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1 Bundle maps as pullbacks of vector bundles
We will focus on the ground field k = R, but most things also apply for other fields, e.g.
k = C.

Definition 1.1. Given a map p : E → B and a n-dim R-vector space structure on
each fibre Eb = p−1(b). A bundle chart or trivialization over an open set U ⊆ B is
a homeomorphism φ : p−1(U) → U × Rn, which is fibrewise linear and for which the
following diagram commutes:

p−1(U) U × R

U

p

φ

prU

A bundle atlas is a collection of bundle charts such that the basic domains cover B. The
data p : E → B together with the n-dim R-vector space structures on the fibres is a
vector bundle over the space B, if a bundle atlas exists.

Given two bundle charts (U,φ), (V, ψ) of p the transition map is

ψ ◦ φ−1 : (U ∩ V ) × Rn → (U ∩ V ) × Rn, (b, v) 7→ (b, gx(v))

where gx ∈ Gln(R). The assignment U ∩ V → G, x 7→ gx is continuous.

Definition 1.2. Let ξ : E(ξ) → B and η : E(η) → C be vector bundles. A bundle
morphism over a map φ : B → C is a map ϕ : E(ξ) → E(η), which is fibrewise linear,
such that the following diagram commutes:

E(ξ) E(η)

B C

ξ

ϕ

η

φ

We call ϕ bundle map, if ϕ is fibrewise bijective. Sometimes we write (ϕ, φ) : ξ → η for
the data above.

Remark. One should think of a n-dim vector bundle as a continuous collection of n-dim
vector spaces. This idea allows us to think of constructions in linear algebra and apply
them to vector bundles. For example, one can define a subbundle in the usual way. The
subfibres are subspaces of the original fibres. Furthermore kernels, images and cokernels
of bundle morphisms with constant rank are again vector bundles.
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Lemma 1.3. A bundle map ϕ over the identity is a bundle isomorphism.

Proof. Since ϕ is on each fibre linear and bijective, one can define a linear inverse ϕ−1. We
have to check, that ϕ−1 is continuous. Using bundle charts, this only has to be checked
for maps between trivial bundles ϕ : B ×Rn → B ×Rn, (b, v) 7→ (b, gb(v)). The inverse is
given by (b, v) 7→ (b, g−1

b (v)), which is continuous because b 7→ gb is continuous.

Proposition 1.4. Given a pullback

E(ξ) E(η)

B C

ξ

ϕ

η

φ

where η : E(η) → C is a vector bundle. Then there exists a unique vector bundle structure
on ξ such that the diagram above is a bundle map. We call ξ the induced bundle from η
along φ and sometimes write ξ = φ∗η.

Proof. The fibre ξ−1(b) = {(b, e) ∈ E(ξ) | η(e) = φ(b)} is bijective to η−1(φ(b)) via
ϕ. We get a unique vector space structure on each of the fibres ξ−1(b), such that ϕ
is linear. For a bundle chart h : η−1(U) → U × Rn of η we define a bundle chart
h′ : ξ−1(φ−1(U)) → φ−1(U) ×Rn, (b, e) 7→ (b, h2(e)) of ξ, which is fibrewise linear, since h
is. The inverse is given by (b, v) 7→ (b, h−1(b, v)).

Remark. Given a bundle map (ϕ, φ) : ξ → η we get an isomorphism of vector bundles
E(ξ) → φ∗E(η), e 7→ (ξ(e), ϕ(e)). The inverse is given by (b, e) 7→ x ∈ ξ−1(b) such that
ϕ(x) = e.
This shows that a bundle map is a pullback of a vector bundle.

2 Classification of vector bundles
In the previous seminar talk we have seen the Classification theorem, which states that
there is a bijection between the isomorphism classes of numerable G-principal bundles
and the homotopy classes of a classifying map, i.e. a map from B to the classifying space
BG:

B(B,G) ∼= [B,BG]
We want to use this theorem to classify vector bundles. To do this, we have to connect
vector bundles and G-principal bundles.

Construction 2.1 (Associated fibre bundles). Let q : E → B be a G-princial bundle
and V a n-dim representation of G. The projection E × V → E → B induces a map
p : E ×G V → B via passage to orbit spaces. This is a well-defined map: (e, v) · g =
(eg, g−1v) 7→ eg 7→ q(eg) = q(e). A bundle chart φ : q−1(U) → U × G of q induces a
bundle chart

p−1(U) = q−1(U) ×G V → (U ×G) ×G V ∼= U × V

of p. The vector space structure on the fibres p−1(b) is uniquely determined, since we
want p to be fibrewise linear. This data makes p : E ×G V → B a n-dim vector bundle.
p is called the associated fibre bundle with typical fibre V .
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Example 2.2 (Tautological bundles). Let V be a n-dim vector space and Grk(V ) the
Grassmannian. Define Ek(V ) = {(x, v) ∈ Grk(V ) × V | v ∈ x}. We get the projection
p : Ek(V ) → Grk(V ), (x, v) 7→ x. The fibre of the element x ∈ Grk(V ) is the subspace
x ⊆ V . We want to realize this as an associated fibre bundle. Consider the O(k)-principal
bundle Vk(V ) → Grk(V ), where Vk(V ) is the Stiefel manifold. The map

Vk(V ) ×O(k) Rk → Ek(V ), ((v1, ..., vk), (λ1, ..., λk)) 7→ (⟨v1, ..., vk⟩,
k∑

i=1
λivi)

is a fibrewise linear homeomorphism.

Construction 2.3 (Frame bundle). Let p : X → B be a n-dim vector bundle. Set Eb =
Iso(Rn, Xb), the space of linear isomorphism. G = Gln(R) acts freely and transitively on
Eb by precomposition. Define E = ⊔

b∈B
Eb and consider the map of sets q : E → B,α ∈

Eb 7→ b with fibrewise Gln(R)-action. Given a bundle chart

φ : p−1(U) → U × Rn, φb : p−1(b) → {b} × Rn

for p, we define a bundle chart

φ̃ : q−1(U) =
⊔

b∈U

Eb → U ×Gln(R), α ∈ Eb 7→ (b, φb ◦ α)

for q, which is Gln(R)-equivariant. For two bundle charts (U,φ), (V, ψ) the transition
function is

U ∩ V ×Gln(R) → U ∩ V ×Gln(R), (b, γ) 7→ (b, ψb ◦ φ−1
b ◦ γ),

which is continuous, since b 7→ ψb ◦φ−1
b is. Thus there exists a unique topology on E such

that the sets q−1(U) are open and the bundle charts φ̃ are homeomophisms. Now the
Gln(R) action becomes continuous. Therefore q : E → B is a Gln(R)-principal bundle.

Remark. If the vector bundle has an Euclidean metric, one can do a similar construction
for G = O(n).
One can also take n-frames of Xb instead of linear isomorpisms Rn → Xb. We will use
this idea in the following example.

Example 2.4. Consider TSn = {(x, v) ∈ Sn × Rn+1 | ⟨x, v⟩ = 0} the tangent bundle of
the sphere with the projection p : TSn → Sn onto the first factor. Then p−1(x) is the
orhtogonal complement of x in Rn+1.
The principal O(n)-bundle associated to TSn is the space of pairs (x, v) with x ∈ Sn

and v = (v1, ..., vn) an orthonormal n-frame of x⊥. This is the space of all orthonormal
(n + 1)-frames in Rn+1, i.e. the Stiefel manifold Vn+1(Rn+1) ∼= O(n + 1). Hence the
principal O(n)-bundle can be associated to the standard quotient map O(n + 1) → Sn,
where we associate Sn ∼= O(n+ 1)/O(n).

Theorem 2.5. There is an equivalence of categories{
Gln(R)-principal bundles

bundle maps

}
−→

{
n-dim real vector bundles

bundle maps

}
[q : E → B] 7−→ [p : E ×Gln(R) Rn → B]
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Proof. First we show that

X → E =
⊔

b∈B

Iso(Rn, Xb ×Gln(R) Rn), x 7→ [x 7→ [(x, v)]]

is a principal Gln(R)-bundle morphism. Note that xg 7→ [v 7→ [(xg, v)] = [(x, gv)]] =
[v 7→ [x, v]] · g. Hence this is a G-map. Every bundle map over the identity is a bundle
isomorphism.
The evaluation map

Eb × Rn → Xb, (α, v) 7→ α(v)

induces a continuous map E ×Gln(R) Rn → X, which is well-defined since (α, v) · g =
(αg, g−1v) 7→ αg(g−1v) = α(v). This is a bundle map over the identity, hence a bundle
isomorphism.

Now applying the classification theorem yields a 1:1 correspondence between the iso-
morphism classes of n-dim real vector bundles over B and the homotopy classes of clas-
sifying maps [B,BGln(R)]. But with the theory, which we have developed thus far, we
don’t know what space BGln(R) is. Figuring this out is our next objective.

Let i : H ↪→ G be the inclusion of a subgroup. Restricting the G-action to H we
obtain a free, contractible H-space resHEG. If G → G/H is a numerable H-principal
bundle, then resHEG is a numerable H-space. Thus we have in this case resHEG →
(resHEG)/H as a model for EH → BH. Since EG ×G G/H ∼= EG/H, we get via the
associated fibre bundle a map

Bi : BH = BG/H → EG/G = BG

with typical fibre G/H. If G/H is contractible, then Bi is a numerable fibration with
contractible fibre, hence a homotopy equivalence. In case of CW-complexes one proves
this using the LES of fibrations and the Whitehead theorem.

Proposition 2.6. The inclusions of subgroups induce homotopy equivalences

BO(n) → BGln(R) and BU(n) → BGln(C)

Proof. Since the QR-decomposition is unique for invertible matrices, Gln(R)/O(n) ∼=
space of all upper triangular matrices with positive entries on the diagional. This space
is contractible via the homotopy A 7→ tA+ (1 − t)En.

Thus we have
[B,BO(n)] ∼= [B,BGln(R)].

The classifying space BO(n) is the infinite Grassmanian Grn(R∞) of n-planes in R∞. The
total space is Vn(R∞) the Stiefel manifold of n-dim orthonormal frames in R∞.

Definition 2.7. Let ξ : E(ξ) → B and η : E(η) → C be vector bundles. The product
ξ × η : E(ξ) ×E(η) → B × C is again a vector bundle. In the case B = C, we define the
Whitney sum ξ ⊕ η = d∗(ξ × η) as the pullback of the diagram
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d∗(ξ × η) E(ξ) × E(η)

B B ×B

where d : B → B ×B, b 7→ (b, b) is the diagonal map.

Example 2.8. Inclusion of subgroups induces the fibre bundle

Sn−1 ∼= O(n)/O(n− 1) → BO(n− 1) → BO(n),

which is numerable and thus a fibration. One should think of a point in BO(n − 1) as
a point V ∈ BO(n) plus a unit vector v ∈ V . The LES of homotopy groups yields that
Bi : BO(n−1) → BO(n) is (n−1)-connected. Thus (Bi)∗ : [X,BO(n−1)] → [X,BO(n)]
is bijective (surjective) for any CW-complex X with dimX < n−1 (resp. dimX ≤ n−1).
If dimX < n−1,k ≥ n, then a k-dim vector bundle ξ over X is isomorphic to η⊕ (k−n)ϵ
for an n-dim bundle η, which isomorphism class is unique. Here, (k−n)ϵ is the (k−n)-dim
trivial bundle.

Definition 2.9. One can define the tensor product ξ ⊗ η of two vector bundles over B.
The underlying set is ⊔

b∈B

(E(ξ)b ⊗ E(η)b) = E(ξ ⊗ η).

For bundle charts φ : ξ−1(U) → U × Rm, ψ : η−1(U) → U × Rn define

γ :
⊔

b∈U

(E(ξ)b ⊗ E(η)b) → U × (Rm ⊗ Rn), e⊗ e′ 7→ (b, φ(e) ⊗ ψ(e′)).

The transition maps of such charts are homeomorphisms, thus there is a unique topology
on E(ξ ⊗ η) such that the sets γ−1(U) are open and the γ are homeomorphisms.
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