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1 Bundle maps as pullbacks of vector bundles

We will focus on the ground field £ = R, but most things also apply for other fields, e.g.
k= C.

Definition 1.1. Given a map p : £ — B and a n-dim R-vector space structure on
each fibre F, = p~'(b). A bundle chart or trivialization over an open set U C B is
a homeomorphism ¢ : p~}(U) — U x R", which is fibrewise linear and for which the
following diagram commutes:

p (V) d U xR
x pru
U

A bundle atlas is a collection of bundle charts such that the basic domains cover B. The
data p : E — B together with the n-dim R-vector space structures on the fibres is a
vector bundle over the space B, if a bundle atlas exists.

Given two bundle charts (U, ), (V, %) of p the transition map is
Yot (UNV)xR" = (UNV)xR",(b,v) — (b, g+(v))
where g, € GI,,(R). The assignment U NV — G,z > g, is continuous.

Definition 1.2. Let £ : E(§) — B and n : E(n) — C be vector bundles. A bundle
morphism over a map ¢ : B — C' is a map ¢ : E({) — E(n), which is fibrewise linear,
such that the following diagram commutes:

E() —>— E(n)

| |
B—* . (C

We call ¢ bundle map, if ¢ is fibrewise bijective. Sometimes we write (¢, ) : & — n for
the data above.

Remark. One should think of a n-dim vector bundle as a continuous collection of n-dim
vector spaces. This idea allows us to think of constructions in linear algebra and apply
them to vector bundles. For example, one can define a subbundle in the usual way. The
subfibres are subspaces of the original fibres. Furthermore kernels, images and cokernels
of bundle morphisms with constant rank are again vector bundles.

1



Lemma 1.3. A bundle map ¢ over the identity is a bundle isomorphism.

Proof. Since ¢ is on each fibre linear and bijective, one can define a linear inverse ¢—*. We
have to check, that ¢! is continuous. Using bundle charts, this only has to be checked
for maps between trivial bundles ¢ : B x R" — B x R™, (b,v) + (b, go(v)). The inverse is
given by (b,v) + (b, g; ' (v)), which is continuous because b — g, is continuous. O

Proposition 1.4. Given a pullback

where n : E(n) — C is a vector bundle. Then there exists a unique vector bundle structure
on & such that the diagram above is a bundle map. We call € the induced bundle from n
along ¢ and sometimes write £ = @*n.

Proof. The fibre £71(b) = {(b,e) € E(&) | n(e) = @(b)} is bijective to n~(p(b)) via
¢. We get a unique vector space structure on each of the fibres £71(b), such that ¢
is linear. For a bundle chart h : n7'(U) — U x R™ of n we define a bundle chart
B e HU)) = o H(U) x R™, (b, e) — (b, ha(e)) of &, which is fibrewise linear, since h
is. The inverse is given by (b,v) — (b, h=1(b,v)). O

Remark. Given a bundle map (¢, ) : £ — n we get an isomorphism of vector bundles
E(&) — ©o*E(n),e — (£(e), ¢(e)). The inverse is given by (b,e) — x € £71(b) such that
o(z) =e.

This shows that a bundle map is a pullback of a vector bundle.

2 Classification of vector bundles

In the previous seminar talk we have seen the Classification theorem, which states that
there is a bijection between the isomorphism classes of numerable G-principal bundles
and the homotopy classes of a classifying map, i.e. a map from B to the classifying space
BG:

B(B,G) = [B, BG|

We want to use this theorem to classify vector bundles. To do this, we have to connect
vector bundles and G-principal bundles.

Construction 2.1 (Associated fibre bundles). Let ¢ : E — B be a G-princial bundle
and V' a n-dim representation of G. The projection £ x V — E — B induces a map
p: E xgV — B via passage to orbit spaces. This is a well-defined map: (e,v) - g =
(eg,g ') — eg +— q(eg) = q(e). A bundle chart ¢ : ¢ 1(U) — U x G of ¢q induces a
bundle chart

p ) =g U) xqgV = (UxG)xgV2UxV

of p. The vector space structure on the fibres p~!(b) is uniquely determined, since we
want p to be fibrewise linear. This data makes p : £ Xg V — B a n-dim vector bundle.
p is called the associated fibre bundle with typical fibre V.
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Example 2.2 (Tautological bundles). Let V be a n-dim vector space and Grg (V') the
Grassmannian. Define Ex(V) = {(z,v) € Gri(V) x V | v € x}. We get the projection
p: Ey (V) — Gri(V), (z,v) — x. The fibre of the element x € Gri(V) is the subspace
x C V. We want to realize this as an associated fibre bundle. Consider the O(k)-principal
bundle V(V) — Gri(V), where Vi (V) is the Stiefel manifold. The map

k
Vk<V) X0(k) Rk — Ek<V), ((Ul, ...,Uk), ()\1, ceey Ak)) — <<’U1, ceey Uk>, Z)\ﬂ)z)
i=1
is a fibrewise linear homeomorphism.

Construction 2.3 (Frame bundle). Let p : X — B be a n-dim vector bundle. Set Ej, =
Iso(R™, X3), the space of linear isomorphism. G = GI,,(R) acts freely and transitively on

E, by precomposition. Define £ = || Ej and consider the map of sets ¢ : £ — B,«a €
beB

Ey — b with fibrewise GI,,(R)-action. Given a bundle chart
e:p N (U) = UxR" @ :p (b)) — {b} x R"
for p, we define a bundle chart

¢:q ' (U)=|]E = UxGl,(R),a € Ey— (b, pp0 )
bel

for ¢, which is G, (R)-equivariant. For two bundle charts (U, ), (V,%) the transition
function is

UNV xGlL(R) = UNV x Gl,(R), (b,7) = (b,1 00, ' 07),

which is continuous, since b + 0 ¢, ' is. Thus there exists a unique topology on E such
that the sets ¢~!(U) are open and the bundle charts ¢ are homeomophisms. Now the
Gl,(R) action becomes continuous. Therefore ¢ : E — B is a Gl,,(R)-principal bundle.

Remark. 1f the vector bundle has an Euclidean metric, one can do a similar construction
for G = O(n).

One can also take n-frames of X, instead of linear isomorpisms R" — X;,. We will use
this idea in the following example.

Example 2.4. Consider T'S™ = {(z,v) € S" x R"™ | (x,v) = 0} the tangent bundle of
the sphere with the projection p : T'S™ — S™ onto the first factor. Then p~!(x) is the
orhtogonal complement of x in R™*1.

The principal O(n)-bundle associated to T'S™ is the space of pairs (z,v) with z € S”
and v = (vy,...,v,) an orthonormal n-frame of 2. This is the space of all orthonormal
(n + 1)-frames in R"™' ie. the Stiefel manifold V,,;(R"") = O(n + 1). Hence the
principal O(n)-bundle can be associated to the standard quotient map O(n + 1) — S™,
where we associate S™ = O(n +1)/O0(n).

Theorem 2.5. There is an equivalence of categories

{ Gl,(R)-principal bundles } . { n-dim real vector bundles }

bundle maps bundle maps

lq: E — B] — p: E xai,® R" = B]



Proof. First we show that

X = E =] IsoR", Xp xa1, ) R"),x = [z [(z,0)]]
beB

is a principal GI,(R)-bundle morphism. Note that zg — [v — [(zg,v)] = [(z, gv)]] =
[v+ [z,v]] - g. Hence this is a G-map. Every bundle map over the identity is a bundle
isomorphism.
The evaluation map

Ey x R" — X, (a,v) = a(v)

induces a continuous map E X¢, @) R” — X, which is well-defined since (a,v) - g =
(ag,g ') = ag(g~'v) = a(v). This is a bundle map over the identity, hence a bundle

isomorphism. O

Now applying the classification theorem yields a 1:1 correspondence between the iso-
morphism classes of n-dim real vector bundles over B and the homotopy classes of clas-
sifying maps [B, BGl,(R)]. But with the theory, which we have developed thus far, we
don’t know what space BGI,(R) is. Figuring this out is our next objective.

Let ¢+ : H — G be the inclusion of a subgroup. Restricting the G-action to H we
obtain a free, contractible H-space resy EG. If G — G/H is a numerable H-principal
bundle, then resy EG is a numerable H-space. Thus we have in this case resy EG —
(resyEG)/H as a model for EH — BH. Since EG x¢ G/H = EG/H, we get via the
associated fibre bundle a map

Bi: BH = BG/H — EG/G = BG

with typical fibre G/H. If G/H is contractible, then Bi is a numerable fibration with
contractible fibre, hence a homotopy equivalence. In case of CW-complexes one proves
this using the LES of fibrations and the Whitehead theorem.

Proposition 2.6. The inclusions of subgroups induce homotopy equivalences
BO(n) — BGI,(R) and BU(n) — BGI,(C)

Proof. Since the QR-decomposition is unique for invertible matrices, GI,(R)/O(n) =
space of all upper triangular matrices with positive entries on the diagional. This space
is contractible via the homotopy A — tA+ (1 —t)E,. O

Thus we have
[B, BO(n)] = [B, BGl,(R)].

The classifying space BO(n) is the infinite Grassmanian Gr,(R>) of n-planes in R>. The
total space is V,,(R*) the Stiefel manifold of n-dim orthonormal frames in R*.

Definition 2.7. Let £ : E(§) — B and n : E(n) — C be vector bundles. The product
Exn:E) x E(n) — B x C is again a vector bundle. In the case B = C, we define the
Whitney sum £ @ n = d*(§ x ) as the pullback of the diagram



d*(€ x n) ———— E(§) x E(n)

| |

B B x B

where d: B — B x B,b~ (b,b) is the diagonal map.

Example 2.8. Inclusion of subgroups induces the fibre bundle
St~ 0(n)/O(n —1) = BO(n — 1) — BO(n),

which is numerable and thus a fibration. One should think of a point in BO(n — 1) as
a point V' € BO(n) plus a unit vector v € V. The LES of homotopy groups yields that
Bi: BO(n—1) — BO(n) is (n—1)-connected. Thus (Bi). : [X, BO(n—1)] — [X, BO(n)]
is bijective (surjective) for any CW-complex X with dimX < n—1 (resp. dimX <n-—1).
If dimX < n—1,k > n, then a k-dim vector bundle £ over X is isomorphic to n® (k—n)e
for an n-dim bundle 7, which isomorphism class is unique. Here, (k—n)e is the (k—n)-dim
trivial bundle.

Definition 2.9. One can define the tensor product £ ® n of two vector bundles over B.
The underlying set is

L (E©)s ® E(n)y) = E(§ ®n).

beB

For bundle charts ¢ : EHU) — U x R™, ¢ : =Y (U) — U x R™ define

v: L J(B€y®EM)y) = Ux (R"QR"),e® € — (b,p(e) @p(e)).

beU

The transition maps of such charts are homeomorphisms, thus there is a unique topology
on E(£ ®n) such that the sets v~ !(U) are open and the y are homeomorphisms.



