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Abstract

We follow [BD70] and [Die08] closely to establish the construction of Pontrjagin-Thom.

1 Thom Spaces

Definition 1.1 (Thom space). The Thom space of a k-dimensional, real vector bundle with a Rieman-

nian metric B
ξ−→ BO(k), is defined as Th(ξ) := D(ξ)/S(ξ). If B is compact, we have a homeomorph-

ism Th(ξ) ∼= E(ξ) ∪ {∞} = E(ξ)+, with E(ξ) being the total space of the bundle ξ.

Lemma 1.2. A bundle map F : ξ → η, which is a metric preserving homeomorphism fibre-wise,

induces a pointed map Th(F ) : Th(ξ) → Th(η).

Proof. As the bundle map preserve the metric, there is an induced map on FD : D(ξ) → D(η), and

FS : S(ξ) → S(η). Thus, the map Th(F ) : Th(ξ) → Th(η) is well-defined.

Remark 1.3. We don’t need the bundle map F to preserve the metric in each fibre, this is just for

convenience.

Lemma 1.4. Let B
ξ−→ BO(k) be a vector bundle, and R the trivial line-bundle. Then Th(ξ ⊕ R) ∼=

ΣTh(ξ).

Proof. Let ϕ : Dk+1 → Dk×I be an O(k)-equivariant homeomorphism. This induces a homeomorph-

ism D(ξ ⊕ R) → D(ξ)× I. This induces the following.

Th(ξ ⊕ R) = D(ξ ⊕ R)/S(ξ ⊕ R)
∼=−→ (D(ξ)× I)/(S(ξ)× I ∪D(ξ)× {0, 1})

= Σ(D(ξ)/S(ξ))

= ΣTh(ξ)

This concludes the proof.
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Remark 1.5. Doing this n-times, hence with Rn, yields a homeomorphism Th(ξ ⊕ Rn) ∼= ΣnTh(ξ).

More generally, given two vector bundles ξ, η, we have an isomorphism Th(ξ × η) ∼= Th(ξ) ∧ Th(η).

This follows from X,Y locally compact Hausdorff, then (X × Y )+ ∼= X+ ∧ Y +. In this way, one

obtains Lemma 1.4 by considering R+ ∼= S1, hence Th(ξ ⊕ R) ∼= Th(ξ) ∧ S1 ∼= ΣTh(ξ).

2 The Pontrjagin-Thom Construction

We fix some further notation before describing the Pontrjagin-Thom construction. From now on,

B
ξ−→ BO(k) denotes a smooth, real k-dimensional vector bundle over a closed manifold B. Let

j : Mn → Rn+k be a smooth embedding of a closed, smooth, n-dimensional manifold Mn. We

denote by νj : E(νj) → Mn the normal bundle E(νj) := j∗(TRn+k)/TMn ⊆ Mn × Rn+k. A tubular

neighbourhood of Mn in Rn+k is an inclusion N : E(νj) → Rn+k, such that the restriction to the zero

section is j(Mn), and

E(νj) → j∗(Mn) → j∗(TRn+k)/TMn = E(νj)

is the identity. We denote the image by N(Mn). A tubular neighbourhood does exist, and it is

unique up to isotopy, see [Hir97]. One can think about this as rescaling the fibres to the open disc

bundle Ḋϵ(νj) until there is no self intersection with j(Mn) given as the zero-section. We now want

to assign to each such embedding j : Mn → Rn+k with a bundle map F : νj → ξ a pointed homotopy

class P(j, F ) ∈ πn+k(Th(ξ)). Before we describe the map explicitly, we give an argument on how

this is a natural thing to think about. If f : U → L is an open inclusion between locally compact

Hausdorff spaces, then the one-point compactification induces a pointed map f∗ : L+ → U+. In this

sense, the one-point compactification defines a contravariant functor (−)+ : LCHop
↪→ → CH•, from

the categeory of locally compact Hausdorff spaces with open embeddings into the category of compact

Hausdorff spaces with pointed continuous maps.

Definition 2.1 (Pontrjagin-Thom construction). Consider the tubular neighbourhood N : E(νj) →
Rn+k. This induces a map Sn+k ∼= (Rn+k)+ → E(νj)

+ ∼= Th(νj)
Th(F )−−−−→ Th(ξ). Explicitly, consider

the following diagram.

Sn+k Sn+k/(Sn+k \N(Mn)) Dϵ(νj)/(Dϵ(νj) \ Ḋϵ(νj))

Th(ξ) Th(νj)

Quotient ∼=

∼=

Th(F )

g

We define the class P(j, F ) := [g] ∈ πn+k(Th(ξ)).

Remark 2.2. The tubular neighbourhood is unique up to isotopy. Two different tubular neighbour-

hoods give maps in the same homotopy class. This can be seen as bundle maps preserve the structure

of the fibres, and there is a linear homotopy in each fibre. Analogously, a different choice of ϵ does

not change the homotopy class.
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We will now define a certain bordism-relation for such pairs (j, F ).

Definition 2.3 (ξ-bordism). Two such pairs (j0, F0), and (j1, F1), with ji : Mn
i → Rn+k, and

Fi : νji → ξ, are ξ-bordant, if there exists a smooth submanifold J : Wn+1 → Rn+k × I such that

Wn+1 ∩ (Rn+k × [0,
1

3
)) = Mn

0 × [0,
1

3
) and Wn+1 ∩ (Rn+k × (

2

3
, 1]) = Mn

1 × (
2

3
, 1]

and ∂Wn+1 = Mn
0 × {0} ∪Mn

1 × {1}. Furthermore, we want a bundle map F : νJ → ξ such that the

following diagram commutes.

E(νji) E(νJ) E(ξ)

Mn
i Wn+1 B

⊆i F

Fi

The total space E(νJ) of the normal bundle is naturally a subspace of T (Rn+k×I)|J(Wn+1) = Wn+1×
Rn+k × R.

Lemma 2.4. ξ-bordism defines an equivalence relation. We denote by Ln(ξ) the set of all ξ-bordism

classes of such pairs (j, F ) with j : Mn → Rn+k, and F : νj → ξ.

Proof. Trivial, similar to the proof that usual bordism defines an equivalence relation.

We now want to define the Pontrjagin-Thom map P : Ln(ξ) → πn+k(Th(ξ)) by mapping a pair (j, F )

to the pointed homotopy class P(j, F ) given by the Pontrjagin-Thom construction. A priori, it is not

evident that this is well-defined.

Lemma 2.5. Let (j0, F0) and (j1, F1) be ξ-bordant in Ln(ξ). Then P(j0, F0) = P(j1, F1).

Proof. Consider a ξ-bordism (J, F ), J : Wn+1 → Rn+k × I. One can apply the Pontrjagin-Thom

construction to (J, F ), and easily obtain

Sn+k × I (Sn+k × I)/((Sn+k × I) \N(Wn+1)) Dϵ(νJ)/Sϵ(νJ)

Th(ξ) Th(νJ)

defining a homotopy between the maps obtained from (j0, F0) and (j1, F1) under the Pontrjagin-Thom

construction.

With that, the Pontrjagin-Thom map P : Ln(ξ) → πn+k(Th(ξ)) is well-defined. We will now state

the main theorem of this section.
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Theorem 2.6. Let B
ξ−→ BO(k) be a smooth, real, k-dimensional vector bundle over a smooth, closed

manifold B. Then the Pontrjagin-Thom map P : Ln(ξ) → πn+k(Th(ξ)) is a bijection.

Before we turn to the proof, observe that elements f : Sn+k → Th(ξ) in the obtained class from the

Pontrjagin-Thom construction are of a very special type.

(a) Consider E(ξ) ⊆ Th(ξ) ∼= E(ξ)+. The induced map f : f−1(E(ξ)) → E(ξ) is smooth, proper,

and f ⋔ s(B), with s : B → E(ξ) being the zero section.

(b) The pre-image f−1(s(B)) of the zero section has a tubular neighbourhood U ⊆ Sn+k such that

f(x) = ∞ ∈ Th(ξ) if and only if x /∈ U . We can find an embedding j : f−1(s(B)) → Rn+k.

(c) If U is the just established neighbourhood, there exists a bundle map defined as follow.

E(νj) → Ḋϵ(νj) → U
f−→ E(ξ)

Lemma 2.7. Every map f : Sn+k → Th(ξ) is homotopic to a map f ′ satisfying (a)-(c).

Proof. The techniques used stem from differential topology, one can use [BD70], or [Die08] as good

references.

Remark 2.8. If f0 and f1 are homotopic and satisfy (a) to (c), we can find a homotopyH : Sn+k×I →
Th(ξ) satisfying (a) to (c) as well.

To prove Theorem 2.6, we construct an inverse Q to the map P.

Proof of Theorem 2.6. As we want to construct an inverse Q : πn+k(Th(ξ)) → Ln(ξ), we can assume

to work with maps f : Sn+k → Th(ξ), satisfying the properties (a) to (c). Let s : B → E(ξ) be

the zero section. Define Mn := f−1(s(B)). As f is proper, and B is assumed to be closed, this is a

closed, smooth manifold of dimension n, using (a). As f is smooth, this induces a smooth bundle

map F : νj → ξ, with an embedding j : Mn → Rn+k ⊆ (Rn+k)+ ∼= Sn+k, using (b) and (c). We

define the map Q to send [f ] to the ξ-bordism class [j, F ]. We need to check that Q is well-defined.

Let f0, f1 : Sn+k → Th(ξ) lie in the same homotopy class, satisfying (a) to (c). We need to show

that Q sends both to the same ξ-bordism class. We can choose a homotopy H between f0 and f1,

such that H|[0, 1
3
) = f0, H|( 2

3
,1] = f1. By Remark 2.8, we can assume H to satisfy (a) to (c). Now,

taking the pre-image Wn+1 := H−1(s(B)) of the zero section, embedding this into Rn+k × I via some

map J , using (c) to obtain a bundle map F : νJ → ξ, we are left with a ξ-bordism. Hence, Q is

well-defined. By construction, and using (a) to (c), Q is an inverse. Hence, P is bijective.

Remark 2.9. If one endows Ln(ξ) with a suitable group structure, namely disjoint union, this actually

becomes a natural isomorphism, as bundle maps induce maps on Thom spaces. This can be seen, as

we can choose the tubular neighbourhoods of the disjoint union embedded into Rn+k to be disjoint.

Applying the Pontrjagin-Thom construction yields a map f : Sn+k → Sn+k ∨ Sn+k → Th(ξ).
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3 Generalising the Pontrjagin-Thom map

Firstly, we can consider a smooth manifold W with empty boundary. For clarification of the notation,

this is not meant to be a ξ-bordism. Instead of considering embeddings j : Mn → Rn+k, one can

similarly consider closed submanifolds i : M → W with an induced smooth bundle map F : νi → ξ.

Considering such pairs (i, F ) and going through the analogue Pontrjagin-Thom construction

W+ W+/(W+ \N(M)) Dϵ(νi)/Sϵ(νi)

Th(ξ) Th(νi)

g

where the needed induced metric comes from an embedding of W into a large enough euclidean space.

Similarly, one can define the ξ-bordism relation, and obtain a bijection P : L(W, ξ) → [W+, Th(ξ)],

given by the Pontrjagin-Thom map. We now want to get rid of the assumption that B
ξ−→ BO(k) is

a smooth vector bundle over a closed manifold B. We will do this in the following steps.

(a) Consider a bundle B
ξ−→ BO(k) of rank k, over a closed manifold B, not necessarily smooth. This

is induced by a universal bundle γk : E(γk) → BO(k) and some map f : B → BO(k), and then

taking the pullback.

E(ξ) E(γk)

B BO(k)

F

f

γkξ

The map f is homotopic to a smooth map g. This result is not trivial, the proof uses the

Whitney embedding theorem, see for example [BT82, Proposition 17.8]. The bundle induced

by the map g is smooth, and isomorphic to ξ. Therefore, we can drop the assumption that ξ is

smooth.

(b) Let r : X → B be a retraction. Suppose P is bijective for bundles over X, B
ξ−→ BO(k). We

can pull back the bundle ξ along r to obtain a bundle η = r∗(ξ) over X. As P is natural and

bijective for η, we can conclude that P is bijective for ξ. In this way, P is bijective for all

bundles over B.

(c) Let B be a compact manifold, with non-empty boundary. Considering B ∪∂B B yields a closed

manifold. There is a retraction r : B ∪∂B B → B. Hence, P is a bijection for all compact

manifolds.

With some more technical arguments, one can show that B being any space suffices. One shows the

assertion for B being a CW-complex, and the uses CW-approximation. This is explained in [Die08].

5



4 Bordism and Thom Spectra

Definition 4.1 (Thom Spectrum). Let γn : E(γn) → BO(n) be a universal, n-dimensional, real

vector bundle. We denote its Thom space by MO(n) := Th(γn). The Thom spectrum MO =

(MO(n), en) is the spectrum with the following structure maps en : ΣMO(n) ∼= Th(γn ⊕ R) →
MO(n+ 1) induced by classifying maps γn ⊕ R → γn+1. We set MO(n) = ∗ for n ≤ 0. For a space

X, we denote the associated homology groups to be MOn(X) = πn(X ∧MO).

We will now state the main theorem.

Theorem 4.2. There is a natural isomorphism T (X) : Nn(X) ∼= MOn(X
•). Here, X• is X with an

added point.

We will prove this later. For a space X, consider the product bundle ξk(X) = idX × γk. We will now

define the following map.

Πk(X) : Ln(ξk(X)) → Nn(X)

Let [j, F ] ∈ Ln(ξk(X)), an n-dimensional ξk(X)-submanifold, meaning j : Mn → Rn+k with a given

bundle map F : E(νj) → E(ξk(X)). Restricting to the first component F1 of the map F = (F1, F2) :

E(ν) → E(ξk(X)) = X × E(γk), given by the universal property of the product, yields a map

F1 : E(νj) → X. Via pre-composition with the zero-section, we get f = F1 ◦ s : Mn → X. We

define Πk(X)[j, F ] = [Mn, f ] ∈ Nn(X). This is well-defined, as dropping the second component of

the bundle map leaves us with the usual bordism-relation. Hence, under the map Πk, ξk(X)-bordism

classes get mapped to bordism-classes in Nn(X). Furthermore, there is a suspension map.

Sk : Ln(ξk(X)) → Ln(ξk+1(X))

Consider j′ : Mn j−→ Rn+k
idRn+k×{0}
−−−−−−−→ Rn+k+1. The normal bundle of Mn in Rn+k+1 is E(νj)⊕R. The

bundle map F induces a mapping F ′
2 : E(νj)⊕R → E(γk)⊕R → E(γk+1) with the latter map being

induced by the classifying map. Therefore, we obtain a new bundle map F ′ = (F1, F
′
2) : E(νj) →

E(ξk+1(X)) = X × E(γk+1). We now set Sk[j, F ] = [j′, F ′]. Obviously, we have Πk+1 ◦ Sk = Πk.

Therefore, the following diagram commutes.

Ln(ξk(X)) Ln(ξk+1(X))

Nn(X)

Sk

Πk Πk+1
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We denote the colimit over the maps Sk by Ln(X), defining a map Π(X) : Ln(X) → Nn(X).

. . . Ln(ξk(X)) Ln(ξk+1(X)) . . .

Ln(X)

Nn(X)

SkSk−1 Sk+1

Π(X)

Πk(X) Πk+1(X)

Theorem 4.3. The map Π(X) : Ln(X) → Nn(X) is bijective.

Proof. We first prove surjectivity. Let [M,f ] ∈ Nn(X) be given. By the Whitney embedding theorem,

there exists k ∈ N such that we can embed M into Rn+k via some map j. As the normal bundle

νj : E(νj) → M is the pullback of some classifying bundle γk : E(γk) → BO(k) under a map

M → BO(k), there is a bundle map κj,k : νj → γk. This defines a ξk(X)-structure given by (j, F ),

with F := (f ◦ νj , κj,k). By construction, we have Πk(X)[j, F ] = [M,f ].

Let us turn our attention to injectivity. Let us assume that [j0, F0] and [j1, F1] in Ln(X) have the

same image under Π(X). By the Whitney embedding theorem, we can assume that ji : M
n
i → Rn+k

for a suitable k. There exists a bordism B with ∂B ∼= Mn
0 ⨿Mn

1 , with an extension f : B → X of

fi : M
n
i → X, the first component of Fi. For t large enough, there exists an embeddingB → Rn+k+t×I

such that the following holds.

B ∩ (Rn+k × Rt × [0,
1

3
)) = Mn

0 × {0} × [0,
1

3
) and B ∩ (Rn+k × Rt × (

2

3
, 1]) = Mn

1 × {0} × (
2

3
, 1]

Extending the collars, we can find a bordism B such that ϕ : C := Mn
0 × [0, 12)⨿Mn

1 × (12 , 1] → B is

an embedding, and ∂B = Mn
0 ×{0}⨿Mn

1 ×{1}. We can embed C → Rn+k ×Rt × I by the mapping

(p, q) 7→ (p, 0, q). By the Tietze extension theorem, there exists an extension Φ : B → Rn+k+t × I

such that Φ extends ϕ on D := Mn
0 × [0, c) ⨿ Mn

1 × (c, 1] for some 1
3 < c < 1

2 , and furthermore

Φ(B \ D) ⊆ Rn+k+t × (13 ,
2
3). If we assume k + t > n + 1, we can assume that Φ is an embedding,

let us set J = Φ. Now, the bundle maps Fi : νji → γk yield bundle maps νji ⊕ Rt → γk+t. The

classifying maps are unique up to homotopy, and as the inclusion ∂B → B is a cofibration, we can

extend these maps to a bundle map νJ → γk+t. Therefore, [ji, Fi] ∈ Ln+t(ξk(X)) are ξk+t(X)-bordant

in Ln(ξk+t(X)). Hence, they lie in the same equivalence class in Ln(X).

To get to Theorem 4.2, we want to consider Π(X)−1 and then apply the Pontrjagin-Thom map,

as in Theorem 2.6. This was only defined on Ln(ξ) for some vector bundle B
ξ−→ BO(k). We will

again consider ξk(X) = idX × γk, and argue by taking the colimit. Using Remark 1.5, we notice

that Th(ξk(X)) = Th(idX × γk) ∼= Th(idX) ∧ Th(γk) ∼= X• ∧MO(k). The Pontrjagin-Thom maps
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P : Ln(ξk(X)) → πn+k(Th(ξk(X))) ∼= πn+k(X
• ∧ MO(k)) behave well with the maps Sk. The

following diagram commutes.

Ln(ξk(X)) πn+k(X
• ∧MO(k))

Ln(ξk+1(X)) πn+k+1(X
• ∧MO(k + 1))

P

Sk

P

Σk

Here, the map Σk is similarly to Sk defined to be the following map.

πn+k(X
• ∧MO(k)) πn+k(Th(ξk(X))) πn+k+1(ΣTh(ξk(X)))

πn+k+1(X
• ∧MO(k + 1)) πn+k+1(Th(ξk+1(X))) πn+k+1(Th(ξk(X)⊕ R))

∼=

∼=

Σ

∼=Σk

The map Σ becomes an isomorphism for large enough k. Thus, we obtain a natural bijection P(X) :

Ln(X) → MOn(X
•) by taking the colimit.

Proof of Theorem 4.2. We define T (X) := P(X) ◦ Π(X)−1 : Nn(X) → MOn(X
•). This is a natural

bijection. It is left to show that T (X) preserves the group structure. This is a similar argument as

we have seen in Remark 2.9. We are slightly more precise. Given [Mi, fi] ∈ Nn(X), we can smoothly

embed M0 → {x ∈ Rn+k : xn+k < 0}, and M1 → {x ∈ Rn+k : xn+k > 0}. Furthermore, choose

tubular neighbourhoods N(M0) ⊆ {x ∈ Rn+k : xn+k < 0}, and N(M1) ⊆ {x ∈ Rn+k : xn+k > 0}.
This is disjoint, hence it represents M0 ⨿ M1. Again, applying the Pontrjagin-Thom construction

yields a map which factors over Sn+k → Sn+k ∨ Sn+k. Restricting to each component represents

P[ji, Fi]. Here, we used the bijective relation [Mi, fi] ∼ [ji, Fi]. Note, the group structure on Nn(X)

and Ln(X) is the same.
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