## Vector bundles

Marc Raffelsiefen 26.10.2022

## 1 Bundle maps as pullbacks of vector bundles

We will focus on the ground field  $k = \mathbb{R}$ , but most things also apply for other fields, e.g.  $k = \mathbb{C}$ .

**Definition 1.1.** Given a map  $p : E \to B$  and a *n*-dim  $\mathbb{R}$ -vector space structure on each fibre  $E_b = p^{-1}(b)$ . A bundle chart or trivialization over an open set  $U \subseteq B$  is a homeomorphism  $\varphi : p^{-1}(U) \to U \times \mathbb{R}^n$ , which is fibrewise linear and for which the following diagram commutes:



A bundle atlas is a collection of bundle charts such that the basic domains cover B. The data  $p : E \to B$  together with the *n*-dim  $\mathbb{R}$ -vector space structures on the fibres is a vector bundle over the space B, if a bundle atlas exists.

Given two bundle charts  $(U, \varphi), (V, \psi)$  of p the transition map is

$$\psi \circ \varphi^{-1} : (U \cap V) \times \mathbb{R}^n \to (U \cap V) \times \mathbb{R}^n, (b, v) \mapsto (b, g_x(v))$$

where  $g_x \in Gl_n(\mathbb{R})$ . The assignment  $U \cap V \to G, x \mapsto g_x$  is continuous.

**Definition 1.2.** Let  $\xi : E(\xi) \to B$  and  $\eta : E(\eta) \to C$  be vector bundles. A bundle morphism over a map  $\varphi : B \to C$  is a map  $\phi : E(\xi) \to E(\eta)$ , which is fibrewise linear, such that the following diagram commutes:



We call  $\phi$  bundle map, if  $\phi$  is fibrewise bijective. Sometimes we write  $(\phi, \varphi) : \xi \to \eta$  for the data above.

*Remark.* One should think of a *n*-dim vector bundle as a continuous collection of *n*-dim vector spaces. This idea allows us to think of constructions in linear algebra and apply them to vector bundles. For example, one can define a subbundle in the usual way. The subfibres are subspaces of the original fibres. Furthermore kernels, images and cokernels of bundle morphisms with constant rank are again vector bundles.

## **Lemma 1.3.** A bundle map $\phi$ over the identity is a bundle isomorphism.

*Proof.* Since  $\phi$  is on each fibre linear and bijective, one can define a linear inverse  $\phi^{-1}$ . We have to check, that  $\phi^{-1}$  is continuous. Using bundle charts, this only has to be checked for maps between trivial bundles  $\phi : B \times \mathbb{R}^n \to B \times \mathbb{R}^n, (b, v) \mapsto (b, g_b(v))$ . The inverse is given by  $(b, v) \mapsto (b, g_b^{-1}(v))$ , which is continuous because  $b \mapsto g_b$  is continuous.  $\Box$ 

Proposition 1.4. Given a pullback



where  $\eta : E(\eta) \to C$  is a vector bundle. Then there exists a unique vector bundle structure on  $\xi$  such that the diagram above is a bundle map. We call  $\xi$  the induced bundle from  $\eta$ along  $\varphi$  and sometimes write  $\xi = \varphi^* \eta$ .

Proof. The fibre  $\xi^{-1}(b) = \{(b, e) \in E(\xi) \mid \eta(e) = \varphi(b)\}$  is bijective to  $\eta^{-1}(\varphi(b))$  via  $\phi$ . We get a unique vector space structure on each of the fibres  $\xi^{-1}(b)$ , such that  $\phi$  is linear. For a bundle chart  $h : \eta^{-1}(U) \to U \times \mathbb{R}^n$  of  $\eta$  we define a bundle chart  $h' : \xi^{-1}(\varphi^{-1}(U)) \to \varphi^{-1}(U) \times \mathbb{R}^n, (b, e) \mapsto (b, h_2(e))$  of  $\xi$ , which is fibrewise linear, since h is. The inverse is given by  $(b, v) \mapsto (b, h^{-1}(b, v))$ .

Remark. Given a bundle map  $(\phi, \varphi) : \xi \to \eta$  we get an isomorphism of vector bundles  $E(\xi) \to \varphi^* E(\eta), e \mapsto (\xi(e), \phi(e))$ . The inverse is given by  $(b, e) \mapsto x \in \xi^{-1}(b)$  such that  $\phi(x) = e$ .

This shows that a bundle map is a pullback of a vector bundle.

## 2 Classification of vector bundles

In the previous seminar talk we have seen the Classification theorem, which states that there is a bijection between the isomorphism classes of numerable G-principal bundles and the homotopy classes of a classifying map, i.e. a map from B to the classifying space BG:

$$\mathfrak{B}(B,G) \cong [B,BG]$$

We want to use this theorem to classify vector bundles. To do this, we have to connect vector bundles and G-principal bundles.

**Construction 2.1** (Associated fibre bundles). Let  $q : E \to B$  be a *G*-princial bundle and *V* a *n*-dim representation of *G*. The projection  $E \times V \to E \to B$  induces a map  $p : E \times_G V \to B$  via passage to orbit spaces. This is a well-defined map:  $(e, v) \cdot g =$  $(eg, g^{-1}v) \mapsto eg \mapsto q(eg) = q(e)$ . A bundle chart  $\varphi : q^{-1}(U) \to U \times G$  of q induces a bundle chart

$$p^{-1}(U) = q^{-1}(U) \times_G V \to (U \times G) \times_G V \cong U \times V$$

of p. The vector space structure on the fibres  $p^{-1}(b)$  is uniquely determined, since we want p to be fibrewise linear. This data makes  $p: E \times_G V \to B$  a *n*-dim vector bundle. p is called the associated fibre bundle with typical fibre V.

**Example 2.2** (Tautological bundles). Let V be a n-dim vector space and  $Gr_k(V)$  the Grassmannian. Define  $E_k(V) = \{(x, v) \in Gr_k(V) \times V \mid v \in x\}$ . We get the projection  $p : E_k(V) \to Gr_k(V), (x, v) \mapsto x$ . The fibre of the element  $x \in Gr_k(V)$  is the subspace  $x \subseteq V$ . We want to realize this as an associated fibre bundle. Consider the O(k)-principal bundle  $V_k(V) \to Gr_k(V)$ , where  $V_k(V)$  is the Stiefel manifold. The map

$$V_k(V) \times_{O(k)} \mathbb{R}^k \to E_k(V), ((v_1, ..., v_k), (\lambda_1, ..., \lambda_k)) \mapsto (\langle v_1, ..., v_k \rangle, \sum_{i=1}^{\kappa} \lambda_i v_i)$$

is a fibrewise linear homeomorphism.

**Construction 2.3** (Frame bundle). Let  $p: X \to B$  be a *n*-dim vector bundle. Set  $E_b = Iso(\mathbb{R}^n, X_b)$ , the space of linear isomorphism.  $G = Gl_n(\mathbb{R})$  acts freely and transitively on  $E_b$  by precomposition. Define  $E = \bigsqcup_{b \in B} E_b$  and consider the map of sets  $q: E \to B, \alpha \in E_b \mapsto b$  with fibrewise  $Gl_n(\mathbb{R})$ -action. Given a bundle chart

$$\varphi: p^{-1}(U) \to U \times \mathbb{R}^n, \varphi_b: p^{-1}(b) \to \{b\} \times \mathbb{R}^n$$

for p, we define a bundle chart

$$\tilde{\varphi}: q^{-1}(U) = \bigsqcup_{b \in U} E_b \to U \times Gl_n(\mathbb{R}), \alpha \in E_b \mapsto (b, \varphi_b \circ \alpha)$$

for q, which is  $Gl_n(\mathbb{R})$ -equivariant. For two bundle charts  $(U, \varphi), (V, \psi)$  the transition function is

$$U \cap V \times Gl_n(\mathbb{R}) \to U \cap V \times Gl_n(\mathbb{R}), (b, \gamma) \mapsto (b, \psi_b \circ \varphi_b^{-1} \circ \gamma),$$

which is continuous, since  $b \mapsto \psi_b \circ \varphi_b^{-1}$  is. Thus there exists a unique topology on E such that the sets  $q^{-1}(U)$  are open and the bundle charts  $\tilde{\varphi}$  are homeomorphisms. Now the  $Gl_n(\mathbb{R})$  action becomes continuous. Therefore  $q: E \to B$  is a  $Gl_n(\mathbb{R})$ -principal bundle.

*Remark.* If the vector bundle has an Euclidean metric, one can do a similar construction for G = O(n).

One can also take *n*-frames of  $X_b$  instead of linear isomorphisms  $\mathbb{R}^n \to X_b$ . We will use this idea in the following example.

**Example 2.4.** Consider  $TS^n = \{(x, v) \in S^n \times \mathbb{R}^{n+1} \mid \langle x, v \rangle = 0\}$  the tangent bundle of the sphere with the projection  $p : TS^n \to S^n$  onto the first factor. Then  $p^{-1}(x)$  is the orthogonal complement of x in  $\mathbb{R}^{n+1}$ .

The principal O(n)-bundle associated to  $TS^n$  is the space of pairs  $(x, \underline{v})$  with  $x \in S^n$ and  $\underline{v} = (v_1, ..., v_n)$  an orthonormal *n*-frame of  $x^{\perp}$ . This is the space of all orthonormal (n + 1)-frames in  $\mathbb{R}^{n+1}$ , i.e. the Stiefel manifold  $V_{n+1}(\mathbb{R}^{n+1}) \cong O(n + 1)$ . Hence the principal O(n)-bundle can be associated to the standard quotient map  $O(n + 1) \to S^n$ , where we associate  $S^n \cong O(n + 1)/O(n)$ .

**Theorem 2.5.** There is an equivalence of categories

$$\left\{\begin{array}{c}Gl_n(\mathbb{R})\text{-principal bundles}\\bundle\ maps\end{array}\right\}\longrightarrow\left\{\begin{array}{c}n\text{-dim\ real\ vector\ bundles}\\bundle\ maps\end{array}\right\}\\[q:E\to B]\qquad\longmapsto\qquad[p:E\times_{Gl_n(\mathbb{R})}\mathbb{R}^n\to B]\end{array}\right\}$$

*Proof.* First we show that

$$X \to E = \bigsqcup_{b \in B} Iso(\mathbb{R}^n, X_b \times_{Gl_n(\mathbb{R})} \mathbb{R}^n), x \mapsto [x \mapsto [(x, v)]]$$

is a principal  $Gl_n(\mathbb{R})$ -bundle morphism. Note that  $xg \mapsto [v \mapsto [(xg,v)] = [(x,gv)]] = [v \mapsto [x,v]] \cdot g$ . Hence this is a *G*-map. Every bundle map over the identity is a bundle isomorphism.

The evaluation map

$$E_b \times \mathbb{R}^n \to X_b, (\alpha, v) \mapsto \alpha(v)$$

induces a continuous map  $E \times_{Gl_n(\mathbb{R})} \mathbb{R}^n \to X$ , which is well-defined since  $(\alpha, v) \cdot g = (\alpha g, g^{-1}v) \mapsto \alpha g(g^{-1}v) = \alpha(v)$ . This is a bundle map over the identity, hence a bundle isomorphism.

Now applying the classification theorem yields a 1:1 correspondence between the isomorphism classes of *n*-dim real vector bundles over *B* and the homotopy classes of classifying maps  $[B, BGl_n(\mathbb{R})]$ . But with the theory, which we have developed thus far, we don't know what space  $BGl_n(\mathbb{R})$  is. Figuring this out is our next objective.

Let  $i: H \hookrightarrow G$  be the inclusion of a subgroup. Restricting the *G*-action to *H* we obtain a free, contractible *H*-space  $res_H EG$ . If  $G \to G/H$  is a numerable *H*-principal bundle, then  $res_H EG$  is a numerable *H*-space. Thus we have in this case  $res_H EG \to (res_H EG)/H$  as a model for  $EH \to BH$ . Since  $EG \times_G G/H \cong EG/H$ , we get via the associated fibre bundle a map

$$Bi: BH = BG/H \rightarrow EG/G = BG$$

with typical fibre G/H. If G/H is contractible, then Bi is a numerable fibration with contractible fibre, hence a homotopy equivalence. In case of CW-complexes one proves this using the LES of fibrations and the Whitehead theorem.

**Proposition 2.6.** The inclusions of subgroups induce homotopy equivalences

 $BO(n) \to BGl_n(\mathbb{R}) \text{ and } BU(n) \to BGl_n(\mathbb{C})$ 

*Proof.* Since the QR-decomposition is unique for invertible matrices,  $Gl_n(\mathbb{R})/O(n) \cong$  space of all upper triangular matrices with positive entries on the diagional. This space is contractible via the homotopy  $A \mapsto tA + (1-t)E_n$ .

Thus we have

$$[B, BO(n)] \cong [B, BGl_n(\mathbb{R})].$$

The classifying space BO(n) is the infinite Grassmanian  $Gr_n(\mathbb{R}^\infty)$  of *n*-planes in  $\mathbb{R}^\infty$ . The total space is  $V_n(\mathbb{R}^\infty)$  the Stiefel manifold of *n*-dim orthonormal frames in  $\mathbb{R}^\infty$ .

**Definition 2.7.** Let  $\xi : E(\xi) \to B$  and  $\eta : E(\eta) \to C$  be vector bundles. The product  $\xi \times \eta : E(\xi) \times E(\eta) \to B \times C$  is again a vector bundle. In the case B = C, we define the Whitney sum  $\xi \oplus \eta = d^*(\xi \times \eta)$  as the pullback of the diagram



where  $d: B \to B \times B, b \mapsto (b, b)$  is the diagonal map.

**Example 2.8.** Inclusion of subgroups induces the fibre bundle

$$S^{n-1} \cong O(n)/O(n-1) \to BO(n-1) \to BO(n),$$

which is numerable and thus a fibration. One should think of a point in BO(n-1) as a point  $V \in BO(n)$  plus a unit vector  $v \in V$ . The LES of homotopy groups yields that  $Bi : BO(n-1) \to BO(n)$  is (n-1)-connected. Thus  $(Bi)_* : [X, BO(n-1)] \to [X, BO(n)]$ is bijective (surjective) for any CW-complex X with dimX < n-1 (resp.  $dimX \le n-1$ ). If  $dimX < n-1, k \ge n$ , then a k-dim vector bundle  $\xi$  over X is isomorphic to  $\eta \oplus (k-n)\epsilon$ for an n-dim bundle  $\eta$ , which isomorphism class is unique. Here,  $(k-n)\epsilon$  is the (k-n)-dim trivial bundle.

**Definition 2.9.** One can define the tensor product  $\xi \otimes \eta$  of two vector bundles over *B*. The underlying set is

$$\bigsqcup_{b\in B} (E(\xi)_b \otimes E(\eta)_b) = E(\xi \otimes \eta).$$

For bundle charts  $\varphi: \xi^{-1}(U) \to U \times \mathbb{R}^m, \psi: \eta^{-1}(U) \to U \times \mathbb{R}^n$  define

$$\gamma: \bigsqcup_{b \in U} (E(\xi)_b \otimes E(\eta)_b) \to U \times (\mathbb{R}^m \otimes \mathbb{R}^n), e \otimes e' \mapsto (b, \varphi(e) \otimes \psi(e')).$$

The transition maps of such charts are homeomorphisms, thus there is a unique topology on  $E(\xi \otimes \eta)$  such that the sets  $\gamma^{-1}(U)$  are open and the  $\gamma$  are homeomorphisms.