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0 Preface

This document will eventually solutions to (almost) every exercise in the first edition of Mac Lane’s Categories
for the Working Mathematician. As may be seen from the version number, these notes are preliminary. When
not overly onerous to typeset, it has been endeavoured to make them complete. These solutions may of
course contain errors or typos. Please report any of these to stefand@math.utoronto.ca. The numbering
of sections is sequential, and so is not in correspondence to the numbering sections in the book, as some
sections contain no exercises. Some sections contain additional notes or exposition, mostly checking exercises
left to the reader in the main text.

1 Categories, Functors, and Natural Transformations

1.1 Functors

1. Let R be an integral domain and K(R) its field of fractions. We claim R 7→ K(R) defines a functor
from the category of integral domains with monomorphisms to the category of fields. Let ϕ : R→ S
be a ring monomorphism such that ϕ : 1 7→ 1. Then we have ϕ̄ : R→ K(S) given by ϕ̄ = ι ◦ ϕ where
ι : S ↪→ K(S) sends s 7→ s

1 . Then ϕ̄ is injective as it’s a composition of injective maps, and by the
universal property of the field of fractions, we obtain K(ϕ) : K(R)→ K(S).

Let Φ: G→ H be a morphism of Lie groups. Then we claim ϕ := deΦ is a morphism of Lie algebras.
This will show that Lie : G 7→ TeG is a functor from the category of Lie groups to the category of Lie
algebras. Let Ψ: G→ Aut(G) be given by Φ(g)(h) = ghg−1. Then

G H

G H

Φ

Ψ(g) Ψ(g)

Φ

commutes for each g ∈ G. If Ad = deΨ: g→ End(g) is the derivative of Ψ at e ∈ G, then by the chain
rule (i.e. the derivative is a functor)

g H

g H

ϕ

Ad(g) Ad(Φ(g))

ϕ

If ad = deAd, then we finally obtain (as linear maps are their own derivatives) the diagram
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g H

g H

ϕ

ad (X) ad (ϕ(X))

ϕ

by differentiating again, where X ∈ g. Therefore ϕ is a morphism of Lie algebras.

2. • Functors 1→ C are equivalent to objects of C; just pick c ∈ Obj(C) to send ∗ to. Conversely, a
functor chooses an object T (∗).

• Functors 2→ C are equivalent to morphisms of C. Let 2 have objects t and h, with non-identity
morphism ϕ : t→ h. Then given f : c1 → c2, set T (t) = c1, T (h) = c2 and T (ϕ) = f . Conversely,
T (ϕ) : T (t)→ T (h) is a morphism in C. Clearly these assignments are bijective.

• Functors 3→ C are equivalent to pairs of composable morphisms in C. Let 3 have objects t,m, h,
and morphisms F : t→ m, G : m→ h and K = G ◦ F . Then given a composable pair f : a→ b,
g : b→ c, we can define a functor by T (h) = a, T (m) = c and T (t) = c and T (F ) = f , T (G) = g,
T (K) = g ◦ f . Conversely, we know T (F ) and T (G) are composable because F and G are.

3. (a) Let C and B be preoders. Then we claim functors T : C → B are order-preserving functions
C → B. Indeed, it’s clear that functors induce order-preserving functions as f : c1 → c2 gives
T (f) : T (c1)→ T (c2). Conversely, reflexivity and transitivity say that an order-preserving function
induces a functor C → B.

(b) We show a functor between groups is equivalent to a morphism of groups. Let ∗ and • be the
objects in G and H, respectively, thought of as categories. For any functor we must have T (∗) = •.
Then for all g : ∗ → ∗ and h : ∗ → ∗, T (g ◦ h) = T (g) ◦ T (h), so with g ◦ h = gh and ϕ(g) = T (g),
we obtain a morphism of groups. Conversely, given a morphism of groups ϕ, set T (∗) = • and
T (g) = ϕ(g).

(c) For a group G, a functor T : G→ Set is a permutation representation of G: given G we obtain
a set T (∗), and for every morphism g : ∗ → ∗ we obtain a function T (g) : S → S. That T is a
functor says that T (h) ◦ T (g) = T (hg), so that G acts on T (G). Conversely, G acts on S = T (∗)
by ν(g, s) = T (g)(s).

A functor T : G → MatrK is equivalent to a K-representation of G. Given a dimension n K-
representation of G, put T (∗) = n and for g : ∗ → ∗ define T (g) = ρ(g) : n→ n. Conversely, given
a functor T : G → MatrK , we want a morphism of groups ρ : G → GL(V ) = GLn(K), after a
choice of basis. Set n = T (∗), then for g : ∗ → ∗ we see ρ(g) = T (g) will be a morphism of groups;
T is a functor and all g ∈ G are composable with each other.

4. There is no functor Grp→ Ab sending a group to its centre. Indeed, suppose there was and consider

S2 ↪→ S3
π−→ S2 ' S3/〈(123)〉,

where the first map is the inclusion. It is checked by hand that 〈(123)〉 is normal, and this composition
is nontrivial, hence an isomorphism, hence is the identity map. But another calculation shows that S3

has trivial centre, which says the identity morphism on Z(S2) = S2 factors through the trivial group.

5. There are many endofunctors of Grp with are the identity on objects. One is the identity functor. For
another one, pick automorphisms ψG for some groups G. Let T (G) = G on objects, and if ψ : G→ H
is a morphism, define T (ϕ) = ψH ◦ ϕ ◦ ψ−1

G . This defines a functor different from the identity.

Remark 1. Recall that an algebraic group is a functor k −Alg→ Grp. There is a notion of the centre of an
algebraic group, but excise 4 says that there is some subtly to this notion.
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1.2 Natural Transformations

1. Let X,S ∈ ObjSet. We claim X 7→ XS is the object function of a functor Set → Set. Indeed, the
functor is T (−) = Hom(S,−), which on objects sends f : X → X ′ to the pushforward f∗ (see §2.2 in
Mac Lane). For any s ∈ S (or passing to the functor X 7→ XS × S, we get a natural transformation
es : T → id given by evaluation esX : h 7→ h(s) for h : X → S in XS . Naturality is immediate: given a
square

XS X

(X ′)S X ′,

esX

f∗ f

es
X′

paths around it are h 7→ h(s) 7→ f(h(s)) and h 7→ f ◦ h 7→ (f ◦ h)(s).

2. If H is a fixed group, then H × − : Grp → Grp is a functor. On objects G 7→ H × G, and if
ϕ : G→ G′, then idH ×ϕ : H ×G→ H ×G′. Next, if f : H → K, then obtain a natural transformation
H×− → K×− whose components are f × idG for a given G. The naturality is just that, if ϕ : G→ G′,

(f(h), ϕ(g)) = (idK × ϕ) ◦ (f × idG)(h, g) = (f × idG′) ◦ (idH × ϕ)(h, g).

3. Let S, T : C → B be functors between groups. Then we claim there is a natural transformation S → T
iff there is a morphism (element of B thought of as a group) h such that Tg = h(Sg)h−1 for all
g : C → C. Indeed, as C and B each have only one object, T and S are equal on objects and the above
reduces to T (g) ◦ h = h ◦ S(g) iff Tg = h(Sg)h−1.

4. Let S, T : C → P be functors into a preorder P . Then we claim there exists a natural transformation
σ : S → T (which is then unique) iff Sc ≤ Tc for all c ∈ ObjC. Indeed, if Sc ≤ Tc, then we obtain
unique arrows Sc→ Tc for all c. By uniquess of the arrow Sc→ Tc′, we see the square

Sc Tc

Sc′ Tc′

Sf Tf

commutes, given f : c→ c′. Conversely, a natural transformation is a collection of components Sc→ Tc.

Remark 2. This makes the functor category (see §2.2 in these notes) PC into a preorder in a natural
way.

5. (Arrows-only description of natural transformations.) Let τ : S → T be a natural transformation of
functors C → B. Then we claim τ determines a function taking f : c→ c′ in C to τf : Sc→ Tc′ in B
such that

Tg ◦ τf = τ(gf) = τg ◦ Sf.

Indeed, given τ define τf = τ ′c ◦ S(f). Naturality gives the following diagram

Sc Tc

Sc′ Tc′

Sc′′ Tc′′

τc

S(f) T (f)

τc′

S(g) T (g)

τc′′
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As τf and τg are the just diagonals of each of the squares, the above equation is satisfied. Conversely, we
claim every natural transformation arises from such a function τ , with τc = τ(1c). We have compositions
f = 1c′f and f = f1c, so that τ(1′c) ◦ S(f) = τ(f) and Tf ◦ τ(1c) = τ(f) ◦ Sf = τ(f) by the above
equation, so that Tf ◦ τc = τ ′c ◦ Sf and τ is a natural transformation.

6. Let F be a field. We claim MatrF is equivalent to the category VectF of finite- dimensional F -vector
spaces, with morphisms all F -linear transformations. Indeed, define functors T : MatrF → VectF by
T (n) = Fn and by letting T (f) : Fn → Fm be the linear transformation determined by the matrix
A : n → m. In the other direction define S(V ) = dimV and let S(ϕ) be the matrix for a linear
transformation ϕ : V → W , after choosing bases for V and W . Then (S ◦ T )(n) = n is the identity
on objects. Let α and β be the chosen bases for Fn and Fm, respectively, and let γ and η be the
bases in which A is written. Let τn be the change-of-basis matrix α to γ, and τm be the matrix
changing β to η. Then if ϕβα is the matrix for ϕ, we have τmϕ

β
ατ
−1
n = A as required. In the other

direction,(T ◦ S)(V ) = F dimV , and (T ◦ S)(ϕ)(v) = ϕβαv, where α and β are bases chosen by S for V
and W , respectively. On morphisms, (T ◦ S)(ϕ) : v 7→ ϕβαv, but with v ∈ Kn and ϕβα ∈ Km written in
two bases γ and η, respectively. Then let τV : Kn → V be multiplication by the change of basis matrix
from α toγ and τW : Km →W be multiplication by the change of basis matrix from β to γ. Then the
necessary square commutes and we have an equivalence of categories.

1.3 Monics, Epis, and Zeros

1. Let ι : Q → R be inclusion (with the standard topologies) in Top. Then ι is a monomorphism as
ι(f(x)) = f(x) for all morphisms f : X → Q. As morphisms in Top are continuous functions, we have
f ◦ ι = g ◦ ι means f = g; let xn → x for xn ∈ Q and x ∈ R, then f(x) = lim f(xn) = lim g(xn).
Therefore ι is an epimorphism and a monomorphism, but not an isomorphism.

2. Let f : a→ b and g : b→ c be monomorphisms in C. Then if (g ◦ f) ◦ h = (g ◦ f) ◦ h′, by associativity
of composition, f ◦ h = f ◦ h′ whence h = h′. Associativity is used similarly to show f ◦ g is an
epimorphism when f and g are.

3. We claim if g ◦ f is a monomorphism, then f is. Indeed, if f ◦ h = f ◦ h′, then g ◦ f ◦ h = g ◦ f ◦ h′ so
h = h′, using associativity of composition. It need not be true that g is a monomorphism; consider a
map in Set with large fibres and a section.

Similarly, if g ◦ f is an epimorphism, then f is an epimorphism.

4. We claim that Z ↪→ Q is an epimorphism in the category Rng (where the morphisms preserve units).
Let f and g be morphisms Q→ R and f ◦ ι = g ◦ ι. Then f(a1 ) = g(a1 ) for all a ∈ Z. Now

f

(
a

1

1

a

)
= 1 = g

(
a

1

1

a

)
and as the units of R form a group we can cancel to see f(1/a) = g(1/a) so that f = g.

5. We claim every epimorphism in Grp is surjective. Let f : G → H be an epimorphism and suppose
M = im(g) ( H. Suppose not. If [H : M ] = 2, then M / H and if π is the quotient map, π◦f = τ = τ ◦f ,
where τ : H → 1 is the trivial homomorphism. This says π = τ so M = H. If [H : M ] ≥ 3, let SH be
the symmetric group on the set H and define σ(xu) = xv, σ(xv) = xu and σ = id otherwise, for x ∈M .
Let ψ : h 7→ (ψh : h′ 7→ hh′) map H → SH , and let ψ′(h)σ−1 ◦ ψh ◦ σ. Then we claim ψ′ ◦ ϕ = ψ ◦ ϕ.
Indeed, (ψ ◦ ϕ)(g)(h) = ϕ(g)h, and if h 6∈ Mu,Mv, then (ψ′ ◦ ϕ)(g)(h) = ϕ(g)h too. If h = xu for
x ∈M , then

σ−1(ϕ(g)σ(h)) = σ−1(ϕ(g)xv) = ϕ(g)xu = ϕ(g)h.

Now the claim is proved, but ψ 6= ψ′: if h = xu, then ψ′h(yv) = hyv if and only if u ∈M as well as x.
This is a contradiction. We claim that all idempotents split in Set. Let f be such that f ◦f = f : X → X.
We can always factor f = hg with g : X � im(f) and h : im(f) ↪→ X begin the obvious functions. As f
is the identity on its image, gh : im(f) ↪→ X � im(f) is the identity on im(f). Therefore f is split.
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6. We claim f : a → b is regular is f has a left or right inverse. Indeed, let g be either a left or right
inverse, then either fgf = f ida = f or fgf = idbf = f as required. We claim next every morphism in
Set is regular. Let g : b→ a be defined by choosing a section im(f)→ a of f and a constant function
b \ im(f)→ a. Then g is almost a section of f and fgf = f .

7.

todo

8. Let T : C → B be a faithful functor, and Tf be monic. Then we claim f is monic. Let f ◦ g = f ◦ g′ in
C. Then Tf ◦ Tg = Tf ◦ Tg′ so Tg = Tg′. As T is faithful, g = g′ as required.

2 Constructions on Categories

2.1 Products of Categories

1. We claim the product of categories includes the product of monoids, the (direct) product of groups,
and the product of sets.

If G and H are groups, then the category G×H has one object (∗, ∗) and morphisms (g, h) : (∗, ∗)→ (∗, ∗)
are still invertible, with inverses (g−1, h−1). The same reasoning applies to Set and the category of
monoids. The universal property for product categories holds in each of these specific categories, which
means the product G×H of categories must be the group G×H, and likewise for sets and monoids;
objects solving a universal mapping product are unique up to isomorphism.

2. We claim the product of two preoders is a preoder. A morphism (c, b)→ (c′, b′) in C ×B projects to
two morphisms c → c′ and b → b′, so if C and B are preoders, then two morphisms (c, b) → (c′, b′)
must agree on both factors. Therefore there is at most one morphism between objects in the product.
Thus the product is a preoder.

3. We define the product C :=
∏
i∈I Ci of small categories Ci indexed by a set I. Set Obj(C) :=

{F : I →
⋃
i Obj(Ci) |F (i) ∈ Obj(Ci) ∀i} and Mor(C) := {F : I →

⋃
i Mor(Ci) | F(i) ∈ Mor(Ci) ∀i}.

Note that
⋃
i Obj(Ci) is a small set, and likewise for morphisms. Define projections Pi : C → Ci

by Pi(F ) = F (i) and Pi(F) = F(i). Then C obeys the following universal property: given a family
{Ti : D → Ci | i ∈ I}, there is a unique T : D → C such that Ti = Pi ◦ T . Indeed, set T (d)(i) = Ti(d)
and T (f)(i) = Ti(f).

4. The opposite category of MatrK is obtained by “taking adjoints” i.e. viewing the dual space of Kn as
a space of row vectors, where matrices multiply on the right, acting by pullback.

5. The functor T : Top→ Rng sending X 7→ C(X,R) is contravariant; if f : X → Y then T (f) = f∗ is
pullback by f .

2.2 Functor categories

1. Let R be a ring and view (R, ·) as a monoid. We claim R -Mod is a full subcategory of AbR. Indeed,
if T : R → Ab is a functor, then we have morphisms T (r) : M = T (∗) → T (∗). If we require that
T (0)(m) = 0 for all m ∈ M , and T (r) ◦ (m ◦ n) = T (r)(m + n) = T (r)m + T (r)n, then T (∗) is an
R-module. A morphism in the functor category is an R-equivariant morphism of abelian groups, which
is exactly a morphism of R-modules, so the above subcategory is full.

2. Let X be a finite discrete category. Then objects of BX for any category B are functors X → B, and a
function X → Obj(B) is a collection of at most #X objects in B. As X has on identity morphisms,
the data of a natural transformation S → T is just a set of functions τx : S(x)→ T (x) for each x ∈ X,
i.e. certain sets of morphisms from the objects S(X) to the objects T (x).
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3. Let N be the discrete category of natural numbers. Then we claim AbN is the category of graded
abelian groups. A object F : N → Ab defines an abelian group F =

⊕
n∈N F (n). A morphism is

a natural transformation, which for functors from a discrete category is a just a set of morphisms
τn : F (n)→ G(n) if τ : F → G. This is exactly the data of a morphism of graded abelian groups, with
τ =

⊕
n∈N τn.

4. Let P and Q be preoders. Then we claim QP is a preoder with objects all order-preserving functions
T : P → Q, and morphisms T → S iff T (p) ≤ S(p) for all p ∈ Obj(P ). As Q is a preoder, there is
at most one natural transformation τ : S → T for any pair of objects. If there is a such a natural
transformation, the diagram

Sp Tp

Sp′ Tp′

τp

S(f) T (f)

τp′

says that Sp ≤ Tp for all p ∈ ObjP , by taking p = p′ and f = idp.

5. If Fin is the category of all finite sets and G is a group, we claim FinG is the category of permutation
representations ρ : G → SX of G. An object is a functor T : G → Fin, which provides bijections
T (g) : X = T (∗) → X = T (∗). As T (1) = id and T (gh) = T (g) ◦ T (h), this is an action of G.
Morphisms are natural transformation, i.e. G-equivariant functions.

6. Let M be the infinite cyclic monoid with morphisms {1,m,m2, . . . }, where mn = m◦m◦ · · · ◦m : ∗ → ∗.
Then we claim (MatrK)2 has matrices for objects, and two objects are isomorphic iff they are equivalent,
and that (MatrK)M also has matrices for objects, with objects isomorphic iff they are conjugate.
Indeed, a functor 2→MatrK gives T (↓) : T (0) = n→ T (1) = m, which is an n×m matrix. Of course,
T (id) is the identity matrix. That there exists an invertible morphism τ : S → T means exactly that
S(↓) = τ−1

1 T (↓)τ0, or that S and T are similar. For (MatrK)M , S(m) : S(∗) = n→ S(∗) = n is square,
and natural transformations have only one component, so isomorphism implies similarity by the above
equation.

7. We claim there is a bijection H 7→ (S, τ, T ) from functors H : C → B2 to pairs of functors S, T : C → B
with a natural transformation τ : S → T . Given H, we can define T : C → B by T (c) = H(c)(0) and
T (f) = H(f)0, S(c) = H(c)(1) and S(f) = H(f)1 for morphisms f : c→ c′. We obtain a diagram

Tc = H(c)(0) H(c′)(0) = Tc′

H(c)(1) H(c′)(1)

H(c)(↓)

H(f)0

H(c′)(↓)
H(f)1)

(1)

so H(f)0 really is a morphism Tc→ Tc′ in B. The vertical composition of natural transformations says
that T respects composition of morphisms. Turning (1) on its side, we see that setting τc := H(c)(↓)
defines a natural transformation τ : T → S. Conversely, given (1) turned on its side, we can define H
on objects by H(c)(0) := T (c), H(c)(1) = S(c) and H(c)(↓) = τc. Given a morphism in f : c→ ’̧ in C,
we can define H(f) : H(c)→ H(c′) by H(f)0 = T (f) and H(f)1 = S(f). Clearly these assignments are
bijections, which proves the claim.

8. In section 2.3 of Mac Lane we see there is a unique functor F : C × 2 → B given two functors
S, T : C → B with a natural transformation τ : S → T , such that Fµc = τc, where µ is the natural
transformation between functors T0, T1 : C → C × 2 given by muc = (idc, ↓). We relate F to H from
exercise 7.
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Given F : C×2→ B and µ, define H : C → B2 by H(c)(i) := F (c, i) and as H(c)(↓) = τc : T (c)→ S(c),
set H(c)(↓) := Fµc. This defines the functor H on objects. Given f : c → c′ in C, set H(f)i :=
T (f, idi) : H(c)(i)→ H(c′)(i).

Conversely, given H, one can define F from the above equations.

2.2.1 The Interchange Law

There are two ways to compose natural transformations. Given three functors S, T, U : C → B and natural
transformations τ : S → T and σ : T → U , we can define the vertical composition σ · τ : S → U by
(σ · τ)c = σc ◦ τc where ◦ is composition in B. We can also define the horizontal composition of a natural
transformation τ : S → S′ of functors C → B with σ : T → T ′ for functors B → A. By definition, (σ ◦ τ)c is
the diagonal of e.g. one of the small square below. The interchange law says that if S, T, U : C → B and
S′, T ′, U ′ : B → A with σ : S → T and τ : T → U and likwise for τ ′ and σ′, then

Proposition 1. We have
(τ ′ · σ′) ◦ (τ · σ) = (τ ′ ◦ τ) · (σ′ ◦ σ).

Proof. Consider the diagram

S′Sc T ′Sc U ′Sc

STc T ′Tc′ U ′Tc

S′Uc T ′Uc U ′Uc

σ′Sc

S′σc T ′σc

τ ′Sc

U ′σc

σ′Tc

S′τc T ′τc

τ ′Tc

U ′τc

σ′Uc τ ′Uc

which commutes as each of the small squares commutes. The diagonal of the outer square is (the component
at c of) the left-hand side of the claim, and the composite of the dashed morphisms is the right-hand side.
As these are one and the same, the claim is proven.

2.3 The Category of All Categories

1. (Product-Exponential adjunction.) Let A,B and C be small categories. Then we claim Cat(A×B,C) '
Cat(A,CB) naturally in all three arguments. This will show that − × B : Cat → Cat has a right
adjoint, namely C 7→ CB . Define the function

ϕ : Cat(A×B,C)→ Cat(A,CB)

By
(ϕT )(a)(b) = T (a, b) and (ϕT )(f)b = T (f, idb)

for b ∈ B and morphisms f : a→ a′ in A. Define also (ϕT )(a)(f) = T (ida, f). The diagram

ϕ(T )(a)(b) ϕ(T )(a′)(b)

ϕ(T )(a)(b′) ϕ(T )(a′)(b′)

T (f,idb)

ϕ(T )(a)(g) ϕ(T )(a′)(g)

T (f,idb′ )

commutes, and so (ϕT )(f) is a morphism in CB. Define a function in the opposite direction by
ψ(T )(a, b) = T (a)(b) on objects. If f = (fA, fB) : (a, b)→ (a′, b′), then define

ψ(T )(f) = T (a′)(fB) ◦ T (fA)b : T (a)(b)→ T (a′)(b′).

Checking that these functions are inverse is straightforward. Naturality in C is most compact to write
down. We require that, if F : C → C ′, the diagram
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Cat(A×B,C) Cat(A,CB)

Cat(A×B,C ′) Cat(A,C ′B)

ϕ

F∗ F∗

ϕ

commute. Here the map F∗ on the right is F∗(T )(a)(b) = F (T (a)(b)). This is just a short calculation.

Note that to the show the diagram commutes, one must show that the functors A→ C ′
B

obtained via
either path agree on objects and morphisms.

2. Let A, B and C be categories. We claim there is an isomorphism of categories

ϕ : CA×B → (CB)A

natural in each of A, B, and C. First we define ϕ on objects. Given T : A × B → C, define a
functor ϕ(T ) : A → CB by ϕ(T )(a)(b) = T (a, b) on objects. On morphisms f : b → b′ in B define
ϕ(T )(a)(f) = T (ida, f) : ϕ(T )(a)(b)→ ϕ(T )(a)(b′). We must now define the functor ϕ(T ) on morphisms.
Given f : a→ a′ in A, we request a natural transformation ϕ(T )(f) : ϕ(T )(a)→ ϕ(T )(a′). We therefore
define ϕ(T )(f)b = T (f, idb). We can now define the functor ϕ on morphisms. Given a natural
transformation τ : S → T between functors S, T : A×B → C we require a natural transformation in
(CB)A. We therefore define ϕ(τ)a = τ(a,−) : ϕ(S)(a)→ ϕ(T )(a). This transformation has components
(ϕ(τ)a)b = τ(a,b).

In the other direction, define a functor ψ : (CB)A → CA×B on objects as follows. Set ψ(T )((a, b)) =
T (a)(b). Given (f, g) : (a, b)→ (a′, b′) in A×B, set

ψ(T )((f, g)) = T (f)b ◦ T (a)(g) : ψ(T )((a, b)) = T (a)(b)→ T (a′)(b′) = ψ(T )((a′, b′)).

We define ψ on morphisms as follows. Given τ : S → T between functors S, T : A→ CB , set ψ(τ)(a,b) =
(τa)b. We require that the diagram

ψ(S)((a, b)) ψ(T )(a)(b)

ϕ(S)((a, b′)) ψ(T )((a′, b′))

ψ(τ)(a,b)

ψ(S)((f,g)) ψ(T )((f,g))

ψ(τ)(a′,b′)

(2)

commute. By the definition of τ we obtain a diagram

S(a) T (a)

S(a′) T (a′)

τa

S(f) T (f)

τa′

in CB . This implies there is a commutative cube (here (f, g) is as above)

S(a)(b) T (a, b)

S(a′)(b) T (a′)(b)

S(a)(b′) T (a)(b′)

S(a′)(b′) T (a′, b′)

S(f)b

(τa)b

S(a)(g)

T (f)b
T (a)(g)

S(a′)(g)

S(f)b′

(τa)b′

T (f)b′(τa′ )b′

9



which implies that (2) commutes.

We claim ϕ and ψ are inverse on objects. We have

ϕ(ψ(T ))(a)(b) = ψ(T )((a, b)) = T (a)(b)

and
ψ(ϕ(T ))((a, b)) = ψ(T )(a)(b) = T (a, b)

as required. On morphisms we have, given f : b→ b′, that

ψ(ϕ(T ))(a)(f) = ψ(T )(ida, f) = T (ida)b′ ◦ T (a)(f) = T (a)(f)

and given (f, g) : (a, b)→ (a′, b′) we have

ψ(ϕ(T ))((f, g)) = ϕ(T )(f)b′ ◦ ϕ(T )(a)(g) = T (f, idb′) ◦ T (ida, g) = T (f, g).

Therefore ϕ and ψ are inverse on objects. On morphisms, we have, given τ : S → T a natural
transformation between functors S, T : A×B → C,

(ψϕ)(τ)((a,b)) = ψ(ϕ(τ))(a,b) = (ϕ(T )a)b = τ(a,b).

and
ϕψ(τ)a = ϕ(ψ(τ))a = ψ(T )(a,−) = τa.

This establishes the isomorphism of categories. We do not check naturality.

3. We claim horizontal composition of natural transformations defines a functor ◦ : AB × BC → AC .
On objects, one composes the functors: ◦(S, T ) = S ◦ T . Let (σ, σ′), (τ,′ tau′) ∈ Mor(AB × BC) be
composable, i.e. be as in (4) in §2.5 of Mac Lane. By the interchange law,

◦((τ ′, τ) · (σ′, σ)) = ◦((τ ′ · σ′, τ · σ)) = (τ ′ · σ′) ◦ (τ · σ) = (τ ′ ◦ τ) · (σ ◦ σ) = ◦(τ ′, τ) · ◦(σ′, σ).

This calculation together with the description in theorem 1 of §2.5 says that ◦ respects composition.
The statement that identities for · are precisely identities for ◦ finishes the proof that ◦ is a functor.

4. Let G be a topological group (defined the usual way) with loops σ, τ, σ′, τ ′ based at the identity e ∈ G.
Define σ ◦ τ as the composition of loops as in π1(G, e) and (σ · τ)(t) = σ(t)τ(t) to be the pointwise
product. We claim the interchange law holds. We calculate that

((τ ′ · σ′) ◦ (τ · σ))(t) =

{
τ(2t)σ(2t) if 0 ≤ t ≤ 1

2

τ ′(2t− 1)σ′(2t− 1) if 1
2 ≤ t ≤ 1

= ((τ ′ ◦ τ) · (σ′ ◦ σ))(t),

which proves the claim.

5. (Hilton-Eckmann argument.) Let S be a set with two compositions defined everywhere denoted ◦ and ·
which share the same two-sided identity and satisfy the interchange law. Then we claim they agree and
are commutative. Indeed, if e is the identity for both, then

s1 ◦ s2 = (s1 · e) ◦ (e · s2) = (s1 ◦ e) · (e · s2) = s1 · s2.

Now we have
s2 ◦ s1 = (e · s2) ◦ (s1 · e) = (e ◦ s1) · (s2 ◦ e) = s1 · s2 = s1 ◦ s2.

6. Let G be a topological group. Then we claim π1(G) is abelian. Assume without loss of generality that
G is based at the identity. By 4, multiplication in G and π1(G, e) obey the interchange law, and by our
choice of basepoint, they share a two-sided identity. By 5, π1(G) is abelian.
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Remark 3. Recall that smooth group schemes G0 defined over Fq and base-changed to G over F̄q
can have etale fundamental group surjecting onto G0(Fq), and so the etale fundamental group can
fail to be abelian. Therefore there can be no analogue of the interchange law in this setting. Even
πet

1 (A1
F̄q

) is unknown, but e.g. its finite quotients are know. See e.g. the discussion at https:

//mathoverflow.net/questions/868/etale-covers-of-the-affine-line.

7. Let T : A→ D be a functor. We claim the associated arrow function T(a,b) : A(a, b)→ D(Ta, Tb) defines

a natural transformation between the functors MorA : A
opp × A→ Set and the functor S defined by

S = MorD ◦(T
opp

, T ), where T
opp

is the functor A
opp → D

opp

induced by T .

8.

finish

2.4 Comma Categories

1. Let K be a commutative ring. Then we claim the category (K ↓ CRng) (which we write below as
K/CRng) is the category of small commutative K-algebras. Indeed, an object is a morphism of small
commutative rings f : K → R, so that k · (ab) = f(k)ab = af(k)b for a, b ∈ R because R is commutative
and associative. Such a morphism is exactly the data of an algebra over a ring. A morphism in the coslice
category is the obvious triangle such that g(f1(k)) = f2(k), whence g(f1(k)r) = g(f1(k))g(r) = f2(k)g(r).
This says g is K-linear, hence a morphism of K-algebras.

2. Let t ∈ ObjC be terminal for a category C. We claim the slice category C/t is isomorphic to C. Define
a functor T : C/t→ C by T (f : c→ t) = c on objects. On morphisms, send

c c′

t

h

to h ∈ MorC. Define S : C → C/t by letting S(c) be the unique morphism f : c → t, and sending
h : c→ c′ to the above triangle, which now commutes by uniqueness of morphisms to t. These functors
are inverse by construction and give the desired isomorphism.

Clearly an analogous result holds for the coslice category i/C, where i is an initial object.

3. We define the functors Q,P,R on morphisms as follows. Given a morphism (h, k) ∈ Mor(T ↓ S), set
P ((h, k)) = k, R((h, k)) = (Tk, Sh) and, Q((h, k)) = h. The diagram (5) in Mac Lane now commutes.

4. (S.A. Huq). We claim functors T, S : D → C with a natural transformation τ : T → S is equivalent
to the data of a functor τ : D → (T ↓ S) such that Pτ = Qτ = idD. Given two functors and τ as
above, define τ : D → (T ↓ S) on objects by τ(d) = (d, d, τd), and on morphisms as τ(f) = (f, f),
given f : d→ d′. Then we have Pτ = Qτ = idD as functors. Note further that (f, f) : τ(d)→ τ(d′) in
(T ↓ S); this square commutes by naturality.

Conversely, given τ : D → (T ↓ S) such that Qτ = Pτ = idD, we have τ(d) = (d, d, fd : Td→ Sd) for
some fd. If g : d→ d′ is a morphism in D, we obtain a square

Td Td′

Sd Sd′

Tg

fd fd′

Sf

which defines a natural transformation T → S.
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5. Given a diagram

X

E C C2 C D
P ′

R′
Q′ (3)

with bottom defined as in Mac Lane, we claim there is a unique functor L : X → (T ↓ S) such that
P ′ = PL and likewise for Q′ and R′. Set

L(x) = (P ′(x), Q′(x), R′(x)]

on objects. Note that thanks to the definition of the bottom of (3), we have R′(x) : T (P ′(x))→ S(Q′(x)).
Given f : x→ x′ in X, we get P ′(f) : P ′(x), and after applying T we obtain a diagram

TP ′(x) TP ′(x′0

SQ′(x) SQ′(x′)

TP ′f

R′(x) R′(x′)

SQ′(x)

so we set L(f) = (P ′(f), Q′(f)). We obtain the necessary factorization properties on L by construction;
see 3.

Uniqueness of L follows from the fact that if L′ : X → (T ↓ S), then L′(x) = (L′(x)1, L
′(x)2, L

′(x)3).
Now P ′ = PL = PL′ , so that L′(x)1 = P ′(x) and so on. This describes the comma category as a
pullback.

6. (a) Let C,D,E be fixed small categories. We claim that (T, S) 7→ (T ↓ S) is the object function of a
functor L : (CE)

opp ×CD → Cat. Given natural transformations τ : T ′ → T and σS → S′ defining
a morphism (τ, σ) in the source category, define L((τ, σ)) : (T ↓ S) → (T ′ ↓ S′) as follows. On
objects put L((τ, σ)) : (f : Te→ Sd) 7→ (σd ◦ f ◦ τe : T ′e→ S′d). On morphisms, map the square

Te Te′

Sd Sd′

Tk

f f ′

Sh

defined by (h, k) to the rectangle

Te Te′

Te Te′

Sd Sd′

S′d S′d′

Tk

τe τe′

f f ′

σd σd′

S′h

which commutes, as the small square obtained by adding Tk and Sh commute, by naturality of τ
and σ.

(b)

todo
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2.5 Graphs and Free Categories

In this section we use “graph” to mean ”O-graph” where O is obvious or specified immediately following.

1. Given an O-graph G, we define the opposite graph G
opp

. Set O
opp

= O and define A
opp

by ∂0f
opp

= ∂1f
and ∂1f

opp

= ∂0f . We then have U(C
opp

) = U(C)
opp

as graphs, if U : Cat → Grph is the forgetful
functor.

We next define the product graph, so that the notion of products will also be preserved by U . Let G,H
be O-graphs. Put OG×H = OG × OH , the product being in Set. Define AG×H = AG × AH likewise,
with ∂0(f1, f2) := (∂0f1, ∂0f2) and likewise for ∂1. We again have U(C1 × C2) = U(C1) × U(C2) as
graphs.

2. Let n = {0, 1, . . . , n− 1} be a finite ordinal number. We claim n is the free category on the O-graph

· · · · · ·

where the dots are labled from 0 to n− 1. Then adding all the necessary composite arrows, we see we
obtain the n-simplex, as required. More rigorously, it is clear that n satisfies the universal property in
theorem 1 of this section of Mac Lane.

3. We construct the free groupoid generated by a graph G and establish its universal property. Given G,
define G′ by OG′ = OG and AG′ = AG ∪ AGopp (see 1). Then C(G′) =: F is a groupoid after adding

the relation that the string ai
fi→ ai+1

f
opp

i→ ai is equal to the string (ai), i.e. the identity morphism
idai . We can define P : G → UF via the same formula as for free categories. Given a morphism of
graphs U : G→ UE for a groupoid E, the same construction as for general categories yields a functor
D′ : F → E, which is a morphism of groupoids.

When G has a single vertex, we can identify G with the set X := AG to see that every set X generates
a free group F (X) with the usual universal property.

2.6 Quotient Categories

1. This is mostly notation. Let G be the given square graph, and label its vertices x, y, z, w starting from
the tail of f and proceeding clockwise. Let R be the relation such that g′f = f ′g and let C = C(G).
Then Obj(C/R) = Obj(C) = {x, y, z, w}, and Mor(C) = {idk, f, g, fg′, g′f | k ∈ Obj(C)}. The quotient
category C/R has for morphisms the union of the hom-sets (C/R)(k, k) = idk, C(C/R)(x,w) = {f}
and so on, with the only change being (C/R)(x, z) is now a singleton. This gives four identity and five
non-identity arrows in the quotient.

2. Let C = G be a groupoid, viewed as a groupoid with one object, and let R be a congruence on C. Then
we claim there is N / G such that fRg iff g−1f ∈ N , i.e. g ≡ f mod N . Let F be the free group on
the set MorG (see 3 from the last section). By the universal property, we obtain a morphism of groups
Q : F � G. Let N = kerQ. Then if fRg, f ≡ g mod N , and conversely if Qf = Qg then f and g
differ by an element (strictly speaking, a morphism of C) in N .

3 Universals and Limits

3.1 Universal Arrows

1. (a) The integral group ring ZG of a group G has the following universal property. If ϕ : G→ R× is a
group homomorphism for a ring R, then there is a unique ring morphism ϕ̄ : ZG→ R such that
the obvious triangle commutes. Therefore (ZG, r : G ↪→ (ZG)×) is a universal arrow from G to
(−)× : Rng→ Grp.

Changing “group” to “monoid” throughout, the same reasoning goes through.
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(b) The tensor algebra has the following universal property. Given a linear map V → A from a vector
space V to an associative algebra A, there is a unique map TV → A of algebras such that the
obvious triangle commutes. This says that (TV, ι : V ↪→ TV ) is a universal arrow from V to
U : AlgK → VectK , the functor forgetting the ring structure of A.

(c) The exterior algebra has the universal property that given a linear map j : V → A for an associative
A, such that j(v)j(v) = 0 for all v ∈ V , there exists a unique arrow j̄ : ΛV : A such that the obvious
triangle commutes. This says that (ΛV, ι : V ↪→ ΛV ) is a universal arrow from V to the forgetful
functor form the full subcategory of K-algebras with alternating multiplications to VectK .

2. Let P : Set
opp

→ Set be the contravariant power set functor, and let d be a set. Let r = {0, 1} and
let f : r → d be the characteristic function χx for x ⊂ d. Then if e = {1}, f−1(e) = x and (r, e) is a
universal element for P.

3. • We construct a universal arrow from G to the forgetful functor U : Ab→ Grp. Let A = G/[G,G]
be the abelianization of G and let u be the natural map. Then for any morphism of groups
ϕ : G → B with B abelian, we have ϕ = ϕ̄ ◦ u uniquely, and hence ϕ = U(ϕ̄) ◦ u in Grp, as
required.

•
todo

• Let X be a set. We construct a universal arrow from X to the forgetful functor U : Top→ Set.
Let Z be X with the discrete topology and set f ′(x) = f(x) given f : X → UY for a topological
space Y . If u(x) = x sends X into Z, we have Uf ′ ◦ u = f as required.

• Let X be a set. We construct a universal arrow from X to the forgetful functor U : Set∗ → Set.

Let Z be X∪{∗} and define f ′(x) =

{
f(x) if x ∈ X
∗Y if x = ∗

from Z to a pointed set Y , given f : X → Y .

If u(x) = x sends X into Z, we have Uf ′ ◦ u = f as required.

4. The first isomorphism theorem from groups follows from the exposition in this section, namely p.57.

(a) There is a typo in this question. The correct right-hand side of the desired isomorphism is G/N .

The third isomorphism theorem follows by applying the first to the surjective morphism of groups
G/M → G/N given by gM 7→ gN . This is well-defined as M ≤ N .

(b) The second isomorphism theorem again follows from the first. We clearly have S ∩N / S and
N / SN . Define a morphism S → SN/N by s 7→ sN . This is surjective as snN ≡ sN mod N ,
and has kernel S ∩N .

5. We describe the quotient A/S of a K-module by a submodule in terms of universality. The quotient
module has the universal property that if f : A→M is a morphism of K-module such that f(S) = 0, then
f factors through A/S. This says the functorH : K -Mod→ Set sending M 7→ {f : A→M | f(X) = 0}
has universal element (A/S, π), where π is the natural (quotient) map. All the isomorphism theorems
now follow with the above proofs.

Remark 4. All such that functors H (c.f. p. 57) act on morphisms by Hf = f∗, so the condition
(Hf)e = x is equivalent to the usual commuting triangle condition.

6. We describe two-sided ideals I / R by universality. If I / R, then we have the following universal
property: any morphism of rings R→ S sending I to 0 factors through R/I. This says that (R/I, π),
where π is the quotient map, is a universal element for the functor H : Rng→ Set, defined similarly
to H above.

7.
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3.2 The Yoneda Lemma

3.2.1 Proof of the Yoneda Lemma

For a very detailed proof of naturality of the Yoneda lemma, see the online notes Linear Algebraic Groups by
Tom De Medts, §3.3.

Proposition 2 (Yoneda). If K : D → Set is a functor from a locally small category D, there is a bijection

Nat(D(r,−),K)
∼−→ Kr

given by
α : D(r,−)→ K 7→ αr(idr).

Proof. Injectivity of the above mapping follows from the diagram below. Given a morphism f : r → d and a
natural transformation α, we have

idr f

D(r, r) D(r, d)

K(r) K(d)

αr(idr) K(f)(αr(idr)),

αr

f∗

αd

K(f)

which says that for any d and f , αd(f) = K(f)(αr(idr)). Therefore the mapping above is injective. To show
surjectivity, let ξ ∈ K(r). Then define αd(f) := K(f)(ξ) for f ∈ D(r, d). This is natural: if g : d → d′, we
have

f g ◦ f

D(r, d) D(r, d′)

K(r) K(d′)

K(f)(ξ) K(g)(K(f))(ξ) = K(g ◦ f)(ξ).

αr

g∗

αd

K(g)

1. Set up as in the text. The vertical composition (ψ′)−1 ◦ τ ◦ ψ : D(r,−) → D(r′,−) is a natural
transformation between functors of the form D(s,−). By the corollary to the Yoneda lemma, there
exists a unique morphism h : r′ → r such that (ψ′)−1 ◦ τ ◦ ψ = D(h,−), so τ ◦ ψ = ψ′ ◦D(h,−).

2. We state and prove the dual of the Yoneda lemma. (Of course, such a proof is not necessary given
the proof of the above. Our notation is that of algebraic geometry. Note that the part of the proof of
injectivity is dual to the proof of surjectivity above, and vice-versa.

Let C be a locally small category and consider the Set-valued presheaf hx : Copp → Set where
hx : z 7→ HomC(z, x) and if f : z1 → z2, hx(f) : HomC(z2, x)→ HomC(z1, x) by pulling back by f , i.e.,
g 7→ g ◦ f . We claim there is a bijection

HomC(x1, x2)→ Nat(hX1
, hX2

) f 7→ hf .
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Indeed, we have idx1 ∈ HomC(x1, x2), and f : x1 → x2 gives rise to hf (z) : hx1(z) → hx2(z) sending
g 7→ f ◦ g. To recover f , put z = x1 and g = idx1 , then f = f ◦ idx1 = hf (x1) and f 7→ hf is injective.

Given λ ∈ Nat(hx1
, hx2

), we get
λx1 : hx1(x1)→ hx2(x1).

Set λx1
(idx1

) = f . We claim λ = hf . Let ϕ ∈ hx1
(x1) and consider the diagram

idx1
idx1
◦ ϕ = ϕ

hx1(x1) hx1(x1)

hx2
(x1) hx2

(x1)

λx1(idx1) λx1(idx1) ◦ ϕ

λx1

hx1
(ϕ)

λx1

hx2
(ϕ)

The bottom right corner shows that λx1
(idx1

) ◦ ϕ = λx1
(ϕ) = f ◦ ϕ as required.

3.

todo

4. (Naturality not changed by enlarging target.) Let J : E → E′ be inclusion of a full subcategory.
Let K,L : D → E be functors. We claim Nat(K,L) ' Nat(JK, JL). Given τ : K → L, we obtain
components (Jτ)sL = J(τs). This defines J(τ) : JK → JL, which is natural as J is a functor. As J is
inclusion, we have J(τs) = τs : Ks→ Ls, so τ 7→ Jτ is injective. Given σ : JK → JL natural, we see
that σs ∈ MorE by fullness. This shows surjectivity.

3.3 Coproducts and Colimits

1. We claim R→ R⊗S ← S is a coproduct diagram in CRng. Here we view R⊗S = R⊗ZS as the tensor
product of Z-algebras. The maps are r 7→ r ⊗ 1 and likewise for S. If we have maps f : R → T and
g : S → T such that the obvious triangle commutes, then define h̃ : R× S → T by h((r, s)) = f(r)g(s).
This is bilinear, so induces a map of Z-modules h : R⊗ S → T . We must check h is multiplicative, but
we can do so on elementary tensors, using that the rings involved are commutative.

2. We claim that if a category has binary coproducts and coequalizers, it has pushouts. Consider the span
below, with maps f and g out of it. We obtain a map h : c

∐
b → d such that the diagram minus a

commutes.

a b

c c
∐
b

d

p

q u′
g

v′

f

h′

Now we have, as we have coequalizers, a diagram

a c
∐
b P

d

h′ h
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for some object P . It follows that P is the required pushout.

In Set, we have disjoint unions and quotients of disjoint unions by the equivalence relation {(fx, gx) |x ∈ X} ⊂
Y × Y for parallel arrows from X to Y , so we have pushouts in Set. The same goes for Top with the
obvious topologies. In Grp, we have the free product (our coproduct). For coequalizers, given parallel
arrows ψ,ϕ : G→ H, we let N be the normal closure of

{
ϕ(g)ψ(g−1)

∣∣ g ∈ G} ⊂ H, so the coequalizer
of ϕ and ψ is π : H → H/N =: E. Therefore pushouts exist in Grp, where are the free product with
amalgamation.

3. Let A,B ∈ ObjMatrK . We describe their coequalizer as parallel arrows n → m. In the category
of vector spaces, after picking bases we would set d = km/(im(()A − B)) and let u : km → d be the
quotient map. If s = rank(A−B), then the coequalizer is u : m→ m− s.

4. We describe coproducts in Cat, Mon and Grph, and prove they exist.

In Cat, define C
∐
D by ObjC

∐
D = ObjC

∐
ObjD and likewise for morphisms. Note this means

C
∐
D is small when C and D, and likewise for being locally small. That C

∐
D is a category follows

from the fact that C and D are. We have functors i : C → C
∐
D ← D : j with obvious definitions.

Note they are both full and faithful. The universal property is clearly satisfied.

Now let C and D be monoids. Let M be a category with one object, and morphisms all reduced
words in MorC ∪MorD. Define functors i : C →M be inclusion of morphisms as one-symbol words,
and likewise for j : D → M . It is clear M is C

∐
D in Mon. Note that even though Mon is a full

subcategory of Cat, the coproduct in Mon is not the coproduct in Cat.

In the category of graphs, we again define the coproduct by taking disjoint unions of vertices and edges.
Essentially, we draw the graphs side-by-side. The universal property is again clear.

5. Let E ⊂ X ×X be an equivalence relation on a set X. We describe the quotient X/E as a coequalizer.
Define p1 : E → X by projection onto the first factor, and p2 likewise. Then we have a diagram

E X X/E
p1

p2

π

such that h : X → Y descends to the quotient precisely when h(p1(x)) = h(p2(x)) for x = (x1, x2) ∈ E,
i.e. x1Ex2.

6. We claim the coproduct a
∐
b exists in a category C if f the functor K := C(a,−)× C(b,−) : C → Set

is representable. Let ψ : C(r,−)
∼−→ K be a representation. This says immediately there is a bijection

between pairs f, g and arrows h in the diagram

a r b

c,

i

f
h

j

g

where we defined (i, j) ∈ K(r) as the image of identity in C(r, r) under ψ. For h as above, naturality
gives a square

idr (i, j)

C(r, r) C(a, r)× C(b, r)

C(r, c) C(a, c)× C(b, c)

h (f, g).

h∗

ψr

αd

ψc
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Thus the first diagram commutes and r = a
∐
b (up to unique isomorphism).

Conversely, if a
∐
b exists, we again get a bijection C(a

∐
b,−)

∼−→ K. If ϕ : c→ c′, then uniqueness
forces the square

C(a
∐
b, c) C(a, b)× C(b, c)

C(a
∐
b, c′) C(a, c′)× C(b, c′)

ϕ∗ (ϕ∗,ϕ∗)

to commute. Thus K is representable with representing object a
∐
b.

7. Every abelian group is the colimit of its finitely-generated subgroups. Precisely, we claim A is the colimit
of the inclusion functor JA → Ab of the preoder JA of finitely- generated subgroups. Let B be an abelian
group. Then a natural natural transformation from JA to ∆B gives components τ〈a〉 for every a ∈ A.
Define η(a) = τ〈a〉(a); then η : A→ B. Because τ〈a,b〉(a+ b) = τ〈a,b〉(a) + τ〈a,b〉(b) = τ〈a〉(a) + τ〈b〉(b) by
naturality, η is a group homomorphism with the required universality. The same fact generalizes to
R-modules; the only other calculation is η(ra) = τ〈a〉(ra) = rτ〈a〉(a) = rη(a).

3.4 Products and Limits

1. We claim the pullback in Set is the usual fibre product. Let g : Y → Z and f : X → Z, and let
P = X ×Z Y be the fibre product with projections pi. Given the solid diagram

T

X ×Z Y X

Y Z,

x

y

(x,y)

p1

p2 f

g

we see ξ := x(a) and ζ := y(a) are such that gζ = fξ, so we obtain h = (x, y) by h(a) = (x(a), y(a)).
This map is clearly unique as p1h = x etc. Therefore P is the pullback. In Top, the pullback as the
same underlying set as above, with the subspace topology.

2. It is obvious the Cartesian product is the categorical product in Set and Top.

3. Let J have an initial object s. Then we claim all functors F : J → C have limits, namely F (s). Indeed,
let τ : c → F be a cone. As s ∈ Obj J , there is τs : c → s. There is a cone σ : F (s) → F . Let t = τs.
We have

F (s) c

F.

σ

t

τ

The universal property says that, within the cone τ , any τj : c → F (j) factors as F (ϕ) ◦ τs, where
ϕ : s→ j. Therefore the diagram above commutes, so F (s) = limF .

Dually, we see any functor from a category with a terminal object has a colimit.

4. We claim that, in any category, f : a→ b is an epimorphism iff the square
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a b

b b

f

f 1

1

is a pushout. If f is an epimorphism and ϕ : b→ c and ψ : b→ c such that obvious diagram commutes,
then ϕ = ψ, so we can define h : b → c to be either and see that the bottom copy of b in the above
diagram is a pushout of the rest. Conversely, if the diagram above is a pushout, then given ϕ and ψ
as above we have a unique h : b→ c such that h = ϕ = ψ. Thus ϕf = ψf implies ϕ = ψ and f is an
epimorphism.

5. Let

b×a d d

b a

q

p g

f

be a pullback square. Then we claim if f is monic, q is monic. Let f be monic and let ϕ,ψ : e→ b×a d
such that qϕ = qψ. Then gqϕ = gqψ so that fpϕ = fpψ whence pϕ = pψ. Therefore we have a cone

from X into b a d, such that ψ and ϕ both make the diagram for the universal property

of the pullback commute. By the uniquness of this morphism, ϕ = ψ. Therefore q is monic.

6. Let f : X → Y be a morphism in Set. We claim the kernel pair is E := {(x, x′) | fx = fx′}, and
projections pi : E → X. The small square in the below commutes by construction. If we have ϕ,ψ as
indicated, then fϕx = fψx so (ϕ,ψ) is into E. This says that E is the pullback. The diagram is

Z

E X

X Y.

ϕ

ψ

(ϕ,ψ)

p1

p2 f

f

7. Consider a category with finite products and equalizers. Then we can realize the kernel pair of f : a→ b
in terms of projections pi : a × a → a and the equalizer (d, e) of fp1, fp2 : a × a → b. Consider the
diagram

c a× a

a× a d a

a b.

ϕ

ϕ′

Ψ′ p1

p2

e

e

f

f

The inner square on its own commutes as fp1e = fp2e by the definition of an equalizer. Now ϕ and ϕ′

define a morphism Ψ into a× a by Ψ = (ϕ,ϕ′) such that fp1Ψ = fp2Ψ, whence the existence of Ψ′.
Everything commutes by construction, and we have the kernel pair.
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8. Consider the diagram
· · ·

· · ·

(4)

(a) Suppose both small squares are pullbacks. Then we claim the large square is a pullback. If we
have morphisms into the top right and bottom left objects of (4), we obtain a unique morphism
into the top middle object. We then obtain a unique morphism into the top left object. We check
this new diagram commutes, which proves the claim.

(b) Suppose the outer and small right squares are pullbacks. Then we claim the left-hand square is
too.

Remark 5. It can happen that the outer and left squares are pullbacks, but not the right square.

Consider a cone over the left cospan. Composition then gives a cone over the outer cospan, so we
obtain a unique morphism into the top left object. Using uniqueness arguments and the fact that
the right-hand square is a pullback, we see this diagram commutes, which proves the claim.

9. Let f, g : b→ a be parallel morphisms in a category with products and pullbacks. Then we claim the
equalizer of f and g can be realized as a pullback of a product. Let d be a pullback of the following
diagram:

c

d b

b b× a.

ϕ

ϕ′

h

e

e′ (idb,f)

(idb,g)

The commutativity of the small square and the fact that the rightmost morphisms have a component
which is idb implies that e = e′. Taking ϕ = ϕ′ we see the cone condition implies fϕ = gϕ, so d is the
equalizer.

10. Let C have all pullbacks and a terminal object t. Then we claim C has all products and equalizers. Let
a, b, c ∈ ObjC. Let P be the pullback in the following diagram

c

P b

a t.

g

f

h

j

i

As P is a pullback, h exists and is unique. As t is terminal, any morphisms (f, g) suffice to make the
diagram commute. Therefore P = a× b.
Problem 9 now implies that C has equalizers.

3.4.1 The p-adic integers

We give an example of a limit (frequently termed a projective limit) in the literature. See the essay of Bill
Casselman at http://www.math.ubc.ca/~cass/research/pdf/Profinite.pdf for a very nice description
in more generality.
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The p-adic intergers Zp are the limit in the category of rings with 1 (and if the Z/pkZ are given the
discrete topology, in the category of topological rings) of the diagram

· · · Z/pnZ Z/pn−1Z · · · Z/pZ (5)

where the morphism πk+1,k into Z/pkZ is reduction modulo pk. We define Zp ⊂
∏
n∈N Z/pnZ as the closure

of Z with respect to the p-adic norm | · |p. The sequences (xn) such that πn+1,n(xn+1) = xn are Cauchy in
this metric, so lie in Zp.

The limiting cone has morphisms given by projection onto the k-th coordinate. The universal mapping
property follows from the fact that given a unital ring R, a cone over (5) implies ϕk+1(r) = πk,k+1ϕk(r) for
all r. This defines a morphism R→ Zp via r 7→ (ϕk(r))k which satisfies the universal property.

3.5 Categories with Finite Products

1. We claim the diagonal δ : idC → × is a natural transformation. By definition, we have components
δc : c→ c× c defined by p1δc = idc = p2δc. Let f : c→ c′. We claim

c c× c

c′ c′ × c′

δc

f f×f
δc′

commutes. As f1 × f2 is defined by pi(f1 × f2) = fipi, the path around the top of the square is

(fp1δc, fp2δc) = (f, f) : c→ c′ × c′

by definition of δc. The other path has components pi(δc′f) = f , so the diagram commutes. Thus δc is
natural in c.

2. Consider the diagrams defined on p. 74. The first commutes by uniqueness: both paths are natural
isomorphisms a× (b× (c× d)))

∼−→ ((a× b)× c)× d. Uniqueness again implies the bottom-left diagram
commutes. To apply this reasoning to the final diagram, we need only show that a× (t× c) satisfies the
universal property for a× c. But this is clear.

3. (a) We claim Cat has all pullbacks. Assume the setup of question 5 from §2.6. Let Π be the full
subcategory of (T ↓ S) such that Te = Sd. That is, such that that the square

(T ↓ S) B

A C

Q

P T

S

commutes. Given any commutative square

X B

A C,

Q′

P ′ T

S

we can define R′ as in (5), by R′x = idT (Q′x) : T (Q′x)) → S(P ′x)) = T (Q′x) (C2 being the
category of morphisms in C) on objects and R′(ϕ)x = TQ′f . By (5) we obtain L : X → (T ↓ S)
such that P ′ = PL and Q′ = QL. Therefore we see that the image of L lies in Π, so Π is the
desired pullback.
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(b) We show the (co)slice categories (b ↓ C) and (C ↓ a) are pullbacks. This requires a different
argument than (a), as the corresponding subcategories Π are clearly proper in general. Consider
the diagram

X

(b ↓ C) 1

C2 C.

Q

P

h

const

incl

Cd0

i.e. Px is an arrow in C with codomain b. Therefore we can define h = P , and as the vertical
morphism is inclusion, this is the only h we can pick. Therefore (b ↓ C) is a pullback. The same
diagram with (C ↓ a) and Cd1 shows that (C ↓ a) is a pullback.

4. Our description of binary coproducts of small categories above involves only disjoint unions of sets. A
disjoint union of small sets taken over a small index set is small, so Cat has all small coproducts.

Remark 6. See the nLab article on Grothendieck universes.

5. Let B have all finite products, and let C be any category. We claim BC has all finite products, with
calculations done “pointwise.” Say we have a diagram

G F H.
τ1 τ2

Define Ψ ∈ ObjBC by Ψc = Gc×Hc ∈ ObjC, and Ψf := Gf ×Hf : Gc×Hc→ Gc′×Hc′ if f : c→ c′.
Define further natural transformations i : Ψ → G by ic : Ψc → Gc by projection Gc ×Hc → Gc and
likewise define jc. Then set σ : F → Ψ by σc = (τ1c× τ2c) ◦ δc : Fc→ Fc×Hc, where δc is the diagonal
morphism. The obvious product diagram now commutes, so BC has products.

3.6 Groups in Categories

Let C have finite products and let t be a terminal object in C.

1. We describe the category of monoids in C. The objects are monoids (c, µ) in C, and morphisms
(c, µ, η) → (c′, µ′, η′) are morphisms f : c → c′ in C such that f ◦ µ = µ′ ◦ (f × f) ◦ δ, where δ is the
diagonal morphism. We must also require that f ◦ η = η′.

Let M1 and M2 be monoids in C, and define M = (c, µ, η) with c = c1 × c2 and mu the composite
(suppressing parentheses in the codomain product)

c1 × c2 × c1 × c2 c1 × c1 × c2 × c2 c1 × c2,τ µ1×µ2

where the twist τ is defined by the diagram

c1 × c2 × c1 × c2

c1 × c1 c1 × c1 × c2 × c2 c2 × c2.

(p1,p3) (p2,p4)
τ

The morphisms (pi, pj) are defined, as we can first map to c1× t× c1× t, and then use the isomorphisms
a× t→ a. The unit η is induced defined by the diagram

t

c1 c1 × c2 c2.

η1 η2
η
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The two diagrams for “associativity of multiplication” and η commute because morphisms of products
are uniquely determined by their components, and the diagrams commute for M1 and M2 by hypothesis.

2. We now claim the category of groups in C have all finite products. By 1, it is enough to show a suitable
morphism ξ exists. Given groups Gi in C, define the monoid G = G1 ×G2 as above, and define ξ by
the diagram

G1 ×G2

G1 G1 ×G2 G2.

ξ1 ξ2
ξ

Again, the necessary diagram for “inverses” in G × G will commute as its morphisms are defined
uniquely by their components, for which the corresponding diagrams commute.

3. Let T : B → Set be a functor. We claim T is a group in SetB iff Tb is a group (in the classical sense)
for all b ∈ ObjB and Tf is a morphism of groups for all morphisms f in B.

Say the Tb are groups and the Tf are morphisms of groups. Then define µ : T × T → T , a natural
transformation, by letting µb : Tb×Tb→ Tb be multiplication in Tb. That µ is natural is the statement
that the Tf are morphisms of groups. Define η : t → T , where t is the constant functor to {∗} by
ηb : {∗} → Tb, the function selecting the identity in Tb. Naturality follows for the same reason as above.
We define ξ by defining each ξb in the same way. The necessary diagrams again commute, because the
compositions are vertical compositions of natural transformations and the diagrams commute when
specialized to their components for every b ∈ B (this is the statement that the Tb are groups).

Conversely, say T is a group in SetB . Then the components of the three diagrams endow the sets Tb
with a group structure. Naturality of µ says that Tf is a morphism of groups for all f ∈ MorB.

4. (a) Let A be an abelian group in Set. Then we claim its multiplication, inverse, and unit maps make
it a group in Grp. It is enough to show that these morphisms are morphisms of groups, and not
just functions. We have

µ((a, b)(a′, b′)) = µ((aa′, bb′)) = aa′bb′ = aba′b′ = µ((a, b))µ((a′, b′))

to start, and if 1 = {e} is the trivial group, then η : 1 → A we have η(ee) = η(e) = η(e)η(e).
Finally, we have

ξ(ab) = (ab)−1 = b−1a−1 = a−1b−1 = ξ(a)ξ(b),

so µ, η, and ξ are morphisms of groups. The three necessary diagrams already hold in Set, and so
they hold now in Grp. Therefore A is a group in Grp.

(b) Now we claim all groups G in Grp are abelian groups in Set, with µ being multiplication in G (as
a set) and so on. It is enough to show that µ and multiplication in G as a set obey the interchange
law; η is a morphism of groups, so η(1) is the identity in G and then the Hilton-Eckmann argument
will show the two agree and that G is abelian. Then (2) from §3.6 will show ξ is inversion in G.
That the interchange law is satisfied follows from the fact that µ : G×G→ G is a morphism of
groups, so the claim follows.

4 Adjoints

4.1 Adjunctions

1. This question appears to just ask for a proof of corollary 2 from the previous page. We claim
G : A→ X has a left adjoint iff for all x ∈ ObjX, the functor X(x,G−) : A→ Set is representable. If
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ϕ : A(F0x,−)
∼−→ X(x,G−) is a representation, then F0 is the object function of a functor which is left

adjoint to G, and ϕ gives the adjunction.

If we have a representation ϕ : A(F0x,−)
∼−→ X(x,G−), then ϕ is natural in a. We therefore want

a universal arrow from x to G for each x, and we will be done by theorem 2 part (ii). Put a = F0x,
let ηx be the image of id under the representation ϕ. Given h : x→ Gy, we obtain ϕ−1(h) : F0x→ y.
By naturality of ϕ, h = Gh ◦ ηx, which says that ηx is universal. Conversely, an adjunction gives a
representation.

2. (Lawvere.) We describe an adjuction (F,G, ϕ) has an isomorphism θ : (F ↓ IA)
∼−→ (IX ↓ G) of comma

categories such that

(F ↓ IA) (IX ↓ G)

X ×A X ×A

θ

(P,Q) (P,Q)

id

(6)

commutes. Given an adjunction, send f : Fx→ a to ϕ(f) : x→ Ga thus defining an isomorphism θ on
objects. That is, θ : (x, a, f) 7→ (x, a, varphi(f)). Next, given a morphism (k, h):

Fx Fx′

a a′,

Fk

f f ′

h

consider the square

x x′

Ga Ga′.

k

ϕ(f) ϕ(f)′

Gh

By naturality of ϕ in x and a the first square commuting implies the second square does, so θ is defined
on morphisms. Doing the same for ϕ−1 shows θ is an isomorphism of categories. Now it is also clear
that (6) commutes.

3. We claim the unit δc : c→ c× c of the adjunction (∆,×, ϕ) is the unique arrow in C such that

c

c c× c c

1
δc

1

qp

commutes. Indeed, δc = ϕ(1) is defined by the fact that — as ϕ is an isomorphism — ϕ−1 : δc 7→
(pδc, qδc) = (1, 1) ∈ C(c, c)× C(c, c) (c.f. p.82). Therefore the diagram commutes. In Set, this means
δc : x 7→ (x, x).

4.

todo

4.2 Examples of Adjoints

1. Let EV be the exterior algebra of a vector space V . We claim E : VectK → C is left-adjoint to the
forgetful functor, where C is the category of graded-commutative associative unital (note this does not
meet “graded and all elements commute”) K-algebras. The functor U : C → VectK sends an algebra to
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its underlying vector space and morphisms to their degree zero component. The universal property of
the exterior algebra (which follows from its construction as a quotient of the tensor algebra of V ) now
says that HomC(EV,A) ' HomVectK (V,UA). Checking naturality is similar to all the examples below.

2. We show that the forgetful functor U : R -Mod → Ab has a right adjoint HomZ(R,−), where
HomZ(R,A) is anR-module via (r′·ϕ)(r) = ϕ(rr′). We define a map Ab(UM,A)→ R -Mod(M,HomZ(R,A))
by sending

ϕ 7→ m 7→ (ψm : 1 7→ ϕ(m)).

This determines ψm completely as ψm(r) = (r · ψm)(1) = ϕ(r ·m) = ψrm(1). This shows that m 7→ ψm
is R-linear, and is totally determined by ϕ, so the map is injective. We can send

(m 7→ ψm) 7→ (m 7→ ψm(1))

in the other direction. We see that

(m 7→ ψm(1)) 7→ (m 7→ (1 7→ ψm(1)),

so our map is also surjective and an isomorphism. To show naturality we use (ii) of theorem 2 of this
section. Indeed, given f : M → HomZ(R,N) in R -Mod, consider the morphism g : UM → N given by
m 7→ f(m)(1), so that the right-down path of the diagram

M HomZ(R,UM)

HomZ(R,N)

ηM

f
g∗

sends m 7→ rm 7→ f(rm)(1) = (r · f(m))(1) = f(m)(r). Therefore the diagram commutes. This says
ηM is universal and the hypotheses of (ii) of theorem 2 are met. Therefore we have an adjunction.

Having gong to the trouble of writing down the bijection explicitly, we describe the unit and counit of
this important adjunction. The unit ηm : m 7→ (1 7→ m), os that ηm(r) = rm recovers the R-module
structure on M . The counit is the image of id : ϕ → ϕ, and sends ϕ 7→ ψϕ(1) = ϕ(1), i.e. εA is
evaluation at 1 ∈ R.

3. Let Ug be the universal enveloping algebra of a Lie algebra g over K, so that U : LieK → AlgK is a
functor. Consider also the functor V : AlgK → LieK sending A to the Lie algebra with vector space A
and bracket [x, y] = xy − yx. Then the construction of Ug as a quotient of the tensor algebra provides
an isomorphism HomAlgK

(Ug, A) ' HomLieK
(g, V A). The PBW theorem provides a convenient basis

to check naturality, but we do not do that here.

4. Let Rng′ be the category of rings not necessarily containing a multiplicative identity. We claim that
the functor R 7→ R∧ which adjoins 1 to a ring is left adjoint to the forgetful functor Rng → Rng′.
Define R∧ = Z×R with multiplication (a, r)(b, r′) = (ab, ar′ + br + rr′). Then (1, 0) is a multiplicative
identity in R∧. Then given f , there is a unique f̃ such that the diagram

R R∧

S

ι

f
f̃

commutes, where ι : r 7→ (0, r). Indeed, define f̃(a, r) = (a1S) + f(r). Further, f̃ is unique as it must
send (1, 0) 7→ 1S and (0, r) 7→ f(r). This gives a bijection, and checking each naturality condition is
routine. We conclude the two functors are adjoint.
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5.

todo

6. We describe the units and counits for the (vertex of) pushout and pullback functors. Let V be “vertex
of pullback” functor, so that HomC→·←(∆c, T ) ' HomC(c,VT ). When T = ∆c, we get a diagram

c

c c

c c,

1

1

ηc

1

1

1

so ηc = 1c. If we take v = VT for a functor (cospan) T , we obtain a diagram

v

v a

b d,

p

q

1

p

q

so εT = (p, q), the projections from the pullback.

Dually, we have ηc = (i, j), the inclusions into the pushout, and ε = idc for the “vertex of pushout”
functor which is left adjoint to ∆.

7. (a) Let J =
∐
k Jk be a coproduct of connected categories, and let Ik : Jk → J be the injection functors.

Let Fk = FIk if F : J → C. If limFk exists for each k, we claim limF '
∏
k limFk. Indeed, define

a natural transformation r : ∆
∏
k Fk → F by rj = Rj ◦∆Pk : ∆

∏
k limFk → ∆ limFk → F (j),

where k is such that that j ∈ Obj J is in the connected component labelled by k, and Rj is
the natural transformation guaranteed by the universal property of limFk. Let τ : ∆c → F be
a natural transformation, and define ν : ∆c → ∆

∏
k limFk by pk(ν)i = (νk)i, where νk is the

natural transformation guaranteed by τk : ∆c → Fk with components (τk)j for j ∈ Jk. Conversely,
pkν : ∆c→ Fk such that that the obvious diagram commutes, so ν is unique. Therefore

∏
k limFk

is another limit of F , and so is naturally isomorphic to limF .

(b) We claim every category is a disjoint union of connected categories. To prove this it suffices to
note that “connected to” in the sense of p.86 is an equivalence relation.

(c) We claim all limits can be obtained from products and limits over connected index categories. Let
F : J → C and keep the above notation. By (b), J =

∐
k Jk, and by (a), limF =

∏
k limFk. This

proves the claim.

8. (a) Let J be a connected category. We claim lim ∆c = colim ∆c = c for any c ∈ ObjC. If J is
connected, then the image of ∆c is connected with all arrows the identity. Therefore a cone from
the base of ∆c to d (dually, from d to the base of ∆c) is equivalent to a morphism c→ d ( d→ c).
Therefore (c, 1) is a limit and colimit of ∆c.

(b) We describe the unit for the right adjoint to the diagonal ∆: C → CJ . We have HomCJ (∆c, F ) '
HomC(c, limF ), and if F = ∆c, we get lim ∆c = cK as the unit if J =

∐
k∈K Jk by (b) and

problem 7.

9. We claim the functor O : Cat → Set taking C 7→ ObjC has left adjoint D : Set → Cat sending
X to the discrete category with object set X. Indeed, DX is discrete, so a functor F : DX → C
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is totally determined by its values on objects, i.e. ϕ : F 7→ F0, the object function, is a bijection.
Indeed, given ϕ : X → OC, setting F (x) = f(x) and F (idx) = idf(x) defines an inverse. Therefore

ϕ : Cat(DX,C)
∼−→ Set(X,OC). Naturality in X follows from the fact that the object function of

a composite functor in the composite of the object functions, and the object function of Df if f .
Naturality in C follows similarly, except now we use that the object function of T is OT .

We claim that D also has a left adjoint T : Cat → Set, sending C to the set of its connected
components. As DX is discrete, a functor C → DX is constant on objects on connected components of
C (as Tϕ = id on all morphisms). Therefore given F : C → DX, we get f : TC → X by f(K) = f(k)
for any k ∈ K ⊂ ObjC a connected component. Conversely, we can define such a functor by picking the
image of each connected component. Therefore this defines a bijection ϕ : Set(TC,X)

∼−→ Cat(C,DX).
Naturality in X is as follows. Around the obvious square, g ∈ Set(TC,X) is sent along the top-down
path to (Df) ◦G defined by ((Df) ◦G)(k) = (f(g(k)), and along the down-bottom path to the functor
H defined by H(k) = (f ◦ g)(k). Naturality is also straightforward.

Finally, we claim O has a right adjoint given by S : Set→ Cat sending X to the category with objects
X and singleton Hom-sets. In this category, all triangles commute. Therefore sending f : OC → X to the
functor F such that F (c) = f(c) on objects and setting F (ϕ) is the unique element of (SX)(f(c), f(c′)).
As there is no choice for Fϕ, this is a bijection Set(OC,X)

∼−→ Cat(C, SX). Naturality is again
routine.

10. Let C be a category with cokernel pairs and equalizers. Let K : C2 → C↓↓ be the functor sending an
arrow to its cokernel pair, and E : C↓↓ → C2 be the functor sending a pair of parallel arrows tot their
equalizer. We define a map ϕ : (C2)(f,EG)→ C↓↓(Kf,G). Note that a morphism in C↓↓ is a pair of
commuting squares, and given a morphism

a c

f d.

f

h′

EG

k

consider the diagram

a c

b d

r e.

h′

f EG

k

u v G1 G2

R

The map R is induced as follows. We have G1EGh
′ = G2EGh

′, so that G1kf = G2kf . Therefore we
obtain a unique map R : r → e such that that the lower squares formed of the rightmost and leftmost
vertical arrows on each side each commute. Uniqueness of r says this map ϕ is injective. For surjectivity,
suppose we are given

b r
u

v

and

d e
G1

G2

such that the diagrams
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a b d

r d.

f

u

h

G1

g

and

a b d

r d.

f

v

h

G2

g

commute. Then we have G1hf = guf and G2hf = gvf , so because Kf is the cokernel pair of f ,
uv = vf and G1hf = G2hf . Therefore we get a unique morphism h′ : a→ c such that h′EG = hf , so

a c

f d.

f

h′

EG

h

commutes. Therefore ϕ is a bijection. We do not check naturality here.

11. Let C have finite products. Then we claim that the projection Q : (a ↓ C)→ C sending f : a→ c 7→ c
has left adjoint T : c 7→ (a→ a

∐
c). We define a map (a ↓ C)(Tc, f)→ C(c,Qf) by sending a triangle

a

a
∐
c b

f
Tc

h

to ϕ(h) = hj : c → b. Here j is the canonical inclusion c → a
∐
c. Conversely, send h′ : c → b to the

triangle

a

a
∐
c b,

f

Tc

h

where h is unique such that

a a
∐
c a

b

i

h′
h

j=Tc

f

commutes. These assignments are inverse, so we have defined a bijection. For naturality in c, say
ϕ : c→ c′ and let Tϕ be the morphism induced by Tc and j′ ◦ ϕ : c 7→ a

∐
c′. Then we have the square

(a ↓ C)(Tc, f) C(c,Qf)

(a ↓ C)(Tc′, f) C(c′, Qf).

(Tϕ)∗ ϕ∗

The right-up path sends

a

a
∐
c′ b,

f

i

h

7→
c′

b

hj′ ϕ∗7→

c

c′

b,

ϕ

hj′

whereas the up-right path sends
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a

a
∐
c′ b,

f

i

h

7→
a

a
∐
c′ a

∐
c′ b,

Tc′
Tc

f

j′ϕ h

which is then sent to h ◦ (j′ ◦ ϕ), whence naturality. Given h : f → f ′ in the comma category, showing
naturality in f is similar.

12. We claim the copower is left-adjoint to the power, in categories where both exist. We note the relevant
exposition in Mac Lane furnishes bijections C(X · c, d)

∼−→ C(c, dX) for a set X, but we do not check
naturality here.

4.3 Reflective Subcategories

1. We find the dual statements corresponding to the statements

(a) S, T : C → B are functors;

(b) T is full;

(c) T is faithful;

(d) η : S → T is a natural transformation;

(e) (F,G, ϕ) is an adjunction;

(f) η is the unit of (F,G, ϕ).

As the statement “ι = 1c” is self-dual, and composite morphisms are sent to composite morphisms upon
reversing arrows, we see the dual statement to (a) is is (a). That T is full is the statement “∀g : Tc→ Tc′

in B, ∃g′ : c → c′ such that g = Tg′.” The dual sentence is “∀g : Tc ← Tc′ in B, ∃g′ : c ← c′ such
that g = Tg′,” and therefore the dual of (b) is (b). Likewise, the dual statement for (c) is (c). The
arrows in the square for each component of η will reverse but still commute, so the dual of (d) is (d). If
(F,G, ϕ) is an adjunction, then we have a bijection ϕ : A(Fx, a)→ X(x,Ga), so dualizing we obtain
ϕ−1 : X(Ga, x)→ A(a, Fx). Therefore the dual of (e) is “(G,F, ϕ−1) is an adjunction.” The statement
“this morphism is the identity” is its own dual, and so by the above it follows that the dual of (f) is “η
is the counit of (G,F, ϕ−1).”

2. We claim the full subcategory C of torsion-free abelian groups is reflective in Ab. Let F : Ab→ C be
given on objects by A 7→ A/Ators. As the order of the image of an torsion element divides the order of
the element, F is a functor. This also implies that f : A → B must be trivial on Ators if B ∈ ObjC.
Therefore we define ϕ : Ab(A/Ators, B)→ Ab(A,B) for torsion-free B by inflation: ϕ(f)(a) = f([a]),
where [a] is the image of a in the quotient FA. By the last sentence again, any g : A→ B descends to
FA. Therefore ϕ is a bijection. Naturality is routine.

3.

todo

4. We claim the following two categories are reflective:

(a) The full category C of Preord of partial orders. Let K : C → Preord be the inclusion functor.
In any preoder, the relation a ∼ b iff a ≤ b and b ≤ a is an equivalence relation on objects. Form
therefore the quotient FP of a preorder P with ObjFP = P/ ∼, and say [a] ≤ [b] in the quotient
iff a′ ≤ b′ for all a′ and b′. One checks this is well-defined, so F is a functor Preord→ C. Say
f : FP2 → P2 is monotone in C. Then set (ϕf)(a) = ϕ([a]). In the other direction, inflate: set
(ψf)([a]) = f(a). This is well- defined, as if [a′] = [a] then a′ ≤ a and a ≤ a′ whence f(a) = f(a′)
by monotonicity and the fact that KP2 is a preoder. Assignments ϕ and ψ are inverse, so
ϕ : C(FP1, P2)

∼−→ Preord(P1,KP2). To avoid checking naturality, we note that defining R = IF
we obtain a universal arrow as follows. Let g : P → P ′ with P ′ a partial order. Then g descends
to the quotient RP and the diagram
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P RP

P ′

R

g

commutes. This shows the inclusion functor has a left adjoint, as the quotient map is universal
from P to RP .

(b) The full category C of Top of T0 spaces. It is enough to produce an endofunctor R of Top with
values in C, and a universal arrow from X to RX for all spaces X. Define a relation x ∼ y
for points in X if every neighbourhood of x is a neighbourhood of y and vice versa. This is an
equivalence relation. Let RX be the quotient space and π the quotient map. We claim RX is
T0. Let [x] 6= [y] in RX. Thus x 6∼ y and without loss of generality there is U 3 x open in X
with U 63 y. Then π−1(π(U)) =

∐
u∈U [u]. Suppose this set has a boundary point in X. Let

u′ ∈ [u] ⊂ π−1(π(U)) be such that any neighbourhood of u′ intersects

{x′ ∈ X |x ∼ u for some u ∈ U}C = {x′′ ∈ X |x′′ 6∼ u ∀u ∈ U} .

But u′ ∼ x′′ for such x′′, and u′ ∼ u by definition. Therefore π−1(π(U)) is open, so π(U) is open
in RX. Now π(U) 63 [y] and it contains no y′ from [y]; U is not a neighbourhood of y so it cannot
be a neighbourhood of any y′ ∈ [y] by definition of ∼. Therefore RX is T0.

Given g : X → Y with Y a T0 space, we have

X RX

Y

R

g
f

with f([x]) = g(x). This is well-defined, as if [x] = [x′], let U be a neighbourhood of g(x). Then
g−1(U) is a neighbourhood of x, hence of x′ and vice versa, taking a neighbourhood V of g(x′).
Then U 3 g(x′) and V 3 g(x) so g(x) = g(x′). The diagram commutes and f is continuous, we
have a universal arrow from any X as required. Reflectivity follows.

Remark 7. The space RX is called the Kolmogorov quotient of X.

5. Let (F,G, ϕ) : X → A be an adjunction. We claim G is faithful iff ϕ−1 carries epimorphisms to
epimorphisms. Let ϕ−1 carry epimorphisms to epimorphisms. Let x = Fa, so that ϕ−1 : X(Ga,Ga)→
A(FGa, a) sends idGa to εa : FGa → a, which is than an epimorphism for all a. By theorem 1 of
this section, G is faithful. Conversely, let G be faithful. Let f : X → Ga be an epimorphism and say
g ◦ ϕ−1(f) = h ◦ ϕ−1(f) : Fx→ a→ a′. Then by naturality we have that Gg ◦ f = ϕ(g ◦ ϕ−1(f)), so
Gg ◦ f = Gh ◦ f and Gg = Gh. Then g = h and ϕ−1(f) is an epimorphism.

6.

todo

7. Let A be a full, reflective subcategory of B. Let S : J → A be a functor with a limit in B. Then we
claim S has a limit in A, and moreover, the two limits are isomorphic. Let limB S be the limit of S in
B, and let ϕ : A(Rb, a)

∼−→ B(b, a). Applying ϕ−1 with b = limB S and a = Sj, we obtain morphisms
Rνj from R limS B to S from the limiting cone with base S. By naturality of ϕ−1 we see this is a cone
ρ : ∆R limB S → S. We claim R limB S is isomorphic to limB S, so this cone will be limiting. In B, we
obtain a unique morphism θ such that ρ = νθ for the original limiting cone nu. Letting a = R limB S
in the adjuntion above, we get η = ϕ(id) : limB S → R limB S in B. We have a diagram

X R limB S limB S

S,

η

ν ρ

θ

ν
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and by uniqueness νθη = ν implies θη = idlimB S . Now we claim ηθ is the identity in A. We have
ηθη = η by uniqueness, so ηθ = idR limB S by universality of η. Therefore ηθ is a morphism in A by
fulllness, so η is an isomorphism. Therefore R limB S is a limit in A.

Remark 8. This shows limits in a full reflective subcategory are calculated in the same way as in the
ambient category. This should be able to be used to show that some subcategories are not reflective, by
demonstrating two non-isomorphic limits.

4.4 Equivalence of Categories

1. (a) We claim that any two skeletons of a category are isomorphic. Let A and A′ be skeleta of of C.
Then for all a ∈ ObjA let θA

′

a be the isomorphism to an object a′ of A′. We can define θA
′
(f)

uniquely such that the square

a a′

b b′

θA
′

a

f θA
′
(f)

θA
′

b

commutes. Therefore we obtain a functor θA
′
: A→ A′, and in the same way a functor θA : A′ →

A. Thus the composite θA
′
θA : A → A is an isomorphism on objects. As skeleta are skeletal

subcategories, this composite must be the identity. Likewise θA
′
θA is the identity, and A ' A′.

(b) Let A0 ⊂ C be a skeleton, and A0 ⊂ C0 also. Then we claim C is equivalent to C0 if and only if
A0 is isomorphic to A. Say that A0 ' A, and let S, T be functors giving the isomorphism. Let
c ∈ C and define S̃c by S(θc(c)) for the unique isomorphism θc : c

∼−→ a. Define T̃ the same way.
Then

T̃ S̃c = T̃ Sθc(c) = Tθ0
SaSθc(c),

but Sa ∈ A0, so θ0
Sa = 1, so on objects we have

c a Sa TSa = a c.
θc∼ S T θ−1

c∼

Thus θ−1 : T̃ S̃
∼−→ I is a natural isomorphism. Likewise θ0 provides an isomorphism in the

opposite direction. Therefore the two categories are equivalent.

Remark 9. This tilde construction works kind of like lifting into covering spaces.

Say now C and C0 are equivalent. Let S : C → C0 be the equivalence. By theorem 1 of this section, S
is full, faithful, and all c0 ∈ ObjC0 are isomorphic to Sc for some c ∈ ObjC. Suppose therefore that
we have a triangle

c0 Sc

Sc′,

∼

∼
g

where g is the inverse of the vertical isomorphism followed by the horizontal isomorphism. Then there
is a unique f : c→ c′ such that Sf = g, and f is an isomorphism in C. Thus the image of A under G is
a skeleton of C0. By (a), we have S(A) ' A0, so it suffices to show that S(A) is isomorphic to A. We
likewise obtain a skeleton T (A0) of C, so composing with an invertible functor T (A0) → A, we can
assume T takes A0 to A. Then we have T (Sa)

∼−→ a, so TSa = a as both sides of the isomorphism
are in A. Conversely, S(A) and S(TSa) = (ST )(Sa) ' Sa ∈ S(A), so (ST )(Sa) = Sa. This says the
skeleta are isomorphic.
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2. (a) We claim the composite of two equivalences S : D → C and S′ : C → A is an equivalence D → A.
By theorem 1, it is enough to show that S′S is full, faithful, and every a ∈ ObjA is isomorphic to
some S′Sd. The first two statements follow from the corresponding hypotheses about each functor.
Let a ∈ A. Then a ' S′c for some c and c ' Sd. Therefore a ' S′Sd. Thus S′S : D → A is an
equivalence.

(b) We claim the composition two adjoint equivalences (as adjunctions) is again an adjoint equivalence.
This follows most easily by applying theorem 1 from §8 of this chapter, using theorem 1 of this
section to show that the unit and counit of the composite adjunction are still natural isomorphisms.

3. Let S : A→ C be fully faithful and surjective on objects. Then we claim there is an adjoint equivalence
(T, S; 1, ε) : C → A. By theorem 1 of this section, S is an equivalence of categories, so we have an
adjunction

A(Tc, T c)
∼−→ C(c, STc).

In the proof of theorem 1, adding surjectivity of S as a hypothesis means we have take the isomorphism
ηc to be 1c : c → S(T0c) by taking T0 to be a section of the object function of S. Then η = 1 is the
identity natural transformation. Thus T is a left-adjoint-right-inverse of S.

4. Let G : A→ X be a functor. Then we claim the following are equivalent:

(a) G has a left-adjoint-left-inverse;

(b) G has a left adjoint, is fully faithful and is injective on objects;

(c) There exists a full reflective subcategory Y of X with an isomorphism H : A → Y such that
G = KH, where K : Y → X is the inclusion functor.

Assume (a). We have (F,G; η, 1) an adjunction, so there is a natural bijection ϕ−1 : X(Ga,Ga) →
A(FGa, a) such that ϕ−1(1) =: εa = 1. Thus there exists F such that a = Ia = FGa = (F ◦G)(a), so
G is injective on objects. As εa is an isomorphism for all a, G is fully faithful by theorem 1 from §3 of
this chapter. Thus (a) implies (b).

Assume (b). Then G(A) is a category, and let Y := G(A). Then G defines a functor H : A→ G(A),
which is an isomorphism thanks to the hypothesis on G. Let T : G(A)→ A be the inverse functor to H.
Thus Y ' G(A) and Y is a full subcategory such that G = KH by construction. We have an adjunction

A(Fx, a)→ X(x,Ga) = X(x,KHa)

and we want to show there is a functor T and a natural isomorphism

Y (Tx, y)
∼−→ X(x,Ky).

Let T = HF : X → Y and let y = Ha. Then define ψ : Y (HFx, y)→ X(x,Ky) by ψ(f) = ϕ(H−1(f)).
It is a natural bijection, and (b) implies (c).

Assume (c). Then G = KH with K and H as supposed is fully faithful and injective on objects.
Reflectivity of Y says there is a functor T such that

A(H−1Tx, a) ' Y (Tx, y) = Y (Tx,Ha)
∼ ϕ−→ X(x,KHa) = X(x,Ga).

Therefore H−1T is a left adjoint to G. Therefore (b) implies (c).

b implies a. or c implies a.

5. Let J be connected and ∆: C → CJ have a left adjoint, i.e. a colimit. We claim this left adjoint
is actually a left-adjoint-left-inverse. Let TF = colimF be the adjoint. We have ϕ : C(T∆c, c) →
CJ(∆c,∆c) such that ϕ−1(1) = ε∆c : T∆c→ c. By question 8 (a) of §2 of this chapter, colim ∆c = c,
so we get ε∆c : c→ c. The data of a natural transformation η : ∆c→ ∆c′ is just a morphism c→ c′, so
∆ is fully faithful and clearly isomorphic on objects as if ∆c = ∆c′, then (∆c)(j) = c = (∆c′)(j) = c′

for any j ∈ Obj J . By question 4 above, the colimit is a left-adjoint-left-inverse.
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4.5 Adjoints for Preorders

1. Let H be an inner product space and let P = Q = P(H) ordered by inclusion, with LS = RS = S⊥

for all S ∈ P(H). We claim this gives a Galois connection. Suppose that S ≤ LS′ = (S′)⊥ or in other
words that S ⊆ (S′)⊥. We must show that S′ ⊂ S⊥. indeed, we have (s′, s) = 0 because s ∈ (S′)⊥.
Suppose next that S′ ⊂ S⊥, so again we have (s, s′) = 0 because s′ ∈ S⊥.

In Mac Lean p.94 Galois connection is specified to mean monotone Galois connection, but the above
connection is in fact antitone. Indeed, if A ⊂ B, then B⊥ ⊂ A⊥ because if b ∈ B⊥ then (a, b) = 0, as
a ∈ A ⊂ B.

2.

todo

3. d

4.5.1 Examples of Galois Connections

Hilbert’s Nullstellensatz gives a Galois connection between the preorder of algebraic subsets of Ank and the
preoder of radical ideals of k[T1, . . . , Tn]. If X is a path-connected, locally path- connected and locally
simply-connected topological space (essentially, when the universal covering space X̃ of X exists) there is a
Galois connection between covers of X and subgroups of π1(X). It is this feature of covering space theory
that was chosen to guide the definition of the etale fundamental group of a scheme. The fundamental theorem
of Galois theory is perhaps the prototypical example of a Galois connection, between subgroups of Gal(K/k)
and intermediate extensions K/k1, where k1 ⊃ k.

4.6 Cartesian Closed Categories

1. (a) Let U be a set. Then we claim C := P(U) is a Cartesian closed preorder. Indeed, define functors
0 7→ t := U from 1 → C, (a, b) 7→ a × b := a ∩ b and finally c 7→ cb := C ∪ (U \ b). Then
we have isomorphisms Hom1(0, 0) → HomC(V,U) because V ⊂ U , HomC×C((V, V ), (X,Y )) →
HomC(V,X ∩ Y ) as the left hand side says that V ↪→ X and V ↪→ Y . Finally we have an
isomorphism HomC(A ∩B, V )→ HomC(A, V B) because the left hand side says that A ∩B ↪→ V
so if x ∈ A, then x ∈ V or x 6∈ B. Naturally is trivial in all cases as all hom-sets are singletons.

(b) Next we claim any Boolean algebra is Cartesian closed as a preoder. The proof is the same as (a)
with ∩ for and, ∩ for or and complements for not.

2.

skip

3.

finish

5 Limits

5.1 Creation of Limits

1. We claim the projection functor P : (x ↓ C) → C creates limits. Let τ : y → PF be a limiting cone.
Thus y is a limit in C. Here F : J → (x ↓ C) is any functor. Therefore we have a cone x → F ,
hence a unique morphism x→ y. Thus in (x ↓ C) a cone over F naturally factors uniquely through
(x→ y)→ F . Therefore P creates limits.
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2. We claim the forgetful functor U : CompHaus→ Set creates limits (so by theorem 1 of this section,
CompHaus has all small limits). Consider F : J → CompHaus. Then UF has a limit, which is
Cone(∗, F ). This is a subset of

∏
j Fj , and so is a subset of a compact Hausdorff space. The conditions

on being a cone are closed conditions, and so Cone(∗, F ) is a compact Hausdorff space. This topology is
the initial topology, and by definition Cone(∗, F ) is a limiting cone in CompHaus with this topology.

Remark 10. A more detailed solution is actually given on p. 121.

Remark 11. We would not have this uniqueness in Top; for example we could give Cone(∗, F ) is the
discrete topology.

3. We claim the functor G : X2 → X ×X given by (f : x→ y) 7→ (x, y) and on morphisms by

x y

x′ y′

g

f

h

f ′

7→ (g, h) : (x, y)→ (x′, y′).

Note that a limit of GF is a product (L1, L2) of limits in X. Thus in the arrow category X2, we have
a cone from L1 to all the tails in the diagram F (J), and from L2 to all the heads in the diagram F (J).
This gives a cone L1 → F by definition of morphisms in X2. Thus we get a unique morphism L1 → L2,
and hence a unique cone over F in X2.

We claim it is limiting. Given a cone from x→ y to F in X2, and we get unique morphisms x→ L1

and y → L2 considering diagrams of tails and heads only. By the uniqueness parts of the definition of
limit, this is a factorization in X2.

4. We know the limit in Set of a functor F : J → FinSet is Cone(∗, F ). It suffices to show this is finite
when Obj J is finite. But there are at most

∏
j(#Fj) many cones to F , and this number is finite.

5. We claim Cat is small-complete. This is a great abstract nonsense argument. Recall that Cat has
pullbacks (section 3.5) so if it has a terminal object, it has all products and equalizers (section 3.4).
Therefore by corollary 2 of this chapter, Cat would be small-complete. But 1 is a terminal object in
Cat.

6. See also subsubsection 3.4.1.

todo

7. We claim k[[x]] is the limit of the diagram composed of quotient maps k[x]/(xn+1) → k[x]/(xn). A
cone from a ring R to this diagram is just the data of a morphism R→ k for each natural number n,
and these assemble to a morphism of rings R→ k[[x]] with the correct properties.

5.2 Limits by Products and Equalizers

1. (a) (Manes.) We claim the arrows f, g from the theorem in this section have a common left inverse.
This will prove the claim. For each i ∈ ObjJ consider pidi

:
∏
u : j→k Fk → Fi. Taken together

these projections induce a morphism h :
∏
u : j→k Fk →

∏
i Fi. The morphisms pidi ◦ f and pidi

◦ g
are both induced by the projections pi :

∏
i Fi, so the induced maps h ◦ f, h ◦ g :

∏
i Fi and must

be the identity by uniqueness.

(b) In Set, if f, g : X → Y have a common left inverse h, then consider y ∈ Y and hy ∈ X, and
(hy, hy) ∈ X × X. Then (fhy, ghy) = (y, y) ∈ Y × Y , so ∆Y is in im(()f × g). Conversely, if
im(()f × g) ⊃ ∆Y , then for all y ∈ Y , (y, y) = (fx, gx) for some x. Then map h : y 7→ x and check
that h is a common left inverse.

2. It is obvious that C × C ′ is (co)complete when C and C ′ both are.
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3. This is clear. In diagram in the statement of the question, βµ is a cone to F ′, and ν′β is a cone from
F , so the morphisms from the (co)limits in question are induced.

4.

todo

5. (a) We define lim as a functor (Cat ↓ C)
opp → C. Given F : J → C, send this to the object limF .

Given a triangle

J ′ J

C

W

F

we must provide a morphism limF → limFW in C. Taking C = C ′, H = id then the required
arrow is t from exercise 4.

(b) Consider the super comma category (Cat • ↓ •C)
opp

. Map objects F : J → C as in (a). Given a
morphism

J ′ J

C

W

F ′

F

β

we need a morphism limF → limF ′. By 3, we get a morphism limβ : lim(FW )→ limF ′. By (a),
we have a morphism limF → limFW , and composing them, we are done.

5.3 Preservation of Limits

1. We claim the composite of two continuous functors is continuous. Let ε > 0 be given.... Let F : J → C

and let C
G→ D

H→ E be continuous functors. Let ν : b → F be a limiting cone in C. Then (being
slightly hieroglyphic with notation)

HG(b
ν→ F ) = H(G(b

ν→ F )) = H(Gb
Gν→ GF )

is a limiting cone in E because H is continuous and Gb
Gν→ GF is a limiting cone in D by continuity of

G.

Dually, the composite of cocontinuous functors is cocontinuous.

2. Immediate by the results of §2.

3. We claim that the free abelian group functor F : Set→ Ab is not continuous. It must therefore fail to
preserve products or equalizers. Observe that F ({∗} × {∗}) = Z as {∗} × {∗} is a singleton. Therefore
the limiting cone

{∗} {∗} × {∗} {∗}

is sent to to the diagram

Z Z Z

which is not a limiting cone by uniqueness of limits and the fact that Z 6' Z⊕ Z. Therefore F is not
continuous.
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4. We claim that X ×− : Set→ Set preserves colimits. Recall the adjunction

Set(X × Y, Z) ' Set(Y,Set(X,Z))

given as a prototype of adjunctions in the Adjoints chapter. By §5 of this chapter, any functor with a
right adjoint preserves colimits. Alternatively, it is easy to see that X ×− preserves coproducts and
coequalizers.

5.4 Adjoints on Limits

1. We claim the functor X ×− : Set→ Set cannot have a left adjoint unless X is the one-point set, in
which case the functor is the identity, which obviously had a left adjoint. Otherwise we claim that
X ×− does not preserve products. Consider (X ×−)(X ×X) = X ×X ×X. It comes with a cone to
the discrete diagram of two copies of X ×X, but this cone is not limiting. Indeed, consider the diagram

X ×X ×X X ×X ×X ×X

X ×X X ×X.

f

The projections from X × X × X are given by (a, b, c) 7→ (a, b) and (a, b, c) 7→ (a, c), respectively.
Therefore f : (a, b, c) 7→ (a, b, a, c). By uniqueness of limits and uniqueness of f , f must be an
isomorphism, but the above assignment is not surjective. Therefore X ×− does not preserve products,
so cannot have a left adjoint.

2. We claim the functor D : Vect
opp

→ Vect given by DV = V ∗ and if f : W → V in Vect
opp

, then
Df : W ∗ → V ∗ by pullback has no right adjoint. Indeed, otherwise D would preserve colimits, and
in particular, coproducts. Let J be a countably infinite discrete category and consider the coproduct∏
j Vj in Vect

opp

for some vector spaces Vj . The colimit of the discrete diagram of V ∗j is
⊕

j V
∗
j which

is not isomorphic to (
∏
j Vj)

∗. Indeed, the components of the cone to the dual space of the product

V ∗i → (
∏
j

Vj)
∗

φ 7→ ((vj)j 7→ φ(vi))

and so the induced morphism h :
⊕

j V
∗
j → (

∏
j Vj)

∗ is the inclusion of the linear functionals which are
nonzero on only finitely-many components of the product. By uniqueness of colimits and of h, h must
be an isomorphism, but clearly h is not surjective.

3. We claim that a full reflective subcategory ι : C → D of a small-cocomplete category is small-cocomplete.
Let F be the reflector and G : J → C. Then ιG has a colimit ν : G→ L. There is only one candidate
for colimG. Let c ∈ ObjC be the vertex of a cone with base G. By fulness the components of this cone
are morphisms of C. Then we have the following diagram in D:

ιG

L

ιFL c.

ν

h

The lower triangle exists and commutes by definition of reflectivity of C in D (see p. 89). Again by
fullness, both the components of G→ L→ FL, and h lie in C, and so FL = colimG.

4. Recall that to be Cartesian closed, the functor X
∐
− = (X × −)

opp

: Set
opp

→ Set
opp

must have a
particular right adjoint i.e. the functor X × − : Set → Set must have a particular left adjoint. By
exercise 1, this fails whenever X is not the one-point set. Therefore Set

opp

is not Cartesian closed.
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5.5 Freyd’s adjoint functor theorem

1. The fact that projection (x ↓ G)→ A creates all small limits follows from the lemma and the following
general fact.

Lemma 1. If G : C → D creates small products and equalizers, then G creates all small limits.

Proof. Let J be small and consider F : J → C such that GF has a limit in D. Then in the notation of
the proof of theorem 1 in §2, we have G(Fi) = (GF )i and G(Fu) = (GF )u, so following the rest of the
proof, the fact that G creates small products and limits means that limF exists in C.

2. We use the adjoint functor theorem to find left adjoints to the indicated forgetful functors U . In the
cases of Rng→ Set, we know that the forgetful functor creates limits, and using completeness of Set
and theorem 2 of §4, we have that U preserves all small limits. First note that all these categories are
small-complete.

Of course, the usual free object provides a solution to the solution set condition, but the utility of
the theorem is that we can do something easier, by using sub(rings, groups etc.) where things like
associativity hold automatically. Given f : x → UR in Set, then the set of all rings S of cardinality
at most card(x) is small, and so is the set {x→ S}S of functions x→ S. For any R, we can consider
the subring S ⊂ R generated by the image of f : x→ R. This satisfies the solution set criterion. The
existence of the free rings Z〈x〉 follows.

For the functor A : Rng→ Ab sending a ring to its underlying abelian group, we can perform exactly
the same construction above, yielding subrings S ⊂ R with maps A(ι) : A(S)→ A(R) where ι : S → R
is inclusion in Rng.

For U : Cat→ Grph we must check that U preserves products and equalizers, and then the solution
set condition. By construction (see excise 1 of §2.5) U preserves products (note that the product of
graphs therein defined is a categorical product). The equalizer of parallel morphisms of graphs G→ G′

is the subgraph of G with vertex set the equalizer of the vertex functions and arrow the set-theoretic
equalizer of the arrow function. Recalling the construction of equalizers in Cat as pullbacks (see 3 (a)
of §3.5, we see that this graph is the underlying graph of the pullback in Cat.

We use subcategories for the solution set condition. Namely the set of all small categories S whose
object sets have cardinality at most that of the vertex set of a given graph x is a small set. Then for
any morphism of graphs f : x→ UC for a small category C, consider the full subcategory S of C such
that ObjS = im(f)O. Then f factors through a morphism g : x→ US via the inclusion functor S → C.
It follows that free categories exist (c.f. §2.7).

3. We claim the functor H ′ as defined the statement creates limits. Let C = Cat. Let J be any category
and consider the pullback diagram

J

A′ A

X ′ X

FA

FX′

F

H′

G′ G

H

in C. Say that limFA exists. Then as G preserves limits and H creates them, we have

G limH ′F = limGH ′F = limHG′F = H limG′F.

Using this equation and the description of A′ in C as a certain full subcategory of (H ↓ G), one can
finish the exercise by hand from here.
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Alternatively, recall that limit in functor categories are calculated pointwise by theorem 2 of §5.3.
Note that F induces a morphism in C→·← from ∆J to the above span, which has a limit. Recalling
the adjunction from exercise 6 of §4.2, the functor V preserves limits, and so F : J → A′ has a limit.
Because H ′ is a component of the counit of the adjunction, it follows that that this limiting in A is
sent to limFA. This says that H ′ creates limits.

check last sentence

4. We give an alternative and superior proof of 1. It is easy to check that we have a pullback diagram

(x ↓ G) A

(x ↓ X) X.

incl

proj

G

proj

By hypothesis G is continuous and the lower projection has been shown to create limits, and so the
upper projection creates limits by exercise 3.

6 Chapter 6

7 Chapter 7

8 Abelian Categories

8.1 Additive Categories

1. Let A be an additive category, and let κ : a1

∐
· · ·
∐
an → a1 × · · · × an be the canonical map

corresponding to the identity matrix. Because the right-hand side is also a coproduct, we have arrows
ι′i : ai →

∏
aj as well as ιi : ai →

∐
aj , and because the left-hand side is also a product, we have

projections p′i :
∐
aj → ai. Therefore we can define a map η :

∏
aj →

∐
aj by p′iηι

′
j = δij . We see

then that
p′kηκιj = p′kη(ι1p1 + ι′2p2)κιj = p′kη(ι′jpjκιj) = p′kηι

′
j = δjk

when considering only two factors a1 and a2. The general claim follows by duality, then induction on n.

2. The map κ is defined by the same equations as before, but it need not be an isomorphism. For example,
in Ab, infinite products are different than infinite direct products; the former can have infinitely many
nonzero components.

3. That the biproduct is associative and commutative up to isomorphism follows from the fact that the
product (or coproduct) is, and then theorem 2.

4.

5.

6.

8.2 Abelian Categories

1. We claim an additive functor T : A→ B between abelian categories is exact iff it preserves short exact
sequences. If T preserves all finite limits and finite colimits, then given

0 a b c 0
f g
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we have
ker(Tg) = T (ker g) = T (im(f)) = im(()Tf),

because im(()f) = ker(coker(f)). The same happens at a and c. Conversely, an equalizer of f, g : a→ b
is the kernel of f − g, and so

0 ker(f − g) a coim(f − g) 0
f−g

is sent to the exact sequence

0 T ker(f − g) Ta T coim(f − g) 0.
T (f−g)

Therefore ker(T (f − g)) = ker(Tf − Tg) and T preserves equalizers. Additivity implies T in particular
preserves products, and so T preserves all finite limits. Showing T preserves all finite coequalizers and
coproducts is similar.

2. Trivial.

3. The category of all free abelian groups is not abelian. Suppose otherwise. Then the map x 7→ 2x
from Z → Z has 0 kernel and 0 cokernel in the category of free abelian groups, and is therefore an
epimorphism and a monomorphism, hence an isomorphism. But this map has no inverse.

4. The category of finite abelian groups is abelian. Existence of a zero object, binary biproducts, kernels
and cokernels are obvious. In this category monomorphisms are exactly injective homomorphisms, and
epimorphisms are exactly surjective homomorphisms, and so every monomorphism N ↪→ G is the kernel
of G� G/N , and every epimorphism φ : G� H is the cokernel of kerφ ↪→ G.

5. Let R be left-Noetherian, then we claim the category of finitely-generated left R-modules is abelian.
Clearly it is an additive category with a zero object and binary biproducts. Again, monomorphisms
are precisely injective R-linear maps, and epimorphisms, surjective R-linear maps. Therefore cokernels
are quotient maps and kernels are inclusions of submodules. There is no problem with cokernels, and
kernels are finitely-generated by the Noetherian hypothesis.

6. For simplicity we define quotients of an object a by a subobject u→ a. Let a/u := coker(ι : u→ a). We
must show this is well-defined. Suppose that f : u′ → u and g : u→ u′ are monics as in the definition of
the equivalence relation defining subobjects. Consider the diagram

u′ coker(ιf)

u a coker(ι)

coker(ιf)

ιf

ι

g

Each of the maps between cokernels is unique, and the identity coker(ιf) → coker(ιf) makes the
diagram commute as well. Therefore the map coker(ιf) → coker(ι) is a monomorphism, and is also
clearly an epimorphism. In an abelian category this forces coker(ιf) ' coker(ι) and quotient objects
are well-defined.
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8.3 Diagram Lemmas

1. Following the given proof of the five lemma, we see that we need only f4 and f2 monic, and f1 epi.
These hypotheses are minimal. Indeed, consider the following diagrams in Ab:

0 Z Z⊕ Z Z 0

0 Z⊕ Z Z⊕ Z 0 0

i1

∆ ∆◦p1

p2

,

0 Z Z⊕ Z Z 0

0 0 Z Z 0

i1

p2

p2

,

and

0 Z Z 0 0

Z Z 0 0 0

.

2. Let the diagram for five lemma be labelled as in the chapter. Then let x be a member of b3. If x1 ≡ h3(x),
then there is y1 ∈m a4 such that g3(y2) ≡ y3 for some member y2. Then h3(f3y2 − x) ≡ 0 and so
f3y2−x ≡ h2z ≡ f2h2z

′ for some z′ ∈m a2. Now f3g2z
′ ≡ h2f2z

′ ≡ f3y2−x and so f3(−g2z
′+ y2) ≡ x.

This says that f3 is an epimorphism.

3. Exactness of the connecting morphism δ is straightforward.

4. Consider the functors F,G : Ses(A)2 → A given on objects by F (z) = ker f3 and G(z) = coker(f1) if

z =

· · ·

· · ·
f1 f2 f3 .

A moment of diagram chasing using the fact that δ does not depend on any of the choices made during
its construction then shows that δ is a natural transformation from F to G.

5. (a) Diagram chase using members and the rules of theorem 3.

(b) Applying the snake lemma to the bottom two rows gives an exact top row parallel to the existing
row. We claim the morphisms in the row provided by the snake lemma and the morphisms in the
existing row are equal. Indeed, both rows make the top two square commute, and the vertical
morphisms in these squares are monic. Therefore the top row is exact.

(c) Suppose the top and bottom rows are exact, and all columns are exact. We claim the middle row is
exact provided that the middle row composes to the zero morphism. Otherwise, the
exercise is incorrect as stated. To see that the first and last morphisms are monic and epi,
respectively, use two applications of the short five lemma “vertically.” Finally, use exactness of the
bottom row and the outer columns to see that the last part of rule (v) from theorem 3 is satisfied.

For a counter-example if the middle row is not exact, see Lectures on Homological Algebra by
Weizhe Zheng, Remark 1.6.38.

6. We construct the given short exact sequence. Consider the diagram
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0 ker f ker gf ker g coker f coker gf

a b c coker g 0.
f g

All the maps except f and g are induced from the universal properties of (co)kernels or are part of the
data of (co)kernels. Exactness at each point can be checked using fact (v) of theorem 3 of this section,
and proposition 1 from §VIII.3.

7. We claim the category Ses(A) is not abelian in a moderately specific way, namely by showing that it
will not in general have kernels. Suppose otherwise and first note that a monomorphism in Ses(A) has
monomorphisms for all its components. Then consider the following diagram

Q1 Q2 Q3

K1 K2 K3

A1 A2 A3

B1 B2 B3

β1

α1

kerϕ3

ϕ1 ϕ2 ϕ3

where Q is the kernel in Ses(A) of ϕ : A→ B and Ki = kerϕi in A. The diagonal maps exist by the
universal property of kernels in A, and the maps Ki → Ki+1 are induced using the universal property
of Ki+1 and, crucially, are the morphisms in the snake lemma. By the opening remark, the αi are all
monomorphisms, because the bent morphisms are monomorphisms. By considering short the short
exact sequences

0 K1 K1 0 0, 0 0 K2 K2 0id id

and

0 0 K3 K3 0id

one obtains inverses to the αi. It follows that kerϕ in Ses(A) has Qi = Ki and morphisms βi as in the
snake lemma. But this sequence is not in general exact.

9 Special Limits

9.1 Interchange of Limits

1. We claim that a category J is filtered iff it is connected and pseudofiltered. If J is filtered, it is obviously
connected by condition (a), and condition (b) obviously holds. By conditions (a) and (b), we have a
diagram

j k

i k′

j′ k
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showing that J is pseudofiltered. Let J be connected and pseudofiltered and let j, j′ ∈ Obj J . We need
to check condition (a) for filtration. The proof is by induction on the number of times arrows change
direction in the path of arrows joining j to j′. Instead of writing this carefully we present an example
diagram:

k4

k3 k1 k2

j j1 j2 j3 j4 j5 j6 j7 j′.

Next we claim a category is pseudofiltered if its connected components are filtered. By the above
connected components are filtered in a pseudofiltered category. Conversely, condition (b) refers only to
a single connected component, and so holds in any category whose connected components are filtered.
The same holds for condition (a)’, and so a category whose connected components are filtered is
pseudofiltered.

2. We claim that the coproduct commutes with pullback in Set. Let P be the finite category • • •
and let J = Set. We will show that pullback commutes with any coproduct indexed by a small set.
Note that Set has a terminal object, so is filtered.
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