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Zusammenfassung

Die algebraische K- und L-Theorie von Gruppenringen spielt eine wichtige Rolle

in der Topologie. So lebt zum Beispiel Walls Endlichkeitshindernis in K̃0 vom inte-

gralen Gruppenring der Fundamentalgruppe und die Whiteheadtorsion, das Hinder-

nis im s-Kobordismussatz, in einem Quotienten von K1 vom integralen Gruppenring

der Fundamentalgruppe.

Für jeden Ring R gibt es einen Funktor KR von der Kategorie der transitiven G-

Mengen OrG in die Kategorie der Spektren. Dieser schickt G/H auf ein zu K(R[H])

äquivalentes Spektrum. Ein wichtiges Werkzeug zum Verständnis der K- und L-

Theorie von Gruppenringen ist die Assembly-Abbildung

hocolim
OrF G

KR → KR(∗) ' K(R[G]),

wobei F eine Familie von Untergruppen von G ist und OrF G die volle Unterkate-

gorie von OrG der transitiven G-Mengen mit Stabilisator in F . Das Hauptthema

dieser Habilitationsschrift ist die Injektivität der Assembly-Abbildung. Auch wenn

die meisten der vorgestellten Ergebnisse ein analoges Resultat in algebraischer L-

Theorie haben, so werden wir hauptsächlich den K-theoretischen Fall betrachten.

Unter anderem werden Injektivitätssätze für lineare Gruppen und Untergruppen

von zusammenhängenden Liegruppen behandelt, siehe [Kas15bKas15b, Kas16Kas16]. Diese sind

ein Spezialfall von Gruppen mit endlicher Zerlegungskomplexität, eine Verallge-

meinerung von endlicher asymptotischer Dimension. Endliche Zerlegungskomplexität

wurde von Guentner, Tessera und Yu eingeführt [GTY13GTY13]. In Zusammenhang damit

stehen [Kas17Kas17, KNRKNR, KasKas], die Teil dieser Habilitationsschrift sind. In diesen geht

es hauptsächlich um Vererbungseigenschaften von endlicher Zerlegungskomplexität.

Ein wichtiger Schritt im Beweis der Injektivität der Assembly-Abbildung ist die

Konstruktion einer zugehörigen groben Homologietheorie. In [BEKWbBEKWb] und weit-

eren Arbeiten mit Ulrich Bunke, Alexander Engel und Christoph Winges haben wir

untersucht, inwieweit sich die Beweismethoden auf allgemeine grobe Homologiethe-

orien verallgemeinern lassen.
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1 Overview

The algebraic K-and L-theory of group rings plays an important role in topology.

For example in Wall’s finiteness obstruction or in the s-Cobordism Theorem due to

Barden, Mazur and Stallings.

Theorem 1.1 (s-Cobordism Theorem). Let M0 be a closed connected smooth man-

ifold of dimension n ≥ 5 with fundamental group π. Let (W ;M0, f0,M1, f1) be an

h-cobordism, that is, the boundary inclusions fi : Mi → W are homotopy equiva-

lences. Then W is trivial over M0, that is, diffeomorphic to M0 × [0, 1] relative to

M0, if and only if its Whitehead torsion τ(W,M0), taking values in the Whitehead

group Wh(π) := K1(Z[π])/{±g | g ∈ π}, vanishes.

For every ring R there is a functor KR : OrG→ Sp from the category of transitive

G-sets and G-equivariant maps to the ∞-category of spectra, sending G/H to a

spectrum equivalent to K(R[H]). For a family of subgroups F , the K-theoretic

assembly map is the map

colim
OrF G

KR → KR(∗) ' K(R[G]),

where OrF G denotes the full subcategory of OrG of transitive G-sets with stabilizers

in F . The Farrell–Jones conjecture predicts that the assembly map (in K- and L-

theory) for the family of virtually cyclic subgroups is an equivalence. It is by now

known for many classes of groups, for example hyperbolic groups [BLR08BLR08], CAT(0)-

groups [BL12BL12, Weg12Weg12], solvable groups [Weg15Weg15] and mapping class groups [BB19BB19].

The Farrell–Jones conjecture is an important tool in computing the K- and L-theory

of group rings and for example implies the Borel conjecture about the topological

rigidity of aspherical manifolds. If the Farrell–Jones conjecture holds for a group

G, then the assembly map for the family of finite subgroups admits a left inverse,

in particular it is split injective on homotopy groups. While this property is much

weaker than the Farrell–Jones conjecture, it can be attacked by more elementary

means and thus is known in broader generality. For example we have the following

result about groups with finite decomposition complexity, which is a generalization

of the concept of finite asymptotic dimension, see Section 55 for a definition. Although

this and most other results mentioned in this thesis have an analogous version in

L-theory, we will focus on the K-theoretic case from now on.

Theorem 1.2. Let G be a group such that the family {H\G}H∈Fin has finite de-

composition complexity and assume that there is a finite dimensional G-CW-model

for the classifying space for proper actions. Then for every ring R the assembly map
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for the family of finite subgroups

colim
OrFinG

KR → KR(∗) ' K(R[G])

admits a left inverse.

In Sections 22 to 66 this result and the necessary background are discussed. Sections 77

to 1111 then contain an overview over the following articles which are part of this thesis.

[Kas15bKas15b] On the K-theory of subgroups of virtually connected Lie groups,

Algebr. Geom. Topol. 15 (2015), no. 6, 3467–3483

[Kas16Kas16] On the K-theory of linear groups,

Annals of K-Theory 1 (2016), no. 4, 441–456

[Kas17Kas17] The asymptotic dimension of quotients by finite groups,

Proc. Amer. Math. Soc. 145 (2017), no. 6, 2383–2389

[KW19KW19] Algebraic K-theory of stable ∞-categories via binary complexes,

(joint with C. Winges), J. Topol. 12 (2019), no. 2, 442–462

[KNRKNR] Regular finite decomposition complexity,

(joint with A. Nicas and D. Rosenthal), to appear in J. Topol. Anal.

[BEKWbBEKWb] Injectivity results for coarse homology theories,

(joint with U. Bunke, A. Engel and C. Winges), arXiv:1809.11079

[KasKas] Coarse embeddings into products of trees,

arXiv:1810.13361

The result of [KasKas] is used to show that finite asymptotic dimension implies finite

decomposition complexity and is discussed in Section 55. In [KNRKNR] the notion of

regular finite decomposition complexity is introduced. It is a strengthening of fi-

nite decomposition complexity sharing its inheritance properties that is also closed

under forming quotients by finite groups. It is discussed in Section 77. In [Kas15bKas15b]

and [Kas16Kas16] Theorem 1.21.2 is used to deduce injectivity results for linear groups and

subgroups of virtually connected Lie groups. These results are discussed in Sec-

tion 88. In [Kas17Kas17] it is proved that taking the quotient by an isometric action of a

finite group does not change the asymptotic dimension. This is related to some open

questions about the inheritance of FDC and finite asymptotic dimension to families

of quotients by finite groups, see Section 99. [BEKWbBEKWb] is part of a larger program

to transfer the results for algebraic K-theory to general coarse homology theories.

The statement of these results and the necessary background is given in Section 1010.

The article [KW19KW19] shows that K-theory commutes with infinite products of stable

∞-categories. This is part of an ongoing project to generalize the previous results

to K-theory with coefficients a stable ∞-category instead of an additive category,

see Section 1111.
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2 Background on assembly maps

Instead of working with the K-theory of rings we will consider the K-theory of small

additive G-categories. This generalizes the case of rings as the K-theory of a ring is

equivalent to the K-theory of the category of finitely generated, projective modules

over this ring. As before, for every small additive G-category A we have functor

KA : OrG→ Sp

sending T to the spectrum K(A∗G T ), see [BR07aBR07a, Definition 3.1]. Here, the defini-

tion is such that K(PrRf.g.∗GG/H) ' K(R[H]), where PrRf.g. is the category of finitely

generated, projective R-modules. Note that here K always denotes non-connective

algebraic K-theory, as for example defined by Schlichting [Sch06Sch06, Section 12].

Definition 2.1. Let G be a group. A family of subgroups of G is a non-empty set

of subgroups of G that is closed under conjugation in G, and taking subgroups.

Example 2.2. The families of subgroups that we will mostly consider are the fol-

lowing.

• The family {1} consisting only of the trivial subgroup;

• the family Fin of finite subgroups;

• the family VCyc of virtually cyclic subgroups and

• the family All of all subgroups.

Definition 2.3. For a family of subgroups F we define the orbit category OrF G as

the full subcategory of OrG consisting of those transitive G-sets with stabilizers in

the family F .

Given two families of subgroups F ⊆ F ′, we can form the relative assembly map

αF
′

F : colim
OrF G

KA → colim
OrF′ G

KA.

In the case where F ′ = All, we have colimOrAllG KA ' KA(∗) and we call

αF := αAllF : colim
OrF G

KA → KA(∗)

the assembly map for the family F . In the following A will always denote a small

additive G-category.

For a family of subgroups F we define the classifying space EFG to be a G-CW-

complex X such that X only has stabilizers in F and for every H ∈ F we have

XH ' ∗. This property characterizes X up to G-homotopy equivalence. We call

5



EG := E{1}G the classifying space of G and EG := EFinG the classifying space

for proper actions. For many of our results finiteness properties of EFG play an

important role, e.g. the existence of finite or finite-dimensional G-CW-models for

EFG.

3 Geometric properties of groups

Our results will mostly rely on geometric properties of the involved groups. For

this it is often useful to view a group as a metric space. The metric on a group is

only well-defined up to coarse equivalence. Hence we will first review some basics

of coarse geometry. Since it will be useful later, we will work with metric families

instead of metric spaces.

A metric family is a set of metric spaces. A map of metric families, F : X → Y , is

a set of functions f : X → Y , where X ∈ X and Y ∈ Y , such that each element in

X is the domain of at least one function in F .

The composition G ◦ F : X → Z of G : Y → Z and F : X → Y is the set {g ◦ f |
f ∈ F, g ∈ G, and the domain of g is the range of f}.
Definition 3.1. Let F : X → Y be a map of metric families.

1. F is coarse (or uniformly expansive) if there exists a non-decreasing function

ρ : [0,∞)→ [0,∞)

such that for every X ∈ X , x, y ∈ X, and f : X → Y in F ,

dY (f(x), f(y)) ≤ ρ(dX(x, y)).

We call ρ the control function for F .

2. F is effectively proper if there exists a proper non-decreasing function

δ : [0,∞)→ [0,∞)

such that for every X ∈ X , x, y ∈ X, and f : X → Y in F ,

δ(dX(x, y)) ≤ dY (f(x), f(y)).

3. F is a coarse embedding if it is both coarse and effectively proper.

4. F is coarsely onto if every Y ∈ Y is the range of some f ∈ F and if there
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exists a C ≥ 0 such that for every f : X → Y in F and for every y ∈ Y there

exists an x ∈ X such that dY (f(x), y) ≤ C.

5. F is close to F ′ : X → Y if there exists a C ≥ 0 with the property that for

every f : X → Y in F (respectively, in F ′) there exists an h : X → Y in F ′

(respectively, in F ) such that for all x ∈ X, dY (f(x), h(x)) ≤ C.

6. F is a coarse equivalence if it is coarse and there exists a coarse map G : Y → X
such that G ◦ F is close to the identity map of X and F ◦ G is close to the

identity map of Y .

A subfamily of a metric family Y is a metric family U such that every U ∈ U is a

subspace of some Y ∈ Y . The inverse image of U under the map F : X → Y is the

subfamily of X given by F−1(U) = {f−1(U) | U ∈ U , f ∈ F}.

A metric family X is called bounded if supX∈X diamX <∞. The class of all bounded

metric families is denoted by B.

Recall that a metric space X is the r-disjoint union of subspaces {Xi | i ∈ I} if

X =
⋃
i∈I Xi, and for every x ∈ Xi and y ∈ Xj with i 6= j, d(x, y) > r. We denote

an r-disjoint union by

X =
⊔

r-disjoint

{Xi | i ∈ I}.

Definition 3.2. A metric family X has asymptotic dimension at most n if for every

r > 0 there exists f(r) > 0 such that the following holds. For every X ∈ X there is

a decomposition X = X0 ∪X1 ∪ · · · ∪Xn such that for each i, 0 ≤ i ≤ n,

Xi =
⊔

r-disjoint

{Xij | j ∈ Ji},

and diamXij ≤ f(r) for all 0 ≤ i ≤ n, j ∈ Ji. In particular, the metric family

{Xij | X ∈ X , 0 ≤ i ≤ n, j ∈ Ji} is in B.

Any function f : (0,∞)→ R with the above property is called a control function for

X.

We say that a metric space X has asymptotic dimension at most n if the metric

family {X} consisting only of X has this property.

It is straightforward to see the following.

Lemma 3.3. Let F : X → Y be a coarse embedding and assume Y has asymptotic

dimension at most n. Then X has asymptotic dimension at most n.

Definition 3.4. Let G be a group. A length function on G is a function l : G →
[0,∞) satisfying
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1. l(g) = 0 if and only if g = 1;

2. l(g−1) = l(g);

3. l(gh) ≤ l(g) + l(h).

A length function is proper if, for every C ≥ 0, the set {g ∈ G | l(g) ≤ C} is finite.

One easily checks that a group admits a proper length function precisely when it

is countable. If l is a length function on G,then d(g, h) = l(g−1h) defines a left-

invariant metric on G. Conversely, by setting l(g) = d(1, g) one checks that every

left-invariant metric on G arises in this way. A length function is proper if and only

if the corresponding metric is proper. In the literature, sometimes the possibility

that some non-identity elements of G have length zero is allowed. In this case one

only obtains a pseudometric.

It is straightforward to check that for any two proper, left-invariant metrics d, d′ on

G the identity induces a coarse equivalence

id : (G, d)→ (G, d′).

Hence we have the following proposition.

Proposition 3.5. Every countable group admits a proper, left-invariant metric.

Moreover, any two such metrics on a group are coarsely equivalent.

We define the asymptotic dimension of a group G to be the asymptotic dimension

of G with some left-invariant, proper metric. This is well-defined by Lemma 3.33.3 and

Proposition 3.53.5.

For a metric space the definition of asymptotic dimension can be rephrased as fol-

lows.

Proposition 3.6 ([Roe03Roe03, Theorem 9.9]). A metric space X has asymptotic dimen-

sion at most n if for every r > 0 there exists a bounded cover U of X of dimension

at most n and Lebesgue-number at least r. That is,

1. every element x ∈ X is contained in at most n+ 1 elements of U ;

2. for every x ∈ X there exists U ∈ U with Br(x) ⊆ U ;

3. supU∈U diamU <∞.

If a finite group F acts on X by isometries, then, given a cover U as in Proposi-

tion 3.63.6, we can consider the induced cover of F\X. This is still bounded and has

the same Lebesgue-number but the dimension is |F |(n + 1) − 1. This yields the

following result.
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Corollary 3.7. Let F be a finite group and let X be a metric space of asymp-

totic dimension at most n with an isometric F -action. Then F\X has asymptotic

dimension at most |F |(n+ 1)− 1.

This corollary will be used for proving injectivity of the assembly map for groups

with finite asymptotic dimension, see Theorem 4.34.3 below. It is also possible, see

Theorem 9.49.4, to show that F\X has the same asymptotic dimension as X if X is

proper.

4 Previous injectivity results

The general scheme of most of the injectivity results described here is the following.

One constructs a map of controlled additive categories over EG such that one obtains

the assembly map (for the trivial family) after taking K-theory and G-fixed points.

Then, using geometric properties ofG, one shows that the map is an equivalence after

applying K-theory but before taking fixed points. Hence it is still an equivalence

when applying homotopy fixed points. As a last step, one then compares fixed

points with homotopy fixed points to obtain injectivity of the assembly map. For

this certain finiteness properties of the classifying space have to be used. This idea

was first used by Gunnar Carlsson and Erik Pedersen to prove the following result.

Theorem 4.1 ([CP95CP95, Thm. A]). Let G be a group with a finite model for the

classifying space BG. Assume its universal cover EG admits a compactification X

(meaning X is compact, and EG is an open dense subset) satisfying the following

conditions:

1. the G-action extends to X;

2. X is metrizable;

3. X is contractible;

4. compact subsets of EG become small near Y := X \ EG, i.e. for every point

y ∈ Y , every compact subset K ⊆ EG and for every neighborhood U of y in

X, there exists a neighborhood V of y in X such that if gK ∩ V 6= ∅ for some

g ∈ G, then gK ⊆ U .

Then the assembly map in algebraic K-theory

α : colim
Or{1}G

KA → KA(∗)

admits a left inverse.
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Note that the assumption that G admits a finite model for BG in particular implies

that G is torsion-free. This result was generalized to groups with torsion by David

Rosenthal. Here the scheme described above has to be slightly modified in the sense

that now controlled categories over EG are considered and one has to show that the

obtained map in K-theory is an equivalence when taking fixed points for any finite

subgroup of G.

Theorem 4.2 ([Ros04Ros04, Theorem 6.1]). Let G be a discrete group. Assume there

exists a finite model for EG with a compactification X such that the following con-

ditions hold:

1. the G-action extends to X;

2. X is metrizable;

3. XH is contractible for every finite subgroup H of G;

4. EGH is dense in XH for every finite subgroup H of G;

5. compact subsets of EG become small near X \ EG

Then the assembly map in algebraic K-theory for the family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

Arthur Bartels [Bar03bBar03b] as well as Gunnar Carlsson and Boris Goldfarb [CG05CG05]

proved a similar result for groups with finite asymptotic dimension. This was again

for torsion-free groups and it was later generalized to groups with torsion by Bartels

and Rosenthal as follows. This uses that F\G has again finite asymptotic dimension

if G has this property.

Theorem 4.3 ([BR07bBR07b, Thm. A]). Let G be a discrete group and let R be a ring.

Assume that there is a finite G-CW-model for EG and that G has finite asymptotic

dimension. Then the assembly map in algebraic K-theory for the family of finite

subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

Remark 4.4. Note that [BR07bBR07b, Theorem A] was originally stated for groups with

a finite dimensional model for EG. But there was a gap in the proof of [BR07bBR07b,

Proposition 7.5] such that only the above result is proved, see [BR17BR17]. The results

mentioned in Section 66 will however imply a version for groups that admit only a

finite dimensional model.

The notion of finite asymptotic dimension was generalized by Guentner, Tessera
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and Yu. Before we introduce the concept of finite decomposition complexity and

discuss injectivity results for groups with this property, we will end this section by

mentioning another injectivity result from the literature.

Theorem 4.5 (Bökstedt–Hsiang–Madsen [BHM93BHM93]). Let G be a group. Assume

that the following condition holds:

[A1] For every s ≥ 1 the integral group homology Hs(BG;Z) is a finitely generated

abelian group.

Then the assembly map

α : colim
OrG

K≥0Z → K≥0Z (∗) ' K≥0(Z[G])

is πQ
∗ -injective. Here K≥0 denotes the connective K-theory spectrum.

The next result stated below is a special case of [LRRV17LRRV17, Main Technical Theo-

rem 1.16] and generalizes Bökstedt–Hsiang–Madsen’s Theorem.

Theorem 4.6 ([RV18RV18, Thm. 69]). Let G be a group and let F be a family of finite

cyclic subgroups of G. Assume that the following two conditions hold.

[AF ] For every C ∈ F and every s ≥ 1, the integral group homology Hs(ZGC;Z) of

the centralizer of C in G is a finitely generated abelian group.

[BF ] For every C ∈ F and every t ≥ 0, the natural homomorphism

Kt(Z[ξc])⊗Z Q→
∏

p prime

Kt(Zp ⊗ Z[ξc];Zp)⊗Q

is injective, where c is the order of C, ξc is any primitive c-th root of unity,

and Kt(R;Zp) = πt(K(R)∧p ).

Then the assembly map for the family F

αF : colim
OrF G

K≥0Z → K≥0Z (∗) ' K≥0(Z[G])

is πQ
∗ -injective. Here K≥0 again denotes the connective K-theory spectrum.

This result differs from the previously stated results in two ways. It only holds ratio-

nally and it needs no geometric input on the group G. In the following sections, we

will not discuss any results of this kind but focus on statements using the geometry

of G.

11



5 Finite decomposition complexity

Definition 5.1. Let C be a class of metric families. Let n ∈ N and r > 0. A metric

family X is (r, n)-decomposable over C if for every X ∈ X there is a decomposition

X = X0 ∪X1 ∪ · · · ∪Xn such that for each i, 0 ≤ i ≤ n,

Xi =
⊔

r-disjoint

{Xij | j ∈ Ji},

and the metric family {Xij | X ∈ X , 0 ≤ i ≤ n, j ∈ Ji} is in C.

The metric family X is n-decomposable over C if X is (r, n)-decomposable over C for

every r > 0.

A metric family X is strongly decomposable over C if it is 1-decomposable over C. It

is weakly decomposable over C if it n-decomposable over C for some n ∈ N.

Notice that the statement that X is n-decomposable over B is precisely the statement

that X has asymptotic dimension at most n.

Guentner, Tessera and Yu [GTY13GTY13] defined finite decomposition complexity as fol-

lows.

Definition 5.2. Let D be the smallest class of metric families containing B that

is closed under strong decomposition, and let wD be the smallest class of metric

families containing B that is closed under weak decomposition. A metric family in D

is said to have finite decomposition complexity (abbreviated to “FDC”), and a metric

family in wD is said to have weak finite decomposition complexity (abbreviated to

“weak FDC”). As before, a metric space X has FDC or weak FDC if the metric

family consisting only of X has this property.

We will focus on FDC and only briefly discuss weak FDC in Section 99. We will see in

Section 66 that one can obtain injectivity results for assembly maps for groups with

FDC. The reason that one has to restrict to groups with FDC rather than weak FDC

is that the proof of these results relies on the use of Mayer-Vietoris type sequences

and it seems unlikely that a generalization to more components is possible.

The advantage of FDC over finite asymptotic dimension is that it satisfies several

inheritance properties as we will now discuss. This can be used to show that many

groups have FDC. In particular, all linear groups and all elementary amenable groups

have this property, see Corollary 5.95.9 and Theorem 5.145.14.

The first important property of FDC is that it is a coarse invariant.

Theorem 5.3 ([GTY13GTY13, Coarse Invariance 3.1.3]). Let X and Y be metric fami-

lies. If there is a coarse embedding from X to Y and Y has finite decomposition

12



complexity, then so does X .

Using this and Proposition 3.53.5, we can say that a group G has FDC if it has FDC

as a metric space with any proper left-invariant metric.

Finite groups obviously have FDC and if a group G has FDC, then it is not hard to

show that G× Z also has FDC. Hence we have the following example.

Example 5.4. All finite and all finitely generated abelian groups have FDC.

The following is probably the most important inheritance property of FDC. As we

will see in Section 77 many other inheritance properties can be deduced from it.

Definition 5.5. A class C of metric families satisfies Fibering Permanence if the

following is satisfied. Let X and Y be metric families and let F : X → Y be a

uniformly expansive map. Assume Y is contained in C, and that for every bounded

subfamily Z of Y the inverse image F−1(Z) is contained in C. Then X is contained

in C.

Theorem 5.6 ([GTY13GTY13, Fibering Theorem 3.1.4]). The class of metric families

with FDC satisfies Fibering Permanence.

While the class of groups with FDC satisfies more inheritance properties, we will

not list all of them here but now give some of the inheritance properties of groups

with FDC as these will allow us to give interesting examples of such groups.

Proposition 5.7 ([GTY13GTY13, Proposition 3.2.1]). A countable direct union of groups

with FDC has FDC. Equivalently, a countable discrete group has FDC if and only

if every finitely generated subgroup does.

Proposition 5.8 ([GTY13GTY13, Corollary 3.2.5]). The class of countable discrete groups

with FDC is closed under extensions.

Combining Example 5.45.4 with Proposition 5.75.7 and Proposition 5.85.8, we obtain the

following result.

Corollary 5.9 ([GTY13GTY13, Theorem 5.1.2]). Elementary amenable groups have FDC.

Using Bass-Serre theory one can also prove the following inheritance result.

Proposition 5.10 ([GTY13GTY13, Proposition 3.2.6]). If a countable discrete group acts

(without inversion) on a tree, and the vertex stabilizers of the action have FDC,

then the group itself has FDC.

We will now sketch the proof that spaces, and thus groups, with finite asymptotic

dimension have FDC.

Theorem 5.11 ([KasKas, Theorem 1]). Let X be a metric space with asymptotic di-

mension at most n. Then there exists a coarse embedding of X into a product of

n+ 1 trees.

The following corollary is obtained by decomposing one tree at a time.
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Corollary 5.12. Let X be a metric space with finite asymptotic dimension. Then

X has FDC.

Theorem 5.115.11 was proved by Dranishnikov for geodesic metric spaces of bounded

geometry [Dra03Dra03, Theorem 3]. Dranishnikov and Zarichnyi [DZ04DZ04, Theorem 3.5]

showed that proper metric spaces can be coarsely embedded into a product of n+ 1

binary trees. Using an ultralimit construction, Guentner, Tessera and Yu [GTY13GTY13,

Proof of Theorem 4.1] used this to show that every metric space with asymptotic

dimension at most n can be embedded into a product of (n+ 1)-many 0-hyperbolic

spaces. This suffices to show that metric families with finite asymptotic dimension

have FDC. But there is a simple and direct proof of Theorem 5.115.11 without using

ultralimits. The main ingredient is the following lemma. Its proof is an elementary

rearranging of the involved covers.

Let X be a metric space of asymptotic dimension at most n and let f ′ be a non-

decreasing control function. Define f(x) := f ′(3x) + 3x and define g : N → R
inductively by g(0) = 2 and

g(k) := 100f(g(k − 1)).

Lemma 5.13 ([KasKas, Lemma 5]). There exist 9
10
g(k)-disjoint covers U0

k , . . . ,Unk of

diameter at most 2f(g(k)) such that

1. for every j, every l < k and all U ∈ U jk , V ∈ U
j
l we have d(U, V ) ≤ l implies

V l ⊆ U ;

2. for 0 ≤ i ≤ n with i = k modulo n+ 1, we have Bk(x0) ⊆ U for some U ∈ U ik.

Given covers U0
k , . . . ,Unk as in Lemma 5.135.13, we define trees T j as follows. The vertices

of T j are the elements {U | k ∈ N, U ∈ U jk} and V ∈ U jk , U ∈ U
j
k′ with k < k′ are

connected by an edge if and only if V ⊆ U and there is no k < l < k′ such that

there exists W ∈ U jl with V ⊆ W . Note that this in particular implies that V and

U are connected by a sequence of edges if V ⊆ U .

For x ∈ X define ψj(x) := min{k ∈ N | ∃U ∈ U jk , x ∈ U} and let ϕj(x) ∈ U j
ψj(x)

be

the element containing x.

It is then straightforward to prove that the map ϕ =
∏n

j=0 ϕ
j : X →

∏n
j=0 T

j is a

coarse embedding as required.

We end this section by mentioning the following result.

Theorem 5.14 ([GTY13GTY13, Theorem 5.2.2]). Let R be a commutative ring with unit.

Every countable subgroup of GLn(R) has FDC.

The main ingredients in the proof are the Fibering Theorem (Theorem 5.65.6) and the
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following proposition.

Proposition 5.15 ([GTY12GTY12, Proposition 3.8]). Let γ be an archimedean or a dis-

crete norm on a field K. The group GLn(K), equipped with the left-invariant pseudo-

metric induced by γ, has finite asymptotic dimension.

6 Injectivity for groups with FDC

Using the methods from [GTY12GTY12], Ramras, Tessera and Yu proved the following

result.

Theorem 6.1 ([RTY14RTY14, Theorem 1.1]). Let G be a discrete group with finite de-

composition complexity and assume that BG admits a finite CW-model. Then the

assembly map in algebraic K-theory

α : colim
Or{1}G

KA → KA(∗)

admits a left inverse.

As before the assumption that BG admits a finite CW-model in particular implies

that G is torsion-free. In my PhD thesis I generalized this result to groups with

a finite dimensional model for EG. This not only allows to consider groups with

torsion but also weakens the finiteness assumption from requiring a finite model to

a finite-dimensional one. However, in this case it is no longer sufficient if G itself has

FDC but it has to have this property equivariantly for all finite subgroups. More

precisely, I proved the following statement.

Theorem 6.2 ([Kas14Kas14, Thm. 3.2.2]). Let G be a discrete group such that the family

{H\G}H∈Fin has FDC. Assume that there is a finite dimensional G-CW-model for

the classifying space for proper actions EG. Then the assembly map in algebraic

K-theory for the family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

This result generalizes Theorem 4.34.3 by Bartels and Rosenthal which can be seen

as follows. If G admits a finite G-CW-model for EG, there is an upper bound on

the order of the finite subgroups of G. In this case, Corollary 3.73.7 can be used to

show that {H\G}H∈Fin has finite asymptotic dimension if G has finite asymptotic

dimension.

In general, determining whether the family {H\G}H∈Fin has FDC is much harder
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than only showing that G has FDC. The main reason is that it is unclear whether

similar inheritance properties as for those of groups with FDC hold. The problem

here is that for example in an extension of groups new finite subgroups can appear

that have to be considered. Before discussing this problem further in Section 99,

we will in the next section introduce a slight modification of FDC that allows to

circumvent this problem.

In Section 88 we will see that Theorem 6.26.2 can be used to deduce injectivity results

for a large class of linear groups and Lie groups.

7 Regular finite decomposition complexity

Inspired by the work of Guentner, Tessera, and Yu, the notion of regular finite

decomposition complexity was introduced in joint work with Andrew Nicas and David

Rosenthal in [KNRKNR].

Definition 7.1 ([KNRKNR, Def. 2.6]). A metric family X regularly decomposes over a

class of metric families C if there exists a family Y with finite asymptotic dimension

and a coarse map F : X → Y such that for every bounded subfamily B of Y , the

inverse image F−1(B) lies in C.

Definition 7.2 ([KNRKNR, Def. 2.7]). Let R be the smallest class of metric families

containing B that is closed under regular decomposition. A metric family in R is

said to have regular finite decomposition complexity (abbreviated to “regular FDC”).

It is straightforward to see that every metric family with finite asymptotic dimension

has regular FDC. More precisely, we have the following statement.

Theorem 7.3 ([KNRKNR, Thm. 5.3]). The class of metric families with regular FDC is

the smallest class of metric families that contains all families with finite asymptotic

dimension and satisfies Fibering Permanence.

Since all families with finite asymptotic dimension have FDC by Corollary 5.125.12 and

the class of metric families with FDC satisfies Fibering Permanence by Theorem 5.65.6,

we have the following corollary.

Corollary 7.4. Every metric family with regular FDC has FDC.

While we do not know whether the converse is also true, the class R of metric

families with regular FDC satisfies all the known inheritance properties of D. More

generally, every class that satisfies Fibering Permanence and contains all metric

families with finite asymptotic dimension has these inheritance properties, see [KNRKNR,

Theorem 1.1]. In particular, we have the following result.

Theorem 7.5 ([KNRKNR, Cor. 1.2]). The class of (countable) groups with regular FDC

is closed under extensions, direct unions, free products (with amalgam) and relative
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hyperbolicity. Furthermore, all elementary amenable groups, all linear groups and

all subgroups of virtually connected Lie groups have regular FDC.

The property that makes the notion of regular FDC particularly useful for our

purposes is that is closed under taking quotients by finite groups. That is, it satisfies

the following.

Theorem 7.6 ([KNRKNR, Cor. 5.29]). Let G be a countable group that has regular FDC

and a global upper bound on the orders of its finite subgroups. Then the metric

family {F\G | F ≤ G finite} has regular FDC.

Combining this result with Theorem 6.26.2, we obtain the following.

Corollary 7.7. Let G be a group with regular FDC. Assume there exists a finite

dimensional model for EG and a global upper bound on the order of the finite sub-

groups of G. Then the assembly map in algebraic K-theory for the family of finite

subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

As mentioned in Theorem 7.57.5, all linear groups have regular FDC. In particular, they

satisfy the assumptions of the corollary if there exists a finite dimensional model for

EG and a global upper bound on the order of the finite subgroups. We will show in

the next section that the latter assumption is not needed for linear groups and also

discuss the first assumption.

8 Linear groups and Lie groups

From Theorem 7.57.5 and Corollary 7.77.7 we can deduce the following result. The as-

sumption on the global upper bound on the orders of the finite subgroups holds by

Selberg’s Lemma [Sel60Sel60].

Theorem 8.1 ([Kas15aKas15a, Corollary 3]). Let F be a field of characteristic zero. Let

G be a finitely generated subgroup of a GLn(F), and assume there exists a finite-

dimensional model for EG. Then the assembly map in algebraic K-theory for the

family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

Given a finitely generated subgroup of a virtually connected Lie group we can con-

sider its adjoint representation to obtain a homomorphism to GLn(C) with abelian
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kernel. Using this together with the Farrell–Jones conjecture for virtually solvable

groups [Weg15Weg15] and an inheritance result for injectivity [Kas15bKas15b, Proposition 4.1]

yields the following corollary of Theorem 8.18.1.

Theorem 8.2 ([Kas15bKas15b, Theorem 1.1]). Let G be a finitely generated subgroup of a

virtually connected Lie group, and assume there exists a finite-dimensional model for

EG. Then the assembly map in algebraic K-theory for the family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

The use of the Farrell–Jones conjecture to prove Theorem 8.28.2 can be avoided by

using an injectivity result for a relative assembly map instead, see Section 1010.

The assumption that the field F in Theorem 8.18.1 has characteristic zero can be

removed to obtain the following result.

Theorem 8.3 ([Kas16Kas16, Theorem 1.1]). Let R be a commutative ring with unit. Let

G be a finitely generated subgroup of a GLn(R), and assume there exists a finite-

dimensional model for EG. Then the assembly map in algebraic K-theory for the

family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

The main obstacle in the proof is that for fields of positive characteristic finitely

generated linear groups are not necessarily virtually torsion-free. The key idea to

overcome this problem is to use a version of Selberg’s lemma that states that there

is a finite-index subgroup such that all its finite subgroups are unipotent. Now one

can use that the subgroup of unipotent upper triangular matrices has asymptotic

dimension zero and that every quotient of a space of asymptotic dimension zero still

has asymptotic dimension zero. To pass from fields to general commutative rings,

one first notices that if the ring R has trivial nilradical, then the linear group over R

embeds into a product over linear groups over fields. By taking the quotient by the

nilradical one sees that the linear group over a general commutative ring sits in an

extension of a linear group over a ring with trivial nilradical and a nilpotent group.

We end this section by stating the following theorem regarding the existence of finite

dimensional models for EG.

Theorem 8.4 ([Kas15bKas15b, Proposition 1.3] and [Kas16Kas16, Proposition 1.2]). Let R be a

commutative ring with unit and let G be a finitely generated subgroup of GLn(R) or

of a virtually connected Lie group. Then G admits a finite-dimensional model for
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EG if and only if there exists a global upper bound on the Hirsch rank of the solvable

subgroups of G.

The previously mentioned injectivity results, in particular those of this section, have

the following analog version in L-theory. Here the extra condition on the negative K-

groups comes in since it is needed so that L-theory commutes with infinite products,

see [Win13Win13]. This property is used when comparing fixed points with homotopy fixed

points.

Theorem 8.5 ([Kas15bKas15b, Theorem 6.1],[Kas16Kas16, Theorem 1.1],[KNRKNR, Theorem 1.3]).

Let G be a group satisfying one of the following conditions.

1. G is a finitely generated subgroup of a virtually connected Lie group;

2. G is a finitely generated linear group over a commutative ring R or

3. G has regular FDC and a global upper bound on the order of its

finite subgroups.

Assume that there exists a finite dimensional model for EG. Let A be an additive

G-category with involution. Assume further that for every finite subgroup F of G

there is an i0 ∈ N such that for every i ≥ i0 we have K−i(A ∗F F/F ) = 0. Then the

L–theoretic assembly map

colim
OrFinG

L
〈∞〉
A → L

〈∞〉
A (∗)

admits a left inverse.

9 Some open problems

In this section, we want to discuss some open questions regarding finite asymptotic

dimension and finite decomposition complexity.

As we have seen regular finite decomposition complexity implies finite decomposition

complexity and finite decomposition complexity implies weak finite decomposition

complexity by definition. For both these implications it is not known whether the

converse holds, i.e. we have the following questions.

Question 9.1.

1. Does every metric family with FDC also have regular FDC?

2. Does every metric family with weak FDC also have FDC?

Arguing as in the proof of Corollary 3.73.7, if a metric space X has weak FDC and a
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finite group F acts on X by isometries, then F\X has weak FDC. The same is true

in the case of regular FDC by Theorem 7.67.6. Hence closely connected to the above

question it the following one.

Question 9.2. Given a metric space X with FDC and an isometric action by a

finite group F , has F\X FDC?

A positive answer to Question 9.19.1.(11) or Question 9.19.1.(22) implies a positive answer

to Question 9.29.2. And a positive answer to Question 9.29.2 would imply that in Corol-

lary 7.77.7 regular FDC can be replaced by FDC. Since there are no groups known that

have FDC but for which regular FDC is unknown, this generalization would not lead

to any new application directly. A more interesting question is the following.

Question 9.3. Given a group G with finite asymptotic dimension, has {H\G}H∈Fin
finite asymptotic dimension?

By Corollary 3.73.7, the answer to Question 9.39.3 is positive for groups which have

a global upper bound on the order of their finite subgroups. As we have seen

in Section 88 (see also [Kas16Kas16, Theorem 3.3]), the answer is also positive for linear

groups over fields of positive characteristic although those have no such upper bound

in general.

In view of Corollary 3.73.7, one might attempt to construct a counterexample to Ques-

tion 9.39.3 in the following way. Try to find groups G with finite subgroups F such

that the asymptotic dimension of F\G is larger than the asymptotic dimension of

G roughly by a factor of |F | and then combine these into an actual counterexample.

The following theorem shows that already the first step of this idea fails.

Theorem 9.4 ([Kas17Kas17, Theorem 1.1]). Let X be a proper metric space and let F

be a finite group acting isometrically on X. Then F\X has the same asymptotic

dimension as X.

10 Coarse homology theories

In this section with describe a generalization of the proof of the previous injectivity

results. As mentioned before the central idea is to consider controlled categories

over classifying spaces. More generally, one can consider controlled categories over

any bornological coarse space and thus obtain a coarse homology theory. In joint

work with Ulrich Bunke, Alexander Engel and Christoph Winges, we considered this

setting more axiomatically and obtained properties of general coarse homology the-

ories that allowed us to prove similar injectivity results. We first give the necessary

background. Most of this material has been developed in [BEKWaBEKWa] (see also [BEBE]

for the non-equivariant case).
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Definition 10.1. Let G be a group and let X be a G-set. For a subset U of the

power set P(X ×X) of X ×X we define the inverse by

U−1 := {(y, x) | (x, y) ∈ U}

and for U, V ∈ P(X ×X) we define their composition by

U ◦ V := {(x, z) | ∃y ∈ X : (x, y) ∈ U ∧ (y, z) ∈ V }.

Definition 10.2. A G-coarse structure C on X is a subset of P(X ×X) with the

following properties:

1. C is closed under composition, inversion, and forming finite unions or subsets.

2. C contains the diagonal ∆(X) of X.

3. For every U ∈ C, the set GU is also in C.

The pair (X, C) is called a G-coarse space, and the members of C are called (coarse)

entourages of X.

Definition 10.3. Let (X, C) and (X ′, C ′) be G-coarse spaces and let f : X → X ′

be an equivariant map between the underlying sets. The map f is controlled if for

every U ∈ C we have (f × f)(U) ∈ C ′.

We obtain a category of G-coarse spaces and controlled equivariant maps.

Definition 10.4. A G-bornology B on X is a subset of P(X) with the following

properties:

1. B is closed under forming finite unions and subsets.

2. B contains all finite subsets of X.

3. B is G-invariant.

The pair (X,B) is called a G-bornological space, and the members of B are called

bounded subsets of X.

Definition 10.5. Let (X,B) and (X ′,B′) be G-bornological spaces and let f : X →
X ′ be an equivariant map between the underlying sets. The map f is proper if for

every B′ ∈ B′ we have f−1(B′) ∈ B.

Definition 10.6. Let X be a G-set with a G-coarse structure C and a G-bornology

B. The coarse structure C and the bornology B are said to be compatible if for every

B ∈ B and U ∈ C the U-thickening U [B] := {x ∈ X | ∃y ∈ B : (x, y) ∈ U} lies in B.

Definition 10.7. A G-bornological coarse space is a triple (X, C,B) consisting of

a G-set X, a G-coarse structure C, and a G-bornology B such that C and B are

compatible.
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Definition 10.8. A morphism f : (X, C,B) → (X ′, C ′,B′) between G-bornological

coarse spaces is an equivariant map f : X → X ′ of the underying G-sets which is

controlled and proper.

We obtain a category GBC of G-bornological coarse spaces and morphisms. If the

structures are clear from the context, we will use the notation X instead of (X, C,B)

in order to denote G-bornological coarse spaces.

We now introduce the notion of an equivariant coarse homology theory, see [BEKWaBEKWa,

Section 3] for details.

Definition 10.9. Let X be a G-bornological coarse space.

An equivariant big family on X is a filtered family of G-invariant subsets (Yi)i∈I of

X such that for every entourage U of X and i ∈ I there exists j ∈ I such that

U [Yi] ⊆ Yj.

An equivariant complementary pair (Z,Y) on X is a pair of a G-invariant subset Z

of X and an equivariant big family Y = (Yi)i∈I on X such that there exists i ∈ I
with Z ∪ Yi = X.

Definition 10.10. Let X be a G-bornological coarse space. The space X is flasque

if it admits a morphism f : X → X such that:

1. f is close to idX , i.e., (f, idX)(∆(X)) is an entourage of X.

2. For every entourage U of X the subset
⋃
n∈N(fn × fn)(U) is an entourage of

X.

3. For every bounded subset B of X there exists an integer n such that B ∩
fn(X) = ∅.

Let C be a cocomplete stable ∞-category and let

E : GBC→ C

be a functor. If Y = (Yi)i∈I is a filtered family of G-invariant subsets of X, then we

set

E(Y) := colim
i∈I

E(Yi).

In this formula we consider the subsets Yi as G-bornological coarse spaces with the

structures induced from X.

Definition 10.11. Let C be a cocomplete stable ∞-category. A functor

E : GBC→ C

is called a G-equivariant C-valued coarse homology theory if it satisfies the following
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conditions:

1. (Coarse invariance) For all X ∈ GBC the functor E sends the projection

I ⊗X → X to an equivalence, where I denotes the bornological coarse space

consisting of the set {0, 1} with the maximal coarse structure generated by the

whole set {0, 1} × {0, 1} and the maximal bornology generated by the whole

set {0, 1}.

2. (Excision) E(∅) ' 0 and for every equivariant complementary pair (Z,Y) on

a G-bornological coarse space X the square

E(Z ∩ Y) //

��

E(Z)

��
E(Y) // E(X)

is a push-out.

3. (Flasqueness) If a G-bornological coarse space X is flasque, then E(X) ' 0.

4. (u-Continuity) For every G-bornological coarse space X the natural map

colim
U∈CG

E(XU)→ E(X)

is an equivalence. Here XU denotes the G-bornological coarse space X with

the coarse structure replaced by the one generated by U .

If the group G is clear from the context, then we will often just speak of an equiv-

ariant coarse homology theory.

We have a universal equivariant coarse homology theory

Yos : GBC→ GSpX

(see [BEKWaBEKWa, Definition 4.9]), where GSpX is a stable presentable ∞-category

called the category of coarse motivic spectra. More precisely, for every cocomplete

stable ∞-category C we have the following.

Proposition 10.12 ([BEKWaBEKWa, Corollary 4.10]). Restriction along Yos induces an

equivalence between the∞-categories of colimit-preserving functors GSpX → C and

C-valued equivariant coarse homology theories.

The category GBC has a symmetric monoidal structure ⊗, see [BEKWaBEKWa, Exam-

ple 2.17].

Let E : GBC→ C be a functor and let X be a G-bornological coarse space.
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Definition 10.13. The twist EX of E by X is the functor

E(X ⊗−) : GBC→ C.

Lemma 10.14. If E is an equivariant coarse homology theory, then the twist EX

is again an equivariant coarse homology theory.

Proof. This follows from [BEKWaBEKWa, Lemma 4.17].

We need various additional properties or structures for an equivariant coarse homol-

ogy theory.

1. The property of continuity of an equivariant coarse homology theory was de-

fined in [BEKWaBEKWa, Definition 5.15].

2. The property of strong additivity of an equivariant coarse homology theory

was defined in [BEKWaBEKWa, Definition 3.12].

3. The additional structure of transfers for an equivariant coarse homology theory

is encoded in the notion of a coarse homology theory with transfers which was

defined in [BEKWcBEKWc].

We can embed the orbit category OrG into GBC by a functor

i : OrG→ GBC

which sends a transitive G-set S to the G-bornological coarse space Smin,max with

underlying G-set S, the minimal coarse structure generated by the diagonal ∆(S)

and the maximal bornology generated by the whole set S.

Let Gcan,min denote the G-bornological coarse space consisting of G with the canon-

ical coarse and the minimal bornological structures, i.e. with the coarse structure

C generated by the sets B × B for all finite subsets B ⊆ G and the bornology B
consisting of all finite subsets B ⊆ G.

Definition 10.15. We call M : OrG→ C a CP-functor if it satisfies the following

assumptions:

1. C is stable, complete, cocomplete, and compactly generated;

2. There exists an equivariant coarse homology theory E satisfying:

(a) M is equivalent to EGcan,min
◦ i;

(b) E is strongly additive;

(c) E is continuous;
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(d) E extends to a coarse homology theory with transfers.

We will consider the following families of subgroups.

Definition 10.16.

1. FDC denotes the family of subgroups V of G such that {F\V }F∈Fin(V ) has

FDC, where Fin(V ) denotes the family of finite subgroups of V .

2. cp denotes the family of subgroups of G generated by those subgroups V such

that EV admits a finite V -CW-model.

3. FDCcp denotes the intersection of FDC and cp.

We can now state our main theorem about injectivity results for coarse homology

theories.

Theorem 10.17 ([BEKWbBEKWb, Theorem 1.11]). Let G be a group and let F be a family

of subgroups. Assume that M : OrG → C is a CP-functor. Furthermore, assume

that one of the following conditions holds:

1. F is a subfamily of FDCcp such that Fin ⊆ F ;

2. F is a subfamily of FDC such that Fin ⊆ F and G admits a finite-dimensional

model for EFinG.

Then the relative assembly map

αFFin,M : colim
OrFinG

M → colim
OrF G

M

admits a left inverse.

The following are our main examples of CP-functors.

Example 10.18.

1. The equivariant K-theory functor

KA : OrG→ Sp

is an example of a CP-functor. This can be seen as follows. By [BEKWaBEKWa,

Cororllary 8.25], we have an equivalence

KA ' KAXG
Gcan,min

◦ i,

where KAXG : GBC→ Sp denotes the coarse algebraic K-homology functor.

By [BEKWcBEKWc, Theorem 1.4], the functor KAXG admits an extension to an

equivariant coarse homology theory with transfers. Furthermore, KAXG is

continuous by [BEKWaBEKWa, Proposition 8.17] and strongly additive by [BEKWaBEKWa,
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Proposition 8.19].

2. For a group G, let P be the total space of a principal G-bundle and let A

denote the functor of nonconnective A-theory (taking values in the∞-category

of spectra). Then P gives rise to an OrG-spectrum AP sending a transitive

G-set S to the spectrum A(P ×G S). By [BKWBKW, Theorem 5.17], AP is a

CP-functor.

From Theorem 10.1710.17 we can deduce the next two corollaries. For algebraic K-

theory the first corollary was proved by Bartels [Bar03aBar03a] and the second corollary

is Theorem 6.26.2.

Corollary 10.19 ([BEKWbBEKWb, Corollary 1.13]). Let G be a group. If M : OrG→ C

is a CP-functor, then the relative assembly map

αVCycFin,M : colim
OrFinG

M → colim
OrVCycG

M

admits a left inverse.

Corollary 10.20 ([BEKWbBEKWb, Corollary 1.14]). Let G be a group and assume that:

1. M : OrG→ C is a CP-functor;

2. G admits a finite-dimensional model for EG;

3. {F\G}F∈Fin has FDC.

Then the assembly map for the family of finite subgroups

αFin,M : colim
OrFinG

M →M(∗)

admits a left inverse.

As an application of Theorem 10.1710.17 we also obtain the following new injectivity

result for algebraic K-theory.

Theorem 10.21 ([BEKWbBEKWb, Theorem 1.15]). Suppose G admits a finite-dimensional

model for EG and is relatively hyperbolic to groups P1, . . . , Pn. Assume that each

Pi is contained in FDC or satisfies the K-theoretic Farrell–Jones conjecture. Then

the assembly map in algebraic K-theory for the family of finite subgroups

αFin : colim
OrFinG

KA → KA(∗)

admits a left inverse.

As already mentioned, Theorem 10.1710.17 can also be used to prove Theorem 8.28.2 without

using the Farrell–Jones conjecture for virtually solvable groups. This was carried

out in [BEKWbBEKWb, Section 2].
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11 K-theory as a coarse homology theory

As mentioned in Example 10.1810.18, the algebraic K-theory of an additive category

forms a CP-functor. For this, one of the more difficult properties to prove is strong

additivity of the associated coarse homology theories since this relies on the fact

that algebraic K-theory commutes with infinite products of additive categories.

This was first proved by Carlsson [Car95Car95] and uses for the most part simplicial

techniques involving what he calls quasi-Kan complexes. Using Grayson’s model

[Gra12Gra12] of higher algebraic K-theory via binary acyclic complexes, in joint work with

Christoph Winges [KWKW] we gave a new proof of this result. The advantage of this

approach is that is not only elementary, but also exhibits the result as a consequence

of the universal property of algebraic K-theory. For this reason the proof can be

adapted to the setting of stable ∞-categories instead of additive categories. This

was carried out in [KW19KW19]. More precisely, we first carried out Grayson’s approach

in the setting of stable ∞-categories and showed that again higher K-groups can be

described using (cubes of) binary acyclic complex. We then proved the following

theorem by showing that one can restrict to complexes of a fixed length instead of

considering arbitrary bounded complexes.

Theorem 11.1 ([KW19KW19, Theorem 1.3]). For every family {Ci}i∈I of small stable

∞-categories, the natural map

K

(∏
i∈I

Ci

)
→
∏
i∈I

K(Ci)

is an equivalence.

This result was applied in [BKWBKW] for proving that A-theory yields a CP-functor.
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