Vector bundles

Marc Raffelsiefen

26.10.2022

1 Bundle maps as pullbacks of vector bundles

We will focus on the ground field $k=\mathbb{R}$, but most things also apply for other fields, e.g. $k=\mathbb{C}$.

Definition 1.1. Given a map $p: E \rightarrow B$ and a n-dim \mathbb{R}-vector space structure on each fibre $E_{b}=p^{-1}(b)$. A bundle chart or trivialization over an open set $U \subseteq B$ is a homeomorphism $\varphi: p^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$, which is fibrewise linear and for which the following diagram commutes:

A bundle atlas is a collection of bundle charts such that the basic domains cover B. The data $p: E \rightarrow B$ together with the n - $\operatorname{dim} \mathbb{R}$-vector space structures on the fibres is a vector bundle over the space B, if a bundle atlas exists.

Given two bundle charts $(U, \varphi),(V, \psi)$ of p the transition map is

$$
\psi \circ \varphi^{-1}:(U \cap V) \times \mathbb{R}^{n} \rightarrow(U \cap V) \times \mathbb{R}^{n},(b, v) \mapsto\left(b, g_{x}(v)\right)
$$

where $g_{x} \in G l_{n}(\mathbb{R})$. The assignment $U \cap V \rightarrow G, x \mapsto g_{x}$ is continuous.
Definition 1.2. Let $\xi: E(\xi) \rightarrow B$ and $\eta: E(\eta) \rightarrow C$ be vector bundles. A bundle morphism over a map $\varphi: B \rightarrow C$ is a map $\phi: E(\xi) \rightarrow E(\eta)$, which is fibrewise linear, such that the following diagram commutes:

We call ϕ bundle map, if ϕ is fibrewise bijective. Sometimes we write $(\phi, \varphi): \xi \rightarrow \eta$ for the data above.

Remark. One should think of a n-dim vector bundle as a continuous collection of n-dim vector spaces. This idea allows us to think of constructions in linear algebra and apply them to vector bundles. For example, one can define a subbundle in the usual way. The subfibres are subspaces of the original fibres. Furthermore kernels, images and cokernels of bundle morphisms with constant rank are again vector bundles.

Lemma 1.3. A bundle map ϕ over the identity is a bundle isomorphism.
Proof. Since ϕ is on each fibre linear and bijective, one can define a linear inverse ϕ^{-1}. We have to check, that ϕ^{-1} is continuous. Using bundle charts, this only has to be checked for maps between trivial bundles $\phi: B \times \mathbb{R}^{n} \rightarrow B \times \mathbb{R}^{n},(b, v) \mapsto\left(b, g_{b}(v)\right)$. The inverse is given by $(b, v) \mapsto\left(b, g_{b}^{-1}(v)\right)$, which is continuous because $b \mapsto g_{b}$ is continuous.

Proposition 1.4. Given a pullback

where $\eta: E(\eta) \rightarrow C$ is a vector bundle. Then there exists a unique vector bundle structure on ξ such that the diagram above is a bundle map. We call ξ the induced bundle from η along φ and sometimes write $\xi=\varphi^{*} \eta$.

Proof. The fibre $\xi^{-1}(b)=\{(b, e) \in E(\xi) \mid \eta(e)=\varphi(b)\}$ is bijective to $\eta^{-1}(\varphi(b))$ via ϕ. We get a unique vector space structure on each of the fibres $\xi^{-1}(b)$, such that ϕ is linear. For a bundle chart $h: \eta^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ of η we define a bundle chart $h^{\prime}: \xi^{-1}\left(\varphi^{-1}(U)\right) \rightarrow \varphi^{-1}(U) \times \mathbb{R}^{n},(b, e) \mapsto\left(b, h_{2}(e)\right)$ of ξ, which is fibrewise linear, since h is. The inverse is given by $(b, v) \mapsto\left(b, h^{-1}(b, v)\right)$.

Remark. Given a bundle map $(\phi, \varphi): \xi \rightarrow \eta$ we get an isomorphism of vector bundles $E(\xi) \rightarrow \varphi^{*} E(\eta), e \mapsto(\xi(e), \phi(e))$. The inverse is given by $(b, e) \mapsto x \in \xi^{-1}(b)$ such that $\phi(x)=e$.
This shows that a bundle map is a pullback of a vector bundle.

2 Classification of vector bundles

In the previous seminar talk we have seen the Classification theorem, which states that there is a bijection between the isomorphism classes of numerable G-principal bundles and the homotopy classes of a classifying map, i.e. a map from B to the classifying space $B G$:

$$
\mathfrak{B}(B, G) \cong[B, B G]
$$

We want to use this theorem to classify vector bundles. To do this, we have to connect vector bundles and G-principal bundles.

Construction 2.1 (Associated fibre bundles). Let $q: E \rightarrow B$ be a G-princial bundle and V a n-dim representation of G. The projection $E \times V \rightarrow E \rightarrow B$ induces a map $p: E \times{ }_{G} V \rightarrow B$ via passage to orbit spaces. This is a well-defined map: $(e, v) \cdot g=$ $\left(e g, g^{-1} v\right) \mapsto e g \mapsto q(e g)=q(e)$. A bundle chart $\varphi: q^{-1}(U) \rightarrow U \times G$ of q induces a bundle chart

$$
p^{-1}(U)=q^{-1}(U) \times_{G} V \rightarrow(U \times G) \times_{G} V \cong U \times V
$$

of p. The vector space structure on the fibres $p^{-1}(b)$ is uniquely determined, since we want p to be fibrewise linear. This data makes $p: E \times{ }_{G} V \rightarrow B$ a n-dim vector bundle. p is called the associated fibre bundle with typical fibre V.

Example 2.2 (Tautological bundles). Let V be a n-dim vector space and $G r_{k}(V)$ the Grassmannian. Define $E_{k}(V)=\left\{(x, v) \in G r_{k}(V) \times V \mid v \in x\right\}$. We get the projection $p: E_{k}(V) \rightarrow G r_{k}(V),(x, v) \mapsto x$. The fibre of the element $x \in G r_{k}(V)$ is the subspace $x \subseteq V$. We want to realize this as an associated fibre bundle. Consider the $O(k)$-principal bundle $V_{k}(V) \rightarrow G r_{k}(V)$, where $V_{k}(V)$ is the Stiefel manifold. The map

$$
V_{k}(V) \times_{O(k)} \mathbb{R}^{k} \rightarrow E_{k}(V),\left(\left(v_{1}, \ldots, v_{k}\right),\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right) \mapsto\left(\left\langle v_{1}, \ldots, v_{k}\right\rangle, \sum_{i=1}^{k} \lambda_{i} v_{i}\right)
$$

is a fibrewise linear homeomorphism.
Construction 2.3 (Frame bundle). Let $p: X \rightarrow B$ be a n-dim vector bundle. Set $E_{b}=$ $\operatorname{Iso}\left(\mathbb{R}^{n}, X_{b}\right)$, the space of linear isomorphism. $G=G l_{n}(\mathbb{R})$ acts freely and transitively on E_{b} by precomposition. Define $E=\bigsqcup_{b \in B} E_{b}$ and consider the map of sets $q: E \rightarrow B, \alpha \in$ $E_{b} \mapsto b$ with fibrewise $G l_{n}(\mathbb{R})$-action. Given a bundle chart

$$
\varphi: p^{-1}(U) \rightarrow U \times \mathbb{R}^{n}, \varphi_{b}: p^{-1}(b) \rightarrow\{b\} \times \mathbb{R}^{n}
$$

for p, we define a bundle chart

$$
\tilde{\varphi}: q^{-1}(U)=\bigsqcup_{b \in U} E_{b} \rightarrow U \times G l_{n}(\mathbb{R}), \alpha \in E_{b} \mapsto\left(b, \varphi_{b} \circ \alpha\right)
$$

for q, which is $G l_{n}(\mathbb{R})$-equivariant. For two bundle charts $(U, \varphi),(V, \psi)$ the transition function is

$$
U \cap V \times G l_{n}(\mathbb{R}) \rightarrow U \cap V \times G l_{n}(\mathbb{R}),(b, \gamma) \mapsto\left(b, \psi_{b} \circ \varphi_{b}^{-1} \circ \gamma\right)
$$

which is continuous, since $b \mapsto \psi_{b} \circ \varphi_{b}^{-1}$ is. Thus there exists a unique topology on E such that the sets $q^{-1}(U)$ are open and the bundle charts $\tilde{\varphi}$ are homeomophisms. Now the $G l_{n}(\mathbb{R})$ action becomes continuous. Therefore $q: E \rightarrow B$ is a $G l_{n}(\mathbb{R})$-principal bundle.

Remark. If the vector bundle has an Euclidean metric, one can do a similar construction for $G=O(n)$.
One can also take n-frames of X_{b} instead of linear isomorpisms $\mathbb{R}^{n} \rightarrow X_{b}$. We will use this idea in the following example.

Example 2.4. Consider $T S^{n}=\left\{(x, v) \in S^{n} \times \mathbb{R}^{n+1} \mid\langle x, v\rangle=0\right\}$ the tangent bundle of the sphere with the projection $p: T S^{n} \rightarrow S^{n}$ onto the first factor. Then $p^{-1}(x)$ is the orhtogonal complement of x in \mathbb{R}^{n+1}.
The principal $O(n)$-bundle associated to $T S^{n}$ is the space of pairs (x, \underline{v}) with $x \in S^{n}$ and $\underline{v}=\left(v_{1}, \ldots, v_{n}\right)$ an orthonormal n-frame of x^{\perp}. This is the space of all orthonormal $(n+1)$-frames in \mathbb{R}^{n+1}, i.e. the Stiefel manifold $V_{n+1}\left(\mathbb{R}^{n+1}\right) \cong O(n+1)$. Hence the principal $O(n)$-bundle can be associated to the standard quotient map $O(n+1) \rightarrow S^{n}$, where we associate $S^{n} \cong O(n+1) / O(n)$.
Theorem 2.5. There is an equivalence of categories

$$
\begin{aligned}
\left\{\begin{array}{c}
G l_{n}(\mathbb{R}) \text {-principal bundles } \\
\text { bundle maps }
\end{array}\right\} & \longrightarrow\left\{\begin{array}{c}
n \text {-dim real vector bundles } \\
\text { bundle maps }
\end{array}\right\} \\
{[q: E \rightarrow B] } & \left.\longmapsto p: E \times_{G l_{n}(\mathbb{R})} \mathbb{R}^{n} \rightarrow B\right]
\end{aligned}
$$

Proof. First we show that

$$
X \rightarrow E=\bigsqcup_{b \in B} \operatorname{Iso}\left(\mathbb{R}^{n}, X_{b} \times_{G l_{n}(\mathbb{R})} \mathbb{R}^{n}\right), x \mapsto[x \mapsto[(x, v)]]
$$

is a principal $G l_{n}(\mathbb{R})$-bundle morphism. Note that $x g \mapsto[v \mapsto[(x g, v)]=[(x, g v)]]=$ $[v \mapsto[x, v]] \cdot g$. Hence this is a G-map. Every bundle map over the identity is a bundle isomorphism.
The evaluation map

$$
E_{b} \times \mathbb{R}^{n} \rightarrow X_{b},(\alpha, v) \mapsto \alpha(v)
$$

induces a continuous map $E \times_{G l_{n}(\mathbb{R})} \mathbb{R}^{n} \rightarrow X$, which is well-defined since $(\alpha, v) \cdot g=$ $\left(\alpha g, g^{-1} v\right) \mapsto \alpha g\left(g^{-1} v\right)=\alpha(v)$. This is a bundle map over the identity, hence a bundle isomorphism.

Now applying the classification theorem yields a $1: 1$ correspondence between the isomorphism classes of n-dim real vector bundles over B and the homotopy classes of classifying maps $\left[B, B G l_{n}(\mathbb{R})\right]$. But with the theory, which we have developed thus far, we don't know what space $B G l_{n}(\mathbb{R})$ is. Figuring this out is our next objective.

Let $i: H \hookrightarrow G$ be the inclusion of a subgroup. Restricting the G-action to H we obtain a free, contractible H-space $\operatorname{res}_{H} E G$. If $G \rightarrow G / H$ is a numerable H-principal bundle, then $\operatorname{res}_{H} E G$ is a numerable H-space. Thus we have in this case $\operatorname{res}_{H} E G \rightarrow$ $\left(r e s_{H} E G\right) / H$ as a model for $E H \rightarrow B H$. Since $E G \times_{G} G / H \cong E G / H$, we get via the associated fibre bundle a map

$$
B i: B H=B G / H \rightarrow E G / G=B G
$$

with typical fibre G / H. If G / H is contractible, then $B i$ is a numerable fibration with contractible fibre, hence a homotopy equivalence. In case of CW-complexes one proves this using the LES of fibrations and the Whitehead theorem.

Proposition 2.6. The inclusions of subgroups induce homotopy equivalences

$$
B O(n) \rightarrow B G l_{n}(\mathbb{R}) \text { and } B U(n) \rightarrow B G l_{n}(\mathbb{C})
$$

Proof. Since the QR-decomposition is unique for invertible matrices, $G l_{n}(\mathbb{R}) / O(n) \cong$ space of all upper triangular matrices with positive entries on the diagional. This space is contractible via the homotopy $A \mapsto t A+(1-t) E_{n}$.

Thus we have

$$
[B, B O(n)] \cong\left[B, B G l_{n}(\mathbb{R})\right]
$$

The classifying space $B O(n)$ is the infinite Grassmanian $G r_{n}\left(\mathbb{R}^{\infty}\right)$ of n-planes in \mathbb{R}^{∞}. The total space is $V_{n}\left(\mathbb{R}^{\infty}\right)$ the Stiefel manifold of n-dim orthonormal frames in \mathbb{R}^{∞}.

Definition 2.7. Let $\xi: E(\xi) \rightarrow B$ and $\eta: E(\eta) \rightarrow C$ be vector bundles. The product $\xi \times \eta: E(\xi) \times E(\eta) \rightarrow B \times C$ is again a vector bundle. In the case $B=C$, we define the Whitney sum $\xi \oplus \eta=d^{*}(\xi \times \eta)$ as the pullback of the diagram

where $d: B \rightarrow B \times B, b \mapsto(b, b)$ is the diagonal map.
Example 2.8. Inclusion of subgroups induces the fibre bundle

$$
S^{n-1} \cong O(n) / O(n-1) \rightarrow B O(n-1) \rightarrow B O(n)
$$

which is numerable and thus a fibration. One should think of a point in $B O(n-1)$ as a point $V \in B O(n)$ plus a unit vector $v \in V$. The LES of homotopy groups yields that $B i: B O(n-1) \rightarrow B O(n)$ is $(n-1)$-connected. Thus $(B i)_{*}:[X, B O(n-1)] \rightarrow[X, B O(n)]$ is bijective (surjective) for any CW-complex X with $\operatorname{dim} X<n-1$ (resp. $\operatorname{dim} X \leq n-1$). If $\operatorname{dim} X<n-1, k \geq n$, then a k-dim vector bundle ξ over X is isomorphic to $\eta \oplus(k-n) \epsilon$ for an n-dim bundle η, which isomorphism class is unique. Here, $(k-n) \epsilon$ is the $(k-n)$-dim trivial bundle.

Definition 2.9. One can define the tensor product $\xi \otimes \eta$ of two vector bundles over B. The underlying set is

$$
\bigsqcup_{b \in B}\left(E(\xi)_{b} \otimes E(\eta)_{b}\right)=E(\xi \otimes \eta) .
$$

For bundle charts $\varphi: \xi^{-1}(U) \rightarrow U \times \mathbb{R}^{m}, \psi: \eta^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ define

$$
\gamma: \bigsqcup_{b \in U}\left(E(\xi)_{b} \otimes E(\eta)_{b}\right) \rightarrow U \times\left(\mathbb{R}^{m} \otimes \mathbb{R}^{n}\right), e \otimes e^{\prime} \mapsto\left(b, \varphi(e) \otimes \psi\left(e^{\prime}\right)\right)
$$

The transition maps of such charts are homeomorphisms, thus there is a unique topology on $E(\xi \otimes \eta)$ such that the sets $\gamma^{-1}(U)$ are open and the γ are homeomorphisms.

