−1 sending (p, `) 7→ ([p], `). As Pn−1 is separated, Zc is open in
(An \ {0})× Pn−1, hence is open in An × Pn−1. Therefore Z is closed.

(b) We claim the projection πAn : Z → An is birational. Let V = An \ {0} and U =
Z ∩ (An \ {0} × Pn−1. Then both these sets are open and dense in their respective
supersets. If p 6= 0, then p and 0 determine a unique line in An, so πAn is an isomorphism
on between U and V . The inverse maps p 7→ (p, [p]).

(c) We claim (Z, πPn−1) is a locally trivial line bundle over Pn−1. Note that Z is actually the
tautological bundle over Pn−1, so it is locally trivial: take U in Z such that orthogonal
projection is an isomorphism from lines in U to A1 i.e. U is defined by nonvanishing of
one of the coordinates Xi on An. For example in A2

R if ` = {x = y} and we project onto
the x-axis, the neighbourhood of U on which πP1

R) is trivial D(y) ⊂ P2
R i.e. we remove only

the vertical line.

(d) The exceptional divisor E = π−1
An ({0}0 is the image of the zero section of the bundle in

(c). So locally Z looks like A1 ×D(Xi) for some coordinate Xi of An. Then locally E is
defined by the equation Xi = 0. (Note D(Xi) ⊂ Pn−1 translates to the condition that
Xi 6≡ 0, and not Xi 6= 0.)

4. Sheaves.

4.1. The definition of presheaves and sheaves.

4.1.4 Let X = U t V with the topology {∅, U, V,X}, where U and V are nonempty sets. Define
F(U) = {∗} and F(V ) = {∗}, and F(X) = {a, b} with a 6= b such that a � U = ∗ and
b � U = ∗. There is no smaller neighbourhood of X. Therefore ax = bx, and likewise with
points in V . But a 6= b in F(X). Therefore F is not decent. Presheaf axiom (b) is vacuous,
and (a) holds by construction.

4.1.5 Let F be the presheaf of bounded functions on R. Clearly F satisfies the uniqueness sheaf
axiom; functions that agree pointwise agree. Setting fn(x) = xχ[n,n+1](x), each fn is bounded,
and they satisfying the patching condition, but the function that they assemble to is f(x) = x,
which is not bounded on R.

4.1.6 Let F be the holomorphic functions on a domain U ⊂ C such that z dfdz = 1. Clearly F is a
presheaf under restriction of functions, with uniqueness as U is connected. If U =

⋃
α Uα is

a cover with the patching condition satisfied, then the fα glue to a function on U which is
holomorphic as this is a local property. If z0 ∈ U , then z0 ∈ Uα for some α and on Uα,

z lim
w→0

f(w)− f(z0)

w − z0
= z �Uα lim w→0

w∈Uα
fα(w)− f(z0)

w − z0
= 1.
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Therefore on Uα ∩ Uβ , z �Uα
dfα
dz = 1 = z �Uβ

dfβ
dz , so by gluing and uniqueness applied to the

holomorphic functions z �Uγ
dfα
dz , z dfdz = 1 on U .

4.1.7 For F from 4.1.6, we claim F0 is empty, and all the other stalks are (non-canonically)
isomorphic to C. Indeed, there are no holomorphic functions such that z dfdz = 1 on a set
containing z = 0, so the stalk at 0 is empty. Away from zero, we claim that f 7→ f(w) descends
to a bijection Fw → C. Indeed, the holomorphic functions are their own Taylor series, and
the differential equation means that f (n) = (−1)n−1z−n. Therefore in a small neighbourhood
of w, the Taylor differ only in the leading term, i.e. are determined totally by f(w).

4.1.8 Let σ and τ be sections in F(U) for decent F . We claim V := {x ∈ U |σx = τx} is open.
Notice that V is just the complement of the support of σ − τ , and the support is closed.
Therefore V is open.

4.1.9 We collect some examples of sheaves where V is closed. A vacuous example is F from 4.1.7: it
follow from 4.1.8 that V is open in U , and we know that fw = gw iff f(w) = g(w), so if f 6= g,
V must be empty. Hence it is closed. If f = g it is all of U , which is closed (in U) as well.

4.2. The construction of sheaves. The sheafification procedure given in Kempf if unusual, so I will
use the usual presentation in this section. Just about nowhere are the details written down, so I
will write them down now.

Proposition 1 (Sheafification.). Let F be a presheaf. Then there is a unique sheaf F# with a
morphism θF → F# of presheaves such that for any morphism α : F → G of presheaves with G
a sheaf, there is a unique morphism of sheaves α̃ such that α = α̃ ◦ θ. If F is a sheaf already,
F# ' F . A sheaf and its sheafification have the same stacks, and θ induces an isomorphism of
them.

Proof. Uniqueness follows as the sheafification solves a universal mapping problem. This implies
the last sentence. For existence, put

F#(U) =

{
f : U →

∐
x∈U
Fx

∣∣∣∣∣∀x ∈ U ∃V 3 x and s ∈ F(V ) s.t. f(y) = sy ∀y ∈ V

}
.

Note that uniqueness is obvious; the sections of F# are functions. Likewise they glue automatically;
we need only check the glued function satisfies the criterion still. Say f is glued from functions fα.
Then if x ∈ U , x ∈ Uα for some α and f(x) = fα(x). Therefore there is a smaller neighbourhood
W of x such that f(y) = fα(y) = sy for a section s in F(W ). This shows gluing holds.

Define θ(U)(s) = x 7→ sx. We claim evaluation f 7→ f(x) ∈ Fx gives an isomorphism F#
x → Fx.

Clearly if f and g in F#(U) are in the same germ, they agree at x. Therefore the evaluation is
well-defined. Clearly evaluation is surjective; if sx ∈ Fx and s ∈ F(V ) take f : y 7→ sy in F#(V ).
For injectivity, if f(x) = g(x) then on a small neighbourhood V of x, f(y) = sfy and g(y) = sgy for

some sections sf and sg such that sfx = sgx, so these sections agree on a small neighbourhood, and
f and g on a small neighbourhood. This also shows θ induces an isomorphism on stalks.

Here is the key insight in verifying the universal property: if G is a sheaf, we have now shown
that G ' G#, via θ. Therefore is is enough to get a morphism into G#. Given α(U), we get maps
{αx}x∈U , and let α̃(U)(f) be the composite

U
f−→
∐
x∈U
Fx −→

∐
x∈U
Gx.

For all x ∈ U there is V and s ∈ F(V ) such that f(y) = sy, so that α̃(U)(f)(x) = (α(V )(s))x and
α(V )(s) ∈ G(V ). If f = θ(U)(s) : x 7→ sx, then α̃(U)(f)(x) = αx(sx) and α(U)(s) ∈ G(U) is in
this language x 7→ (α(U)(s))x. Therefore the triangle commutes.

4.2.4 Let F(U) = kwith identity restriction maps. We claim this sheaf is isomorphic to the sheaf of
constant k-valued functions. This is obvious. Further, we claim the sheafification F# is the
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(sheaf) of locally constant k-valued functions on X. Uniqueness obviously holds for F#, and if
a family of sections satisfies the patching condition, we can define a locally constant function
using them, in the obvious way. Therefore F# is a sheaf. Let G be any sheaf with a morphism
of presheaves α : F → G. Given a locally constant function f we get constant functions fi on
connected components Ui of U . Define α̃(U)(f) to be unique element of G that restricts to
α(Ui)(fi) on Ui ⊂ U . Note this section exists as the gluing hypothesis is vacuous; connected
components do not intersect.

4.2.5 This is tautological, if G is decent.

4.2.6 This contained in the proposition above.

4.3. Abelian sheaves and flabby sheaves.

4.3.4 We claim the presheaf F/G is always decent. It is enough to show that if τy = 0 for all y ∈ V ,
then τ = 0 ∈ F(V )/G(V ). We have Wy 3 y open in V such that τ �Wy

= 0. Thus we have
τ �Wy

∈ G(V ) for all y ∈ V . Therefore τ ∈ G(V ) and τ is 0 in the quotient.

4.3.5 (a) It is obvious that d : C∞ → Ω is a group homomorphism for every open U ; ∂
∂x and ∂

∂y are
linear, and d commutes with restrictions as partial derivatives are determined locally.

(b) Any section in IΩ(U) is gotten by gluing elements from d(C∞(V )) for some V ↪→ U by
definition. Therefore the elements of IΩ(U) are locally of the form df for f ∈ C∞(V ).

(c) Let R# be the sheaf of locally constant functions. Then

0 R# C∞ IΩ 0d

is exact. The only thing to note is that df = 0 implies only that f is locally constant (note
that U need not be connected).

(d) See examples 4.7 and 4.26 in Lee’s Differential Manifolds for a 1-form that is locally exact
but not exact.

4.3.6 Given a diagram

F G

F ′ G′,
we extend to a diagram

F G pre-(F/G) G/F

F ′ G′ pre-(G′/F ′) G/F ′.
For any open U , we naturally get morphisms of presheaves into the quotient presheaves, and
the horizontal morphisms into the quotient sheaves exist by definition. Therefore we have a
morphism of presheaves pre-(G/F0 =)→ G′/F ′, and so we get the last vertical morphism in
the category of sheaves out of G/F via the universal property.

4.3.7 We complete an exact commutative diagram

0 F1 F2 F3 0

0 G1 G2 G3 0

of abelian sheaves to an exact diagram
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0 0 0

0 F1 F2 F3 0

0 G1 G2 G3 0

0 G1/F1 G2/F2 G3/F3 0

0 0 0.

We get the morphisms of sheaves from exercise 4.3.6, and we can check exactness on stalks.
But it is well-known that this procedure in Ab produces an exact diagram.

Proposition 2.
stalk-exactness equivalence

Proof. todo

5. Sheaves in algebraic geometry.

5.1. Sheaves of rings and modules.

5.1.1. Let M be a sheaf of A-modules. We have a sheaf SymnM defined to be the sheafification of
the presheaf U 7→ Symn

A(U)M(U). If M is locally free, then let X =
⋃
α Uα be an open cover

such that M �Uα' A �⊕IαUα
. Note that in this case 'nAUα M(Uα) and its restrictions are all

direct sums of (sections of) Aa �Uα . Therefore the presheaf Symn agrees with its sheafification
when restricted to Uα, and is a locally free sheaf. The same goes through for the exterior
algebra.

5.1.2. Let M and N be sheaves of A-modules. Define M⊗A N to be the sheaf associated to the
presheaf U 7→ M(U)⊗A(U) N (U). The restriction maps for this presheaf work as follows. If
V ↪→ U , then we have A(U)→ A(V ) and we get a map of A(U)-modules

M(U)⊗A(U) N (U)→M(V )⊗A(V ) N (V )

induced from the A(U)-bilinear mapM(U)×N (U)→M(V )⊗A(V )M(V ) sending (m,n) 7→
m �V ⊗n �V . The bilinearity follows from the compatibility of scalar multiplication and
restriction.
Define HomA(M,N )(U) = Hom(M �U ,N �U ), where the right-hand side is morphisms of
sheaves of A �U -modules. This will be a sheaf whenever the target is a sheaf; M need only be
a presheaf. The restriction maps are defined simply by, if V ↪→ U , then send

Hom(N �U ,M �U ) Hom(N �V ,M�V )

α α �V .

Say that α ∈ HomA(N ,M)(U), U =
⋃
α Uα such that α �Uα= 0 ∀α. Let n ∈ N (U). Then

we see that, for all α,
(ϕ(U)(n)) �Uα= ϕ(Uα)(n �Uα) = 0

for all n. So ϕ(n) = 0 ∈ M(U). Taking V =
⋃
α(V ∩ Uα) for all V ↪→ U open, we see that

ϕ = 0 in the hom sheaf. For gluing, say U is as above and we have a family of ϕα such that
ϕα �Uαβ= ϕβ �Uαβ . If V =

⋃
α(V ∩ Uα) is an open cover of V , and if n ∈ N (V ), we have

(ϕα(n)) �V ∩Uα∩Uβ ϕα �V ∩Uα (n �V ∩Uα∩Uβ ) = ϕβ �V ∩Uα (n �V ∩Uα∩Uβ ) = (ϕβ(n)) �V ∩Uα∩Uβ
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so that {ϕα(n)} glues inM(V ). We must check that it glues to a morphism of A(V )-modules,
but this follows easily. If r ∈ A(V ) then for α, we have (rϕ(n)) �Uα∩V = r �Uα∩V ϕ(n) �V ∩Uα ,
while also (ϕ(rn)) �V ∩Uα= ϕ �Uα∩V ((rn) �Uα∩V ) = r �U∩∩V ϕ �Uα∩V (r �Uα∩V ). By
uniqueness in the target sheaf we have ϕ(rn) = rϕ(n). The other properties are verified with
similar arguments.

5.1.3. Let U be a set in an open cover of X such that M|U ' O⊕nU . Then (
∧nO⊕nU )(V ) ' OU (V )

for all V ⊂ U as OU -modules. Therefore detM is invertible. Recall that
∧

(M ⊕ N) =∧
(M)⊗A

∧
(N) for free A-modules M and N over a commutative ring A. The given short

exact sequence is “locally split” as O⊕nU is a free OU -module and so all Ext groups are trivial.
Therefore locallyM2 'M1⊕M3 and so det(M2) ' detM1⊗A detM3 because this equality
holds as sheaves on the base of topology given by affine opens, for example.

5.3 Coherent sheaves.

5.3.2 We claim a quasi coherent OX -submodule M of a coherent OX -module N for a variety X is
actually coherent. Without loss of generality X = SpecA is affine where A is Noetherian. By
proposition 5.2.2, M' M̃ for an A-module M , and likewise we get N ⊃M . By proposition
5.3.1, N is finitely-generated and it is enough to show the same of M . But A is Noetherian.

The vector bundles OPn(m). We will expand here on why OPn(m) �D(Xi)= Xm
i OPn �D(Xi).

It is enough to note that if f ∈ OPn(m)(U ∩D(f)), then by definition, f is a homogeneous regular
function of degree m on π−1(U ∩D(f)) ⊂ An+1, and so is 1

Xi
where Xi is viewed as a regular

function on An+1. Therefore 1f =
Xmi
Xmi

f = Xm
i ( f

Xmi
) is still homogeneous of degree m, and f

Xmi
is

regular on π−1(U ∩D(Xi)).

5.4 Quasicoherent sheaves on projective varieties.

5.4.2 If M =
⊕∞

n=1Mn is a graded k[C(X)]-module, then we have M̃ ' Ñ as quasicoherent sheaves
on X, where N =

⊕∞
n=n0

, since the localizations M(f) and N(f) are isomorphic for any
homogeneous function f : we have

m

fd
=
fNm

fN+d

for any N ∈ N and so can always find representatives in higher degrees. In particular the
zeroth-degree part of this graded localized module is zero and therefore the associated sheaf
is zero restricted to every D(f), and these cover X. But it will not be true that M ' N as
graded k[C(X)]-modules. In particular, if M has finitely-many nonzero direct summands,
then M̃ = 0.

Remark 6. If we apply this construction to the Serre twists of the k[C(x)]-module k[C(x)], where
we define a shifted grading by k[C(X)](m)i = k[C(X)]i+m, we get by definition the line bundle
OPn(m).

Example 1 (A sheaf that is not quasicoherent). This is example is taken from an MSE answer by
Georges Elencwajg, who in turn extracted the example from https://stacks.math.columbia.

edu/tag/01B1. The definitions and lemmas in §5.1 of Liu are of great help.

We will exhibit a sheaf F and a point over which F cannot be generated by sections. This will

show that besides not being quasicoherent, there is no surjection O(I)
X � F .

Let X = R and j : (0,∞) ↪→ X be the open inclusion. Consider F = i!Z(0,∞). On any connected
neighbourhood U 3 0 we have F(U) = {s ∈ Z(U ∩ (0,∞| supp s is closed in U}, but unless s = 0
supp s = U ∩ (0,∞) is never closed in U , so F(U) = 0 for all such U . But j! is extension by zero
on stalks, so j!Z has many nonzero stalks to the right of 0, and therefore F cannot be generated
by sections over U . By lemma 5.1.3 (p.175) of Liu, there cannot be a surjection of the form above.

5.5 Invertible sheaves
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Proof of lemma 5.5.1 The section σ exists for any U because L is invertible, and note that
any open set U is dense. Let x ∈ X and let U be a a neighbourhood of x such that L �U' OX �U .
Then σx is a unit in Lx ' OX,x, and multiplication Ix → Lx by σx is an isomorphism.

Divisors and invertible sheaves of fractional ideals The proof that ID is invertible for an
irreducible divisor D is the proof of a local converse to the Principal Ideal Theorem from §2.6.

Proof of lemma 5.5.4. To say that IE is locally the image of OPn(−e) under multiplication
by f , we use that, by the second-last sentence of the proof of the first claim in the proof of the
last theorem, locally (f) (or f̃ in that notation) is a basis of IE . Then use the argument from
the second paragraph of the proof of lemma 5.5.1. Note that IE is being defined as a subsheaf
of Rat(Pn). The phrase “thus as IE generates Pic” I found confusing: what is pertinent is that
it’s just been shown that for any E, IE ' OPn(−e) for an integer −e, and the irreducible divisors
generate IFI which surjects onto Pic. Thus we see that the elements of Pic are at most the twisting
sheaves, which have no isomorphisms between themselves by the next part of the proof.

Remark 7. Note that P1 is the flag variety for the algebraic group SL2, and that the cocharacter
lattice of SL2 is Z.

5.7 Morphisms to projective space and affine morphisms

5.7.2 todo

5.7.3 Let X be affine. Then we claim OX is very ample. Let X =
⋃n
i=1D(fi) be an open cover of

X. On D(fi), define

ϕi : x 7→ [f1(x)/fi(x) : · · · : 1 : · · · : fn(x)/fi(x)],

where we recall that strictly speaking, f(x) := x(f). On D(fi) ∩D(fj) = D(fifj), multiplica-
tion of each coordinate by fi(x)/fj(x) shows ϕi = ϕj on D(fi) ∩D(fj) = D(fifj). Therefore
these morphisms glue to a global morphism ϕ : X → Pn. It is easy to see that X is isomorphic
to ϕ(X).

5.7.4

5.7.5

5.7.6 As L is invertible and X is projective, L ' OX(m) for some m, in the notation of p.60. Then
OX(m)⊗n = OX(nm), so we use corollary 5.4.3 to get a surjection of the kind needed to apply
lemma 5.7.1.

6. Smooth varieties and morphisms

6.1 The Zariski cotangent space and smoothness

6.1.1 If f in OX,x is the germ of a constant function, then f − f(x) = 0 even before the quotient.
Property (b) follows from linearity of the evaluation map OX,x → k and the quotient map
mx → mx/m

2
x. For the Liebnitz rule, let f and g be germs in OX,x. Then

fg − f(x)g(x)− f(x)g + f(x)g(x)− f(x)g + f(x)g(x) = fg − f(x)g − g(x)f + f(x)g(x)

= (f − f(x))(g − g(x)) ∈ m2
x

Therefore the two sides of the Liebnitz rule are equal in the quotient.
Furthermore, let ψ : OX,x →W be k-linear and obey (a),(b),(c). Consider the diagram

OX,x W

mx mx/m
2
x.

φ

ψ

ψ′
λ
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We have ψ(f) = ψ(f −f(x) ·1) by (a), thus inducing ψ′. Here φ(f) = f −f(x). We must show
that ψ′ dies on m2

x. Let f = f1f2 ∈ m2
x. Then ψ(f1f2) = f1(x)ψ(f2) + f2(x)ψ(f1) = 0, and

φ(f1f2) = f1f2 − f1(x) − f2(x) = f1f2. Therefore ψ′(f1f2) = ψ(f1f2) = 0. Thus ψ′ factors
through the quotient, yielding λ. Notice the ψ followed by the quotient map is exactly d(−)|x.

Remark 8. Not only is TxX affine and has dimension equal to dim Cotx(X), it is isomorphic
to Adim Cotx(X) because Sym Cotx(X) is isomorphic to the polynomial algebra in dim Cotx(X)
indeterminates.

6.2 Tangent cones

6.2.5 todo

6.3 The sheaf of differentials

6.3.4 We find the Zariski cotangent space of C = {x2 = y3} at all its points. It will be one-
dimensional at all points except the origin, where it will have dimension two. A drawing in
the heuristic case of R2 is very helpful. By lemma 6.1.2 (c), we have Cotx(C) = nx/n

2
x. We

have A = k[x, y]/(x2 − y3), so any regular function can be written xf(y) + g(y) for f, g ∈ k[y].
Thus n(0,0) is made up of functions where g(y) ∈ yk[y]. Multiplying gives that functions in
n2

(0,0) obey f ∈ yk[y] and g ∈ y2k[y]. Thus n(0,0)/n
2
(0,0) = {αx+ βy} has dimension two. It is

in fact just A2.
At (a, b) 6= (0, 0), the ideal corresponding to (a, b) is (x− a, y − b) in A. We use the Taylor
series (polynomial) of f = y3 − x2 = 0 ∈ A. Then

f = 0 = 3b2(y − b) + 6b(y − b)2 + 6(y − b)3 − 2a(x− a)− 2(x− a)2.

Thus df = 0 = 3b2(y − b) − 2a(x − a) just picks out the linear terms. Therefore y − b =
(2a/3b2)(x − a) in Cot(a,b)(C). Thus we have n(a,b)/n

2
(a,b) = ((x − a, y − b))/n2

(a,b) is one-
dimensional; x− a is a basis.

Remark 9. See Class 21 of Vakil’s Foundations of Algebraic geometry (notes available online)
for other helpful examples using Taylor series in exactly this way.

6.3.5 Let f(X1, . . . , Xn) be regular on An. We want to show that df =
∑n
i=1

∂f
∂Xi

dXi, where the
partial derivatives are calculated as in calculus. Without loss of generality f is a monomial.
The claim is tautological for f = Xi a coordinate function. From this the power rule follows
by induction. We now induct on the number of different Xis that appear in f . We have

df = d(Xα1
1 · · ·X

αn−1

n−1 )Xαn
n = Xαn

n d(Xα1
1 · · ·X

αn−1

n−1 ) + αnX
αn−1
n dXn(Xα1

1 · · ·X
αn−1

n−1 )

= Xαn
n

n−1∑
j=1

αjX
α1
1 · · ·X

αj−1
j · · ·Xαn−1−1

n−1 + αnX
α1
1 · · ·X

αn−1

n−1 Xαn−1
n dXn

=

n∑
i=1

∂f

∂Xi
dXi.

This proves the claim.

6.3.6 Let X,Y be affine. We claim Ω[X×Y ] = Ω[X]⊗k[Y ]k[X×Y ]⊕Ω[Y ]⊗k[Y ]k[X×Y . Concretely,
we must show any differential is f(y)ωX + g(x)ωY . Note that Ω[X × Y ] is generated by
differentials of global regular functions as a k[X] ⊗k k[Y ]-module. Therefore is suffices to
show that such differentials are of the above form. Indeed, k[X]⊗k k[Y ] ' k[X × Y ] with the
isomorphism given by multiplication. Thus if h(x, y) = f(x)g(y), we have dh = f(x)dg+g(y)df .
We must show that dg ∈ Ω[Y ], which is obvious on a geometric level but requires working
through some identifications to explain carefully. We claim we have

k[Y ] Ω[Y ] = IY /I
2
Y

k[X × Y ] Ω[X × Y ] = IX×Y /I
2
X×Y

dY

dX×Y

14



We have IY ⊂ IX×Y under k[Y ] ↪→ k[X]⊗k k[Y ] whence I2
Y ⊂ I2

X×Y so the inclusion of ideals
descends to the quotient giving the right vertical map. We will be done if we show it is an
injection. If g ∈ IY and g(y1)− g(y2) ∈ I2

X×Y , then g(y1)− g(y2) =
∑
h1(x, y)h2(x, y) with

each hi ∈ IX×Y . The left-hand side is a pure function of y, so it is actually in I2
Y . Thus the

right vertical map is an injection and dX×Y g ∈ Ω[Y ] naturally. The same goes for f and we
are done.

6.3.7 (a) We claim any regular function on C can be written f(Y ) +Xg(Y ) for polynomials f, g.
Regular functions are elements of k[X,Y ]/(X2 + Y 2 = 1)k[X,Y ], so that X2 = 1 − Y 2

and any polynomial has a representative that is at most linear in X.

(b) Using (a), as regular functions on A2, the differential of any regular function on C can be
written

dh = d(f(Y ) +Xg(Y )) = g(Y )dX +

(
∂f

∂Y
+X

∂g

∂Y

)
dY.

6.3.8 (a) D(x) and D(y) covering C is equivalent to (0, 0) not lying on the circle C, which holds in
any field at all.

(b) Taking the differential of the equation defining C ⊂ A2 gives 2xdx+2ydy = 0 ⇐⇒ xdx =
−ydy when char k 6= 2. Thus on D(xy) we have dx

y = −dyx .

(c) The hint and the fact that the two sought restrictions are equal on D(xy), which is C
minus four points, helps a lot. Pick ω = ydx − xdy and use (b) to check ω restricts as
needed.

6.3.9 Again D(x) ∪D(y) = C, and on D(xy) we have dx
y2 = −dyx2 . For this case we should require that

char k 6= 3. The differential ω = ydx− xdy now restricts to dx
y2 on D(y) and to −dyx2 on D(x).

6.3.11 We claim the mentioned subset is the maximal open subset such that ΩX �U is locally free. We
use corollary 5.3.4 (c): the map x 7→ dimk(ΩX �x) is constant with value m iff ΩX is locally free
of rank m. On U , x 7→ dimk(ΩX �x) = dimxX is constant, so ΩX is locally free on U . If V ⊃ U
is open with ΩX �V locally free, the dimension function must be constant with value dimxX on
V . But then X is smooth at all points of V , so V = U .

6.3.14 Differentiating the action of G on itself by translation gives isomorphisms between the tangent
spaces at every point of G. In particular, because G is smooth at one point, it is smooth everywhere.

7. Curves

7.1 Introduction to curves

See also Hartshorne Ch. 1 §6.

7.2 Valuation criteria

Remark 10. The first paragraph of the proof of proposition 7.2.2, that separatedness implies unique
extensions, can be replaced with exercise 3.3.6.

7.2.4 todo

Definition 1. A finite union of locally closed subsets is a constructible subset.

Remark 11. See also 7.4.C in Vakil for a criterion for this problem for Noetherian schemes.

7.4 Coherent sheaves on smooth curves

For 4.4.3, we can use that dimk(F|x) must be constant with value rank(F) to see that F is locally
free.

7.4.4 See Dummit and Foote or Atiyah-Macdonald for the structure theory of modules over a
discrete valuation domain, which is just a specialization of the result for modules over a
PID. In particular we always have M = R⊕n ⊕

⊕
i(R/(π

n1)) for R-modules M with π the
uniformizer for finitely- generated modules. Therefore on stalks we have

0 7→
⊕
i

(OC,c/(πn1))→ O⊕mC,c ⊕
⊕
i

(OC,c/(πn1))→ O⊕mC,c → 0
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on stalks. There is an obvious retraction here, but it isn’t obvious to me why it induces
a surjection F � Ftors. Note also that away from the finite support of the torsion part,
exactness shows F → F ′ is an isomorphism.

7.5 Morphisms between smooth complete curves

7.5.6 The notation f−1(0−∞) must mean the divisor f−1({0})− f−1({∞}). Thus if f̃ has one
pole of order one, it has exactly one zero of order one. The same holds for f̃ − α for all α ∈ k,
as the poles stay the same. Therefore f̃ is a bijection and an isomorphism.

7.6 Special morphisms between curves

Definition 2. The trace or field trace of a finite field extension L/K is the map

tr : L→ K

given by
α 7→ tr(x 7→ αx), x ∈ L,

because L is a finite-dimensional K-vector space and multiplication by α is K-linear.

7.6.1 todo

8. Cohomology and the Riemann-Roch theorem There are few excercises in this chapter, but some
room to expand on certain proofs.

8.1 The definition of cohomology The resolution D•(F) constructed in the first paragraph is
the Godement resolution. One way to see that it is functorial is that D(F) is just ι∗ι

∗F , where
ι : Xdisc → X is the map from Xdisc, the set X with the discrete topology, given by ι(x) = x. Then
the resolution is

0→ F ε→ D(F)
d0→ ι∗ι

∗ coker ε
d1→ ι ∗ ι∗ coker d0 → · · ·

A morphism φ : F → G clearly induces a morphism D(F)→ D(G), giving the solid morphisms in

0 F ι∗ι
∗F ι∗ι

∗ coker εF · · ·

0 G ι∗ι
∗G ι∗ι

∗ coker εG · · ·

εF

φ ι∗ι
∗φ

εG

The dashed morphism exists thanks to the diagram

F ι∗ι
∗F coker εF

G ι∗ι
∗G coker εG

εF

φ ι∗ι
∗φ

εG

in which the last vertical morphism is induced directly from the universal property of cokernels.
Repeating this process shows functoriality of the Godement resolution.

Given a short exact sequence of sheaves, each row in the corresponding morphism of complexes
described on p.99 is exact on global (in fact, any) sections because the Di(F) are flabby, by lemma
4.3.2.

Proof of lemma 8.1.1 By lemma 4.3.2, we know that D(F)/F is flabby. Therefore

0 H0(X,F) H0(X,D(F)) H0(X,D(F)/F) 0

is exact. Recalling F = C0(F) and D(F) = D0(F), proceeding inductively we have that each
Ci(F) is flabby (note Di(F) is flabby by construction), and so therefore
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0 H0(X,Ci(F)) H0(X,Di(F)) H0(X,Ci+1(F)) 0

is exact. The complex Γ(X,D•(F)) is therefore built from short exact sequences (just like the
Godement resolution):

0 Γ(X,D0(F)/F)) 0 · · ·

0 Γ(X,F) Γ(X,D0(F)) Γ(X,D1(F)) Γ(X,D2(F)) · · ·

0 Γ(X,D1(F)/C1(F)) 0

and so is exact. Here is an observation given in proof of lemma 8.1.2: Given a resolution

0 F A0 A1 A2 · · ·

coker(ε) 0

ε ρ

ψ

applying a left-exact functor then gives the kinked exact sequence

0 Γ(F ) Γ(A0) Γ(A1)

Γ(coker ε)

Γ(ρ)

Γ(ψ) .

Note though that ker Γ(ρ) = ker Γ(ψ) = im Γ(ε), because Γ preserves injections because it is
left-exact. Therefore we have an exact sequence

0 Γ(F ) Γ(A0) Γ(A1).

This is one reason one calculates derived functors by throwing away Γ(F ), the complex would be
exact at this place anyway.

Proof of lemma 8.1.2 The second left-exact sequence given in the proof arises in the way
expounded upon above. The first follows from the long exact sequence

0 H0(X,F) H0(X,F0) H0(X,G) H1(X,F) = 0 · · · ,δ

thus in particular

H0(X,F) H0(X,G) H1(X,F) 0δ (1)

is exact.

Then it follows that ker(Γ(X,F1) → Γ(X,F2)) = Γ(X,G) and im(Γ(X,F0) → Γ(X,G)) =
im(Γ(X,F0) → Γ(X,F1)), so that Γ(X,G)/(image of Γ(X,F0) is isomorphic to H1(X,F). For
i > 1,

0 F F1 G 0

gives a long exact sequence in cohomology

0 = Hi−1(X,F0) Hi−1(X,G) Hi(X,F) Hi(X,F0) = 0 · · ·δ

and therefore δ is an isomorphism. By induction (note that Γ(X,G) is the zeroth cohomology
group of F1 → F2 → · · · ) we have Hi−1(X,G) ' Hi−1(F1 → F2 → · · · ).
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Proof of lemma 8.1.3 By functoriality of the Godement resolution, we get exact sequences of
directed systems of sheaves

0 Fi D0(Fi)i D1(Fi)i · · ·

so by A.2.1, we get a resolution

0 colimi Fi colimiD
0(Fi)i colimiD

1(Fi)i · · · ,

and each Di term is flabby. Thus we can use this resolution to compute H∗(X, colimi Fi). By lemma
4.4.3 the presheaf colimit is a sheaf, and so we have colimi Γ(X,Dj(Fi)) ' Γ(X, colimiD

j(Fi)),
again using A.2.1. Now

Hk(X, colim
i
Fi) ' Hk(colim

i
Γ(X,D0(Fi)i)→ colim

i
Γ(X,D1(Fi)i → · · · ))

' colim
i

Hk(Γ(X,D0(Fi))→ Γ(X,D1(Fi)→ · · · ))

= colim
i

Hk(X,Fi).

The following corollary is used but not stated anywhere explicitly

Corollary 1 (Corollary of lemma 8.1.3). On a Noetherian topological space, cohomology commutes
with arbitrary direct sums.

It is not in general true that cohomology, or even taking global sections, will commute with colimits
(note that Γ will always commute with limits, it has a left adjoint that is the constant sheaf
functor). In this case cohomology commutes with colimits because global sections do thanks to
lemma 4.4.3, which uses that the underlying space is Noetherian in a key way.

8.2 Cohomology of affines The opening remark must be a typo in which F should be assumed
flabby. Indeed, if we take U = X then the conclusion is that UF = F is flabby.

Remark 12. It is an important point that being a section of G/F does not mean coming from
a section of G. It is H1(X,F) that measures the failure of this to happen, as we see from the
exact sequence (1); equivalently, it measures how badly a surjective morphism of sheaves fails to
be surjective on sections.

Proof of lemma 8.2.1 The first paragraph uses the idea in the above remark. For i > 1, the
assumption should read “let W be a member of V,” and “proposition” should be replaced with
”lemma” after (b) on p. 101.

Proof of Serre’s theorem There are few typos in this proof. Below is a restructuring of it.

The {D(f)} give a basis like in the proposition. Suppose that we know Hj(X,F) = 0 for all
0 < j < i and all quasicoherent sheaves F . We will show that Hi(X,F) = 0. By the lemma,
for any α ∈ Hi(X,F),we can find U1, . . . Ud distinguished opens such that the image of α in
Hi(X, UjF) is zero for j ∈ {1, . . . , d}. We have a short exact sequence

0 F
⊕

j UjF G = coker 0.

The long exact sequence in cohomology says that that α = δ(β) (this uses that cohomology
commutes with finite direct sums!) for β ∈ Hi−1(X,G). But G is also quasi-coherent, so by our
induction hypothesis, β = 0. For the base case i = 1, use that Γ(X,−) is exact for affine X.

Remark 13. The corollary says morally that affine morphisms preserve cohomology because Serre’s
theorem tell us that their fibres can’t contribute any cohomology.

The proof of Serre’s theorem will go through whenever we have a base of topology like in
the proposition, and can establish the base case H1 = 0 for all members of some class of
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sheaves. As H1 is about whether local surjectivity comes from global surjectivity, one way to
get Serre-type theorems is for partitions of unity to exist on X. See, for example this blog post:
https://sbseminar.wordpress.com/2010/02/02/when-fine-just-aint-enough/.

This theorem will appear as theorem 10.2.1.

Theorem 1 (A converse to Serre’s theorem). Let X be a quasi-compact scheme such that
H1(X,F) = 0 for all quasi-coherent sheaves of ideals F ⊂ OX . Then X is affine.

See https://stacks.math.columbia.edu/tag/01XE for the proof. Note that the proof bears
some similarity to the proof above, including requiring the H1 = 0 hypothesis (although only for
special OX -modules), but essentially aims to show that X has a partition of unity consisting of
global functions, from which it follows from lemma 27.27.3 that X is affine.

8.3 Higher direct images

Proof of lemma 8.3.1 We have Rif∗F = (V 7→ Hi(f−1(V ),F)#, and for V affine open, Serre’s
theorem applies for all i > 0. The affine opens form a base of topology, so Rif∗F is zero on a base,
hence is the zero sheaf. Here are some elementary facts which are used, but not spelled out, in
this chapter and next.

Lemma 4. Let f : X → Y be a continuous map of topological spaces. If F ∈ Sh(X) is flabby,
then f∗F is flabby.

Proof. For all opens U ⊂ V in Y , the restriction f∗F(V )→ f∗F(U) is the restriction F(f−1(V )) �
F(f−1(U)).

Lemma 5. Let f : X ↪→ Y be a closed inclusion. (Or, replacing f∗ with f!, a locally-closed
inclusion). Then Hi(X,F) ' Hi(Y, f∗F) for all i.

Proof. Let 0→ F → G• be a flabby resolution of F . Then 0→ f∗F → f∗G• is a complex of flabby
sheaves on Y by the above lemma, and exact because f∗ is extension by zero on stalks. By the
resolution principle the cohomology groups are isomorphic.

9. General cohomology

9.1 Cohomology of An \ {0} and Pn

9.2 Cech cohomology There is a typo in the definition of the differential δ̌ (which also appears with

typos as δ̂ and just δ). The correct definition should be δ̌(α) = β, where

βi0<i1<···<in+1
=

n∑
j=0

(−1)jαi0<i1<···<ij−1<ij+1<···<in+1
|Ui0∩···∩Uij∩···∩Uin+1

.

The agreement of Cech cohomology with the cohomology of the derived functors of Γ(X,−) for
separated varieties uses separation in a key way: otherwise an intersection of affine opens might
not be affine.

Corollary 9.2.3 tells us that after finding an affine open cover of a separated variety, we get a
bound on what degree cohomology can appear. Note this bound is not sharp: A line bundle OP1(r)
on P1 has no second cohomology, but as P1 is not affine, any affine open cover (say, the standard
one) will have at least two elements.

There is a generalization and sharpening of corollary 9.2.3:

Theorem 2 (Grothendieck). Let X be a Noetherian topological space of dimension n. Then for
all i > n and sheaves F of abelian groups on X, we have Hi(X,F) = 0.

9.3 Cohomology of projective varieties
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Proof of theorem 9.3.1 The short exact sequence arises from corollary 5.4.3, followed after
twisting by (−n) in the notation of corollary 5.4.3, and G is coherent because it’s a quasicoherent
subsheaf of a coherent sheaf. The statement about closed embeddings is lemma 5 in these notes.

There seems to be a typo in the proof: we adapt it to proceed via descending induction. As
projective varieties are seperated, we know by 9.2.3 that all the cohomology groups are zero-
dimensional for large enough i. Suppose the claim is true for i and all coherent G. We show the
claim for i− 1 and all coherent F . The long exact sequence reads⊕

Hi−2(OPn(p)) = 0→ Hi−2(X,F)
∼→ Hi−1(X,G)→

⊕
Hi−1(X,OPn(p)) = 0→ · · ·

→
⊕

Hn−1(X,OPn(p)) = 0→ Hn−1(X,F)
δ→ Hn(X,G)→

⊕
Hn(X,OPn(p))→ Hn(X,F)→ 0

Therefore Hn−1(X,F) is finite-dimensional as it injects into Hn(X,G), and Hn(X,F) is finite-
dimensional as its surjected by a finite-dimensional vector space. For the lower cohomology groups
we use the isomorphisms given by the long exact sequence.

9.3.2 We prove χ(OPn(r)) = (n+r)!
n!r! . By corollary 9.1.2, OPn(r) will have either zeroth or n-th

cohomology, but not both. It will have nonzero zeroth cohomology iff r ≥ 0, which is the
only case the claim makes sense for. In this case H0(X,OPn(r)) is the space of degree r
homogeneous polynomials in n + 1 variables, and a basis is given by the monomials. The
number of monomials is the number of choices of r objects from n+1 objects with replacement,
hence is

(
n+1+r−1

r

)
.

Proof of theorem 9.3.3 There is a typo in the proof of this theorem. The short exact sequence
should read

0 G
⊕

finite(π∗PnOPn(p)) F 0.

Again, the long exact sequence in cohomology and descending induction tells us that Rif∗F '
Ri+1f∗G, and as remarked in Hartshorne, the long exact sequence in cohomology is a long exact
sequence of OY -modules, so this isomorphism proves coherence.

The surjection inducing the short exact sequence comes from an adaptation of corollary 5.4.3, where
in the language of that corollary, we now need the number of generators of of the corresponding
module over k[X1, . . . , Xn]⊗k A = A[X1, . . . , Xn].

9.4 Direct images of flat sheaves Lemma 9.4.4 finally gives us an algebraic criterion to tell whether
a coherent sheaf is a vector bundle: the corresponding finitely-generated k[X]-module must be a
flat k[X]-module.

Proof of lemma 9.4.4 The long exact sequence (which continues to the left, as −⊗OX,yOX,y/my

is right-exact) should read, if M = Γ(X,G),

0 Tor1(L,OU |y) = 0 M ⊗OX,y OX,y/my
⊕
OU |y L̃|y 0

ψ

Thus G|V = 0 for some neighbourhood V 3 y. The leftmost zero in the long exact sequence
appears because

⊕
OU |y is a free, in particular flat, OU |y-module.

10 Applications

A. Appendix

A.1 Localization

A.1.1 Let ψ : A → AS be the map sending a 7→ a/1 in the localization at S. We claim kerψ =
{a ∈ A | ∃s ∈ S s.t. sa = 0}. If there is such s, then a/1 = as/s = 0/s = 0. Conversely if
a/1 = 0 a/1 = 0/s and by definition this means there is s ∈ S such that sa = 0.
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A.1.2 We claim that if ψ : A→ B is a morphism of rings, then we have a triangle

A B

BS

ψ

ψ̄

iff ψ(S) ⊂ B×. If we have such a triangle, clearly we have ψ(S) ⊂ B× as ψ̄(s) is a unit in B
for every s ∈ S. Conversely define p̄si(a/s) = ψ(a)ψ(s)−1. This assignment is unique if the
triangle is to commute. Finally, ψ̄ is well-defined as a/s = b/t implies there is u ∈ S such that
u(ta− sb) = 0 whence ψ(t)ψ(a)− ψ(s)ψ(b) = 0 and ψ(a) = ψ(t)−1ψ(s)ψ(b). Now

a

s
7→ ψ(a)ψ(s)−1 = ψ(t)ψ(b) = ψ̄(b/t)

as required.

A.1.3 We claim AS ' A[Xs]s∈S/(sXs − 1 = 0) =: Ã as A-algebras. Define ϕ : a → Ã by a 7→
aX1 = a · (1X1) ' a. We show that the target satisfies the universal property from A.1.2. Let
ψ : A→ B with ψ(S) ⊂ B×. Then ψ̄ : Ã→ B is determined by Xs 7→ ψ(s)−1 and the diagram
commutes. Conversely, this is the only assignment that allows the triangle to commute. Given
such a commutative triangle, we have ψ̄(xXs) = ψ(s)ψ(Xs) = ψ̄(1) = 1, so ψ(s) must have
been a unit. Therefore AS ' Ã in CRing. The map ψ is clearly A-linear, and we are done.

A.1.4 Let P be a prime ideal. Then we claim AP is local with maximal ideal ψ(P )AP . It is enough
to show that every element not in ψ(P )AP is a unit. If a 6∈ ψ(P )AP , then a = b/s with s ∈ S
and b 6∈ P . Therefore b ∈ S = A \ P . Thus a−1 = s/b exists.

A.1.5 We claim A(f) = 0 iff f is nilpotent. One direction is obvious: if 1/f = 0/f then there is N
such that fN = 0 by definition of = in the localization. This also shows the converse.

A.1.6 We claim α : M ⊗A AS →MS sending m 7→ m/1 is an isomorphism of AS-modules. The map
α sends m⊗ (a/s) 7→ (a/s)m/1 and is clearly surjective. If

n∑
i=1

mi ⊗
ai
si
7→

n∑
i=1

ai
mi

si
= 0,

then clearing denominators we have have, if s = s1 · · · sn,

n∑
i=1

mi ⊗
ais

si
7→ s

n∑
i=1

mi ⊗
ai
si

= 0.

Therefore

s′
n∑
i=1

ai
s

si
mi = 0

in M for some s′ ∈ S.

1

n∑
i=1

mi ⊗
ai
si

=
s′

s′
s

s

n∑
i=1

mi ⊗
ai
si

=
1

s′s

n∑
i=1

1⊗ s′si
s

si
=

1

s′s

(
1⊗

n∑
i=1

s′si
s

si

)
= 0

and so α is injective.

A.1.7 Localization of A-modules is exact. If we have

0 M1 M2 M3 0
ϕ ψ

then consider

0 M1,S M2,S M3,S 0.
ϕ̄ ψ̄
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The map ϕ̄ sends m/s 7→ ϕ(m)/s and if there is u ∈ S such that uϕ(m) = 0 in M2, we have
um = 0 in M1, whence m/s = 0 in M1,S . We have that ψ̄ is surjective because ψ is. For
exactness at M2,S , if m = ϕ̄(n), then m = m1/s1 = ϕ(n1)/s2 and so ψ̄(m) = ψ(m)/s =
ψ(ϕ(n1))/s2 = 0. Conversely, if ψ̄(n/s) = 0 = ψ(n)/s, then we see that uψ(n) = 0 in M3 for
some u ∈ S. Thus un = ϕ(n′) so that n/s = ϕ(un′)/s = ϕ̄(un′/s).

A.2 Direct limits.

Remark 14. Warning! “Direct limits” are colimits, not limits! We will use the notation colim here
instead of Kempf’s notation. Note in fact that all colimits here are filtered.

A.2.1 Let 0 → (Mu)u → (Nu)u → (Pu)u → 0 be exact. Then we claim 7→ colimN → colimM →
colimP → 0 is exact. Note these morphisms exist thanks to the universal property. The
proof is a diagram chase: Call α the morphism N → P . If g ∈ colimP , then there is some
u ∈ U and g′ ∈ Pu such that g = sP,u(g′), and there is f ′ ∈ Nu mapping down to g′ by the
original exactness. The obvious square commutes, and g is mapped onto by f = sN,u(f ′).
If [f ] ∈ ker(colimN colimP ), then [f ] = sN,u(f) for some u, f , and αu : Nu → Pu sends f
to an element in the kernel of sP,u. Therefore there is u1 such that ruu1

(αu(f)) = 0, whence
ruu1

(f) = 0 ∈ kerαu. By exactness here, there is f ′ ∈Mu mapping down to ruu1
(f). The image

of f ′ in colimN is equal to [f ]. For exactness at M is similar.

A.2.2 The tensor product preserves colimits, as it has a right adjoint, and so by A.1.6 it is enough to
show the claim for the diagram of modules 1

fnA in A−mod and then apply the endofunctor

M ⊗A −. But it is obvious that colim( 1
fnA) = A(f).

22


