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Abstract

We follow [BD70] and [Die08] closely to establish the construction of Pontrjagin-Thom.

1 Thom Spaces

Definition 1.1 (Thom space). The Thom space of a k-dimensional, real vector bundle with a Rieman-
nian metric B 5 BO(k), is defined as Th(§) :== D(£)/S(£). If B is compact, we have a homeomorph-
ism Th(§) 2 E(§) U{cc} = E(£)T, with F(£) being the total space of the bundle .

Lemma 1.2. A bundle map F : £ — n, which is a metric preserving homeomorphism fibre-wise,
induces a pointed map Th(F) : Th(§) — Th(n).

Proof. As the bundle map preserve the metric, there is an induced map on Fp : D(§) — D(n), and
Fs:5(&) — S(n). Thus, the map Th(F) : Th(§) — Th(n) is well-defined. O

Remark 1.3. We don’t need the bundle map F' to preserve the metric in each fibre, this is just for

convenience.

Lemma 1.4. Let B 5 BO(k) be a vector bundle, and R the trivial line-bundle. Then Th({ ® R) =
STh(E).

Proof. Let ¢ : D¥+*1 — D x I be an O(k)-equivariant homeomorphism. This induces a homeomorph-
ism D(§ @ R) — D(§) x I. This induces the following.

Th(¢ ®R) = D(§ @ R)/S(E®R) = (D(€) x I)/(S(€) x TUD(&) x {0,1})

This concludes the proof. O



Remark 1.5. Doing this n-times, hence with R", yields a homeomorphism Th(§ @& R™) = X"Th(§).
More generally, given two vector bundles &, 1, we have an isomorphism Th(§ x n) = Th(§) A Th(n).
This follows from X,Y locally compact Hausdorff, then (X x Y)* = X+ AY™. In this way, one
obtains Lemma |1.4] by considering R* =2 S! hence Th(¢ ® R) =2 Th(€) A ST = STh(E).

2 The Pontrjagin-Thom Construction

We fix some further notation before describing the Pontrjagin-Thom construction. From now on,
B 5 BO(k) denotes a smooth, real k-dimensional vector bundle over a closed manifold B. Let
j : M™ — R"* be a smooth embedding of a closed, smooth, n-dimensional manifold M"™. We
denote by v; : E(v;) — M™ the normal bundle E(v;) = j*(TR™*)/TM™ C M™ x R"™*. A tubular
neighbourhood of M™ in R"*¥ is an inclusion N : E(v;) — R"**_such that the restriction to the zero

section is j(M™), and
E(vj) = j*(M") = j*(TR"**) /TM" = E(v;)

is the identity. We denote the image by N(M™). A tubular neighbourhood does exist, and it is
unique up to isotopy, see [Hir97]. One can think about this as rescaling the fibres to the open disc
bundle D (v;) until there is no self intersection with j(M™) given as the zero-section. We now want
to assign to each such embedding j : M™ — R"** with a bundle map F : v; — & a pointed homotopy
class P(j, F) € mp+k(Th(€)). Before we describe the map explicitly, we give an argument on how
this is a natural thing to think about. If f : U — L is an open inclusion between locally compact
Hausdorff spaces, then the one-point compactification induces a pointed map f* : L™ — U™T. In this
sense, the one-point compactification defines a contravariant functor (—)* : LCHX — CH,, from
the categeory of locally compact Hausdorff spaces with open embeddings into the category of compact
Hausdorff spaces with pointed continuous maps.

Definition 2.1 (Pontrjagin-Thom construction). Consider the tubular neighbourhood N : E(v;) —
R™*. This induces a map S"** = (R**)* — E(v;)* = Th(y;) ThE), Th(§). Explicitly, consider

the following diagram.
gtk QUK gk /(gnk \ N(M™)) —= De(v)/(De(v;) \ De(v))
g9 } o~

Thv(ﬁ ) Th(v;)

Th(F)
We define the class P(j, F) == [g] € mp+k(Th(E)).

Remark 2.2. The tubular neighbourhood is unique up to isotopy. Two different tubular neighbour-
hoods give maps in the same homotopy class. This can be seen as bundle maps preserve the structure
of the fibres, and there is a linear homotopy in each fibre. Analogously, a different choice of € does

not change the homotopy class.



We will now define a certain bordism-relation for such pairs (7, F').

Definition 2.3 (¢-bordism). Two such pairs (jo, Fy), and (ji, F1), with j; : M — R"*¥  and
F; i v;, — €, are &-bordant, if there exists a smooth submanifold J : W™+l — R?"** x T such that

1 1 2 2
W (R x |0, 3)) = Mg % [0, 3) and Wt A (R x (5 1]) = M x (5
and OW™ = MP x {0} U M} x {1}. Furthermore, we want a bundle map F : v; — £ such that the

following diagram commutes.

1]

F;
E(v,) —== E(vy) —— E(§)
MM —— Wt — 5 B
The total space F(v;) of the normal bundle is naturally a subspace of T(R"*¥ x I)| Jwn1y = Wt x
R™TF x R.
Lemma 2.4. £-bordism defines an equivalence relation. We denote by L, (§) the set of all &-bordism
classes of such pairs (j,F) with j : M™ — R*"™* and F : vj = ¢&.

Proof. Trivial, similar to the proof that usual bordism defines an equivalence relation. O

We now want to define the Pontrjagin-Thom map P : £,,(§) = mn+k(Th(£)) by mapping a pair (j, F')
to the pointed homotopy class P(j, F') given by the Pontrjagin-Thom construction. A priori, it is not
evident that this is well-defined.

Lemma 2.5. Let (jo, Fy) and (j1, F1) be &-bordant in L,(€). Then P(jo, Fo) = P(j1, F1).

Proof. Consider a ¢-bordism (J, F), J : W — R x I. One can apply the Pontrjagin-Thom

construction to (J, F), and easily obtain

SR T ———————— (SR 1) /(8™ x I) \ N(W™ ) ———— D(vy)/Sc(vy)

Th(€) < Th(vy)

defining a homotopy between the maps obtained from (jo, Fy) and (j1, F1) under the Pontrjagin-Thom

construction. O

With that, the Pontrjagin-Thom map P : £,(§) = mp4k(Th(€)) is well-defined. We will now state

the main theorem of this section.



Theorem 2.6. Let B £> BO(k) be a smooth, real, k-dimensional vector bundle over a smooth, closed
manifold B. Then the Pontrjagin-Thom map P : L,(§) = mpak(Th(E)) is a bijection.

Before we turn to the proof, observe that elements f : S"** — Th(€) in the obtained class from the

Pontrjagin-Thom construction are of a very special type.

(a) Consider E(§) C Th(¢) = E(¢)T. The induced map f : f~1(E(¢)) — E(€) is smooth, proper,
and f h s(B), with s : B — E(§) being the zero section.

(b) The pre-image f~'(s(B)) of the zero section has a tubular neighbourhood U C S"** such that
f(z) = 0o € Th() if and only if x ¢ U. We can find an embedding j : f~(s(B)) — R"**.

(¢) If U is the just established neighbourhood, there exists a bundle map defined as follow.

E(vj) = De(v;) - U 5 E(9)
Lemma 2.7. Every map f: S*F — Th(€) is homotopic to a map f' satisfying (a)-(c).

Proof. The techniques used stem from differential topology, one can use [BD70], or |[Die0§| as good

references. O

Remark 2.8. If fy and f; are homotopic and satisfy (a) to (c), we can find a homotopy H : S"tFx T —
Th(§) satisfying (a) to (c) as well.

To prove Theorem [2.6] we construct an inverse Q to the map P.

Proof of Theorem[2.6. As we want to construct an inverse Q : m, 1 (Th(§)) — L,(&), we can assume
to work with maps f : S"T% — Th(¢), satisfying the properties (a) to (c). Let s : B — E(&) be
the zero section. Define M™ := f~!(s(B)). As f is proper, and B is assumed to be closed, this is a
closed, smooth manifold of dimension n, using (a). As f is smooth, this induces a smooth bundle
map F : v; — &, with an embedding j : M"™ — R*TF C (R*HF)+ = g7k ysing (b) and (c). We
define the map Q to send [f] to the &-bordism class [j, F]. We need to check that Q is well-defined.
Let fo, f1 : S*™™* — Th(¢) lie in the same homotopy class, satisfying (a) to (c). We need to show
that Q sends both to the same &-bordism class. We can choose a homotopy H between fy and fi,
such that H|[o,§) = fo, H\(%J] = f1. By Remark we can assume H to satisfy (a) to (c). Now,
taking the pre-image W+ := H~1(s(B)) of the zero section, embedding this into R"** x I via some
map J, using (c) to obtain a bundle map F' : vy — &, we are left with a &-bordism. Hence, Q is

well-defined. By construction, and using (a) to (c), Q is an inverse. Hence, P is bijective. O

Remark 2.9. If one endows £,,(§) with a suitable group structure, namely disjoint union, this actually
becomes a natural isomorphism, as bundle maps induce maps on Thom spaces. This can be seen, as
we can choose the tubular neighbourhoods of the disjoint union embedded into R*™* to be disjoint.
Applying the Pontrjagin-Thom construction yields a map f : Sk — §ntk v gntk _y Th ().



3 Generalising the Pontrjagin-Thom map

Firstly, we can consider a smooth manifold W with empty boundary. For clarification of the notation,
this is not meant to be a ¢-bordism. Instead of considering embeddings j : M™ — R"** one can
similarly consider closed submanifolds ¢ : M — W with an induced smooth bundle map F' : v; — £.

Considering such pairs (i, F') and going through the analogue Pontrjagin-Thom construction

W* —— WH/(WT\N(M)) —— De(vi)/Se(vi)

’

Th(€) Th(vi)

where the needed induced metric comes from an embedding of W into a large enough euclidean space.
Similarly, one can define the ¢-bordism relation, and obtain a bijection P : L(W, &) — [WT, Th(¢)],
given by the Pontrjagin-Thom map. We now want to get rid of the assumption that B LN BO(k) is

a smooth vector bundle over a closed manifold B. We will do this in the following steps.

(a) Consider a bundle B s, BO(k) of rank k, over a closed manifold B, not necessarily smooth. This
is induced by a universal bundle ~; : E(v;) — BO(k) and some map f : B — BO(k), and then
taking the pullback.

(&) —— E(w)

"ol

B ——— BO(k)

The map f is homotopic to a smooth map ¢g. This result is not trivial, the proof uses the
Whitney embedding theorem, see for example [BT82, Proposition 17.8]. The bundle induced
by the map ¢ is smooth, and isomorphic to &. Therefore, we can drop the assumption that £ is

smooth.

(b) Let r : X — B be a retraction. Suppose P is bijective for bundles over X, B s, BO(k). We
can pull back the bundle £ along r to obtain a bundle n = r*(§) over X. As P is natural and
bijective for n, we can conclude that P is bijective for £&. In this way, P is bijective for all

bundles over B.

(c) Let B be a compact manifold, with non-empty boundary. Considering B Ugp B yields a closed
manifold. There is a retraction r : B Usgp B — B. Hence, P is a bijection for all compact

manifolds.

With some more technical arguments, one can show that B being any space suffices. One shows the

assertion for B being a CW-complex, and the uses CW-approximation. This is explained in [Die08].



4 Bordism and Thom Spectra

Definition 4.1 (Thom Spectrum). Let 7, : E(y,) — BO(n) be a universal, n-dimensional, real
vector bundle. We denote its Thom space by MO(n) := Th(vy,). The Thom spectrum MO =
(MO(n),e,) is the spectrum with the following structure maps e, : YXMO(n) = Th(y, ® R) —
MO(n + 1) induced by classifying maps v, ® R — v,11. We set MO(n) = x for n < 0. For a space
X, we denote the associated homology groups to be MO, (X) = m,(X A MO).

We will now state the main theorem.

Theorem 4.2. There is a natural isomorphism T(X) : N, (X) & MO, (X*®). Here, X* is X with an
added point.

We will prove this later. For a space X, consider the product bundle & (X) = idx x 7. We will now
define the following map.

(X)) : L (6k(X)) = No(X)

Let [j, F] € £,(£&,(X)), an n-dimensional & (X )-submanifold, meaning j : M™ — R"** with a given
bundle map F' : E(v;) = E(£(X)). Restricting to the first component Fj of the map F' = (F, Fy) :
E(v) —» E(&(X)) = X x E(vk), given by the universal property of the product, yields a map
Fy : E(v;) — X. Via pre-composition with the zero-section, we get f = Fros : M" — X. We
define Iy (X)[j, F] = [M™, f] € N,(X). This is well-defined, as dropping the second component of
the bundle map leaves us with the usual bordism-relation. Hence, under the map I, & (X)-bordism

classes get mapped to bordism-classes in A, (X). Furthermore, there is a suspension map.

Consider j/ : M™ L5 R+ Man X400 pn+k+1 The normal bundle of M™ in R+ jg E(v;)®R. The
bundle map F' induces a mapping F3 : E(v;) @R — E(v;) ® R — E(y,+1) with the latter map being
induced by the classifying map. Therefore, we obtain a new bundle map F' = (Fy,F) : E(v;) —
E(&41(X)) = X X E(yk+1). We now set Sk[j, F] = [j', F']. Obviously, we have Iy o Si = IIj.

Therefore, the following diagram commutes.

Ln(Er+1(X))

1Ty g1



We denote the colimit over the maps Sy by £,(X), defining a map II(X) : £,(X) — N, (X).

Sk—1 S Skt1

En (gk—i-l (X))

Theorem 4.3. The map T(X) : L,(X) — N (X) is bijective.

Proof. We first prove surjectivity. Let [M, f] € N,,(X) be given. By the Whitney embedding theorem,
there exists k& € N such that we can embed M into R"* via some map j. As the normal bundle
vj + E(vj) — M is the pullback of some classifying bundle v, : E(vy) — BO(k) under a map
M — BO(k), there is a bundle map & : v; = 7. This defines a £, (X)-structure given by (7, F),
with F':= (f o v}, k;1). By construction, we have II;(X)[j, F] = [M, f].

Let us turn our attention to injectivity. Let us assume that [jo, Fy] and [j1, F1] in £,(X) have the
same image under II(X). By the Whitney embedding theorem, we can assume that j; : M]* — Rk
for a suitable k. There exists a bordism B with 0B = Mg I M]', with an extension f : B — X of
fi : M* — X, the first component of F;. For ¢ large enough, there exists an embedding B — RtE+E T
such that the following holds.

1 1 2 2
BN (R x R x [0, 3)) = Mg x {0} x [0, ) and B (R™HF x R x (5:1) = MI' x {0} x (3, 1]

Extending the collars, we can find a bordism B such that ¢ : C == M x [0,2) I M} x (3,1] — B is
an embedding, and 9B = MJ x {0} Il MJ* x {1}. We can embed C — R"** x R? x I by the mapping
(p,q) — (p,0,q). By the Tietze extension theorem, there exists an extension ® : B — R"TF+t x T
such that ® extends ¢ on D = M{ x [0,¢) Il M} x (c,1] for some i < ¢ < 3, and furthermore
®(B\ D) C Rk (1 2). If we assume k + ¢ > n + 1, we can assume that ® is an embedding,
let us set J = ®. Now, the bundle maps F; : vj, — 7, yield bundle maps v, ® R — ~41;. The
classifying maps are unique up to homotopy, and as the inclusion B — B is a cofibration, we can
extend these maps to a bundle map v; — i4¢. Therefore, [j;, F;] € Ln44(Ek(X)) are E,1+(X)-bordant
in £, (§k++(X)). Hence, they lie in the same equivalence class in £, (X). O

To get to Theorem 4.2, we want to consider II(X)~! and then apply the Pontrjagin-Thom map,
as in Theorem M This was only defined on £, (&) for some vector bundle B iR BO(k). We will
again consider & (X) = idx X 7k, and argue by taking the colimit. Using Remark we notice
that Th(&x (X)) = Th(idx x v,) = Th(idx) A Th(y;) = X* A MO(k). The Pontrjagin-Thom maps



P Ln(&k(X)) = Tntk(Th(€r(X))) = mir(X® A MO(k)) behave well with the maps Si. The

following diagram commutes.

L (&r(X)) > Tntk(X® A MO(k))
Sk o
L(&h1(X) —F—— M1 (X AMO(K + 1))

Here, the map >, is similarly to Sy defined to be the following map.

14

k(X A MO(K)) Tk (Th(E(X))) ———— i1 (STh(E(X)))

Xk

T (X /:MO(k: +1)) = Tnpr41(Th(Ee+1(X))) ———— Tnr1 (Th(&(X) ®R))

The map ¥ becomes an isomorphism for large enough k. Thus, we obtain a natural bijection P(X) :
L,(X) = MO, (X*®) by taking the colimit.

Proof of Theorem[{.3. We define T(X) := P(X) o II(X)™! : Nj,(X) — MO, (X*). This is a natural
bijection. It is left to show that T'(X) preserves the group structure. This is a similar argument as
we have seen in Remark We are slightly more precise. Given [M;, f;] € N,,(X), we can smoothly
embed My — {z € R"* .z, < 0}, and M; — {& € R*"™* : 2, > 0}. Furthermore, choose
tubular neighbourhoods N(Mp) C {z € R"** : 2,1 < 0}, and N(M;) C {x € R*™* : 2, > 0}.
This is disjoint, hence it represents My II M;. Again, applying the Pontrjagin-Thom construction
yields a map which factors over S"t* — g7tk g7tk Restricting to each component represents
Plji, F;]. Here, we used the bijective relation [M;, f;] ~ [j;, F;]. Note, the group structure on N, (X)
and L, (X) is the same. O
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