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The goal of this talk is to generalize Poincaré duality to non-orientable man-
ifolds. In order to do this we will need to introduce (co-)homology with local
coefficients.

1 Local coefficients via bundles of groups

Definition 1.1. Let X be a topological space and G be a discrete group. A
bundle of groups over X with fiber G is a continuous map p : E → X s.t. for
every x ∈ X

• p−1(x) has the structure of a group;

• there are U ⊆ X open neighborhood of x and a homeomorphism h :
p−1(U) → U × G of spaces over U s.t. h|p−1(y) : p−1(y) → {y} × G is a
group homomorphism ∀y ∈ U .

Remark.

• p−1(x) ∼= G as groups. This isomorphism is non canonical, in particular
every choice of trivialization gives such an isomorphism.

• Since G is discrete E is a covering space.

• For any U ⊆ X open the set of local sections on U

Γ(U,E) = {s : U → E : p ◦ s(x) = x ∀x ∈ U}

is a group with multiplication defined pointwise. More explicitly for s, t ∈
Γ(U,E) s · t(x) := s(x)t(x), where in the right-hand side we are using the
group operation of p−1(x).

Example 1.1. The simplest example is the trivial bundle i.e. X ×G → G. By
definition every bundle is locally isomorphic to the trivial bundle.

Example 1.2. Let M be a d-manifold, let o(M) → M be the orientation
double cover with non-trivial deck transformation τ : o(M) → o(M). Define
the orientation bundle of M with fiber Z as

o(M)Z := o(M)×Z/2 Z = o(M)× Z/(x, n) ∼ (τ(x),−n).

1



Since Z/2 acts on Z by group automorphisms it can be checked that o(M)Z is
indeed a bundle of groups.

Alternatively the orientation bundle can be described as follows:

o(M)Z =
⋃

x∈M

Hd(M,M \ x;Z)

with topology induced by the basis consisting of all sets {αU |x ∀x ∈ U} where
U is any open subset of M , αU ∈ Hd(M,M \U ;Z) and αU |x denotes the image
of αU under the map in homology induced by the inclusion (M,M \ U) →
(M,M \ x).

This is, by definition, the étale space associated to the locally constat presheaf
of abelian groups

U 7→ Hd(M,M \ U ;Z).

Note that o(M) = {µx ∈ o(M)Z : µx generates the fiber over x}. From
this description it’s easy to see that an orientation on M is just a continuous
global section of o(M) → M . From this it follows that M is orientable iff
o(M) = M

∐
M iff o(M)Z = M × Z.

Definition 1.2. Let X be a topological space and E → X a bundle of abelian
groups on X. We define the chain complex of X with local coefficients in E as

Cn(X;E) :=
⊕

σ:∆n→X

Γ(∆n, σ∗E)

=

{
m∑
i=1

niσi : σi : ∆
n → X and ni : ∆

n → E lifts σi

}

with boundary given by

∂(nσ) :=

n∑
i=0

(−1)i(n ◦ δi)(σ ◦ δi)

where δi : ∆n−1 → ∆n is the inculsion onto the i-th face.

Remark.

• It can be checked, in the same way one does for singular homology, that
∂2 = 0. Therefore C∗(X;E) is indeed a chain complex. We then define
the homology of X with local coefficients in E as the homology of this
complex.

• If E = X×G is the trivial bundle then for any simplex σ : ∆n → X σ∗E =
∆n × G is again trivial and Γ(∆n, σ∗E) ∼= G, where the isomorphism
is induced by the projection σ∗E → G. So if CS

∗ (X;G) denotes the
singular chain complex of X with coefficients in G we get CS

∗ (X;G) ∼=
C∗(X;X ×G).
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• Since E is a covering space and ∆n is simply connected then by the lifting
property of covering spaces we get Γ(U,E) ∼= p−1(σ(1, 0, . . . , 0)) n 7→
n(1, 0, . . . , 0). In other words a lift of σ is determined by its value at one
point. Using this identification we could write

C(X;E) =
⊕

σ:∆n→X

p−1(σ(1, 0, . . . , 0))

in this sense the fiber over a point represents the coefficients at that point.

The issue with this definition is that when defining the boundary we need
to restrict a simplex to the 0-th face. Therefore if we used this other
definition we would need to ”transport” the coefficient in front of the
simplex from p−1(σ(1, 0, . . . , 0)) to p−1(σ(0, 1, . . . , 0)). This can be done
using systems of local coefficients.

Definition 1.3. Let X be a topological space and E → X a bundle of abelian
groups on X. We define the cochain complex of X with local coefficients in E
as

Cn(X;E) :=
∏

σ:∆n→X

Γ(∆n, σ∗E)

= {functions φ assigning to each simplex σ : ∆n → X a lift φ(σ)}

with coboundary given by δ(φ) := φ ◦ ∂.

Remark.

• Since ∂2 = 0 also δ2 = 0 therefore C∗(X;E) is a cochain complex. We de-
fine the cohomology of X with local coefficients in E to be the cohomology
of this complex

• If E = X × G as before we get Γ(∆n, σ∗E) ∼= G for any σ : ∆n → X. If
C∗

S(X;G) denotes the singular cochain complex of X with coefficients in
G we see that

Cn
S (X;G) ∼= HomSets({σ : ∆n → X}, G) ∼=

∏
σ:∆n→X

G ∼= Cn(X,X ×G).

Definition 1.4. Let p : E → X and q : F → Y be two bundles of groups. A
morphism of bundles (f̃ , f) : (E,X) → (F, Y ) is a commutative square

E F

X Y

f̃

q

f

p

s.t. f̃x : p−1(x) → q−1(f(x)) is a group homomorphism for all x ∈ X.
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Remark. A morphism of bundles of abelian groups (f̃ , f) : (E,X) → (F, Y )
induces a chain map between the respective complexes by defining

C∗(X;E) → C∗(Y ;F ) nσ 7→ (f̃ ◦ n)(f ◦ σ).

Example 1.3. Let X,Y be two spaces and G,H be two discrete abelian groups.
Suppose we have a morphism of bundles (f̃ , f) : (X ×G,X) → (Y ×H,Y ) s.t.
we can write f̃ = f × φ for some group homomorphism φ : G → H.

If we identify local homology with coefficients in the trivial bundle with
singular cohomology we see that the map induced by (f̃ , f) is

CS
∗ (X;G) ∼= C∗(X;X ×G) → C∗(Y ;Y ×H) ∼= CS

∗ (Y ;H) gσ 7→ φ(g)(f ◦ σ).

In other words not only the induced map changes space but also coefficients.
Since this is not something one usually does when working with singular homol-
ogy we will restrict our attention to bundle maps.

Definition 1.5. Let p : E → X and q : F → Y be two bundles of groups. A
bundle map (f̃ , f) : (E,X) → (F, Y ) is a morphism of bundles s.t. f̃x is a group
isomorphism for all x ∈ X.

Remark.

• If (f̃ , f) : (E,X) → (F, Y ) is a bundle map then the induced map E →
f∗F is an isomorphism of bundles over X.

• A bundle map (f̃ , f) : (E,X) → (F, Y ) between bundles of abelian groups
induces a map between local cohomology groups in the following way.
Define C∗(Y ;F ) → C∗(X;E) by φ 7→ σ × φ(f ◦ σ). Here σ × φ(f ◦ σ)
denotes the unique simplex ∆n → E s.t. the compostitions ∆n → E → X
and ∆n → E → F are σ and φ(f◦σ) respectively. We know such a simplex
exists and is unique by the universal property of the pullback bundle to
which E is isomorphic by the previous remark.

Definition 1.6. Let (X,A) be a pair of spaces and E → X be a bundle of
abelian groups. Define the relative chain complex with local coefficients in E as

C∗(X,A;E) = coker(C∗(A;E|A) → C∗(X;E))

and the relative cochain complex with local coefficients in E as

C∗(X,A;E) = ker(C∗(X;E) → C∗(A;E|A))

Theorem 1.1. Let C be the category whose objects are triples (X,A,E) where
(X,A) is a pair of spaces and E → X is a bundle of abelian groups. A morphism
in C is a pair (f̃ , f) : (X,A,E) → (Y,B, F ) where f : (X,A) → (Y,B) is a map
of pairs and (f̃ , f) : (X,E) → (Y, F ) is a bundle map.

Then (co-)homology with local coefficients is a (co-)homology theory on C.
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Remark. Given two homotopic maps f, g : X → Y and a bundle of groups
F → Y it can be shown that f∗F ∼= g∗F as bundles over X.

Since we restricted our attention to bundle maps the axiom of homotopy
invariance simply reads:

(h.i.) Given two morphisms in C (f̃i, fi) : (X,A,E) → (Y,B, F ), i = 1, 2 s.t.
f1 ≃ f2 then (f̃1, f2) and (f̃2, f2) induce the same map in (co-)homology.

2 Local coefficients via π-modules

We would like now to give a more computable description of local homology.
In this section X will be a path-connected, locally path-connected and semi-
locally simply-connected space. This assumptions ensure us that X admits a
universal cover which we will denote by p̃ : X̃ → X. Moreover we know that
there is an isomorphism π := π1(X,x0) ∼= G(X̃), where G(X̃) is the group
of deck transformations of p̃. In particular π acts on the universal cover via
homeomorphisms therefore π acts on CS

∗ (X̃;Z) via chain maps making it into
a complex of Z[π]-modules.

Remark. To be precise the isomorphism π ∼= G(X̃) depends on the choice of
base-point x̃0 ∈ p̃−1(x0). Under our assumptions we know that the universal
cover can be described as the set of homotopy classes of paths in X starting
from x0. This means that we have a preferred choice of base-point, namely the
identity element of π = p̃−1(x0). We then chose the isomorphism given by this
preferred base-point.

The following proposition tries to explain why there are so many equivalent
constructions of local homology.

Proposition 2.1. The following categories are equivalent

1. the functor category [Π1(X),Sets];

2. the category of left π-sets;

3. the category of covering spaces over X;

4. the category of locally constant sheaves on X.

Proof.

1. ≃ 2. Since X is path-connected the fully faithful inclusion {x0} ↪→ Π1(X) is
an equivalence of categories. By precomposition this equivalence induces
[Π1(X),Sets] ≃ [{x0},Sets]. Here {x0} is just the group π seen as a one-
object category, therefore [{x0},Sets] ≃ π-sets.

2. ≃ 3. This is simply the classification of covering spaces over X. The two func-
tors are given by

CovX → π-sets, (C
p−→ X) → p−1(x0) + left monodromy action of π
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and

π-sets → CovX , M 7→ X̃ ×π M := X̃ ×M/(x,m) ∼ (γx̃, γm), γ ∈ π.

3. ≃ 4. This is just the restriction of a more general equivalence between étale
spaces over X and sheaves on X.

Remark. by looking at group objects in each of the above categories we obtain
equivalences between the following categories:

1. the category of systems of local coefficients on X i.e. [Π1(X),Ab];

2. the category of (left) Z[π]-modules;

3. the category of bundles of abelian groups on X;

4. the category of locally constant sheaves of abelian groups on X.

Example 2.1. Let M be a connected manifold. Under the above equivalence
the orientation bundle o(M)Z corresponds to the Z[π]-module defined by

w : π → Aut(Z) w(γ) =

{
id if γ lifts to a loop in o(M)

− id otherwise.

If w(γ) = id then we say that γ preserves the orientation.

Definition 2.1. Let M be a Z[π]-module. Define the chain complex with local
coefficients in M as

C∗(X;M) = CS
∗ (X̃)⊗Z[π] M

and the cochain complex with local coefficients in M as

C∗(X;M) = HomZ[π](C
S
∗ (X̃),M).

Define (co-)homology with local coefficients in M as the (co-)homology of
the above complex.

Remark.

• Let A,B be two left Z[π]-modules. The tensor of A and B over Z[π] can
be described as

A⊗Z[π] B = A⊗Z B/a⊗ b ∼ γa⊗ γb, γ ∈ π.

• This contruction is functorial in the following sense. Let f : X → Y be a
map of spaces, let M be a Z[π1X]-module and N a Z[π1Y ]-module. Note
that N can be made into a Z[π1X]-module by defining for γ ∈ π1X, n ∈ N
γ ·n := f∗(γ)n. Just like in the first section we restricted our attention to
bundle maps here we consider maps φ : M → N which are isomorphisms
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of Z[π1X]-modules. Given such a pair (f, φ) we can define the induced
chain maps

C∗(X;M) → C∗(Y ;N) and C∗(Y ;N) → C∗(X;M)

in the obvious way.

Proposition 2.2. Let E → X be a bundle of abelian groups with corresponding
Z[π]-module M . We have natural isomorphisms

C∗(X;E) ∼= CS
∗ (X̃;Z)⊗Z[π] M, C∗(X;E) ∼= HomZ[π](C

S
∗ (X̃;Z),M).

Proof. Recall that E ∼= X̃×πM , in particular we have a covering map X̃×M →
E which induces a surjection CS

∗ (X̃ × M ;Z) → CS
∗ (E;Z). We also have a

surjection CS
∗ (E;Z) → C∗(X;E) defined by n → n(p ◦ n), i.e. we are mapping

a simplex in E to itself in the group Γ(∆n, (p ◦n)∗E). We also have surjections

CS
∗ (X̃;Z)⊗Z Z[M ] → CS

∗ (X̃;Z)⊗Z[π] Z[M ] → CS
∗ (X̃;Z)⊗Z[π] M

where the second map is induced by the natural surjection Z[M ] → M m 7→ m.
We then get the following commutative diagram

CS
∗ (X̃ ×M ;Z) CS

∗ (E;Z) C∗(X;E)

⊕
M CS

∗ (X̃;Z)

CS
∗ (X̃;Z)⊗Z Z[M ] CS

∗ (X̃;Z)⊗Z[π] Z[M ] CS
∗ (X̃;Z)⊗Z[π] M

∼=

∼=

It can be easily checked that the kernels of the two compositions⊕
M

CS
∗ (X̃;Z) → CS

∗ (X̃ ×M ;Z) → CS
∗ (E;Z)

and ⊕
M

CS
∗ (X̃;Z) → CS

∗ (X̃;Z)⊗Z Z[M ] → CS
∗ (X̃;Z)⊗Z[π] Z[M ]

coincide. Therefore the leftmost dotted arrow exists and is an isomorphism.
Similarly for the other dotted arrow.

Since E ∼= X̃ ×π M we have Γ(∆n, σ∗E) ↔ π\Γ(∆n, σ∗(X̃ × G)) for any
σ : ∆n → X. Moreover the map

Homπ(Γ(∆
n, σ∗X̃),M) → π\Γ(∆n, σ∗(X̃ ×G)) φ 7→ [σ̃ × {φ(σ̃)}]

doesn’t depend on the choice of σ̃ ∈ Γ(∆n, σ∗X̃) and is bijective with inverse

π\Γ(∆n, σ∗(X̃ ×G)) → Homπ(Γ(∆
n, σ∗X̃),M) [σ̃ × {g}] 7→ (γσ̃ 7→ γg).
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Here we are using the fact that, since the universal cover is normal, π acts freely
and transitively on the set Γ(∆n, σ∗X̃) of lifts of σ. Therefore

HomZ[π](C
S
∗ (X̃;Z),M) ∼= Homπ({∆n → X̃},M)

∼=
∏

σ:∆n→X

Homπ(Γ(∆
n, σ∗X̃),M)

∼=
∏

σ:∆n→X

π\Γ(∆n, σ∗(X̃ ×G))

∼=
∏

σ:∆n→X

Γ(∆n, σ∗E).

Lemma 2.3. Let S be a left π-set and C free abelian over S. Let π′ ⊂ π be a
subgroup. Then C ⊗Z[π] Z[π/π′] is free abelian over π′\S.

Proof. The maps

C ⊗Z[π] Z[π/π′] → Z[π′\S] s⊗ π′ 7→ π′s for s ∈ S

and
Z[π′\S] → C ⊗Z[π] Z[π/π′] π′s → s⊗ π′

are inverses of each other.

Example 2.2. Let p′ : X ′ → X be a connected covering space with corre-
sponding subgroup π′ := p′∗(π1X

′) ⊆ π. Recall that X ′ ∼= π′\X̃ therefore
π′\{∆n → X̃} ↔ {∆n → X ′}. By the previous lemma

CS
∗ (X̃;Z)⊗Z[π] Z[π/π′] ∼= CS

∗ (X
′;Z).

Now let G be any abelian group and set G[π/π′] := Z[π/π′] ⊗Z G. Then
G[π/π′] is a Z[π]-module since Z[π/π′] is and

C(X;G[π/π′]) ∼= CS
∗ (X̃;Z)⊗Z[π] Z[π/π′]⊗Z G ∼= CS

∗ (X
′;G).

In this sense local homology already computes the homology of all connected
covering spaces.

The same is not true for local cohomology but we get the following result.

Proposition 2.4. Let X be a finite CW-complex with universal cover X̃ and
fundamental group π. Then Hn(X;Z[π]) ∼= Hn

cs(X̃,Z) for every n.

Now let X be a connected CW-complex . The universal cover admits an
induced CW-structure such that every deck transformation is cellular. Therefore
π acts on X̃ cellularly making Ccell

∗ (X̃;Z) into a complex of Z[π]-modules.

Proposition 2.5. Let X be as above and let M be a Z[π]-module. Then
Hn(X;M) ∼= Hn(Ccell

∗ (X̃;Z)⊗Z[π] M).
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Example 2.3. Let X = RPn for n ≥ 2 and let ρ : π ∼= Aut(Z). Then Zρ is
the Z[π]-module with underlying abelian group Z on which the generator g ∈ π
acts as − id. Note that if n is even then ρ = w as defined above.

The universal cover of RPn is Sn and the group of deck transformations
is {± id}. On RPn we pick the standard CW-structure with one cell in every
dimension, this lifts to the CW-structure on Sn with two cells in every dimesnion
i.e.

S0 S1 S2 . . . Sn

∗ RP1 RP2 . . . RPn

⊆

⊆

⊆

⊆

⊆

⊆ ⊆

⊆

where Si = ei+ ∪ ei−.
Let f i

± : (Di, Si−1) → (Si, Si−1) be the inclusion in the northern (respec-
tively southern) emisphere. Let [Di, Si−1] ∈ Hi(D

i, Si−1;Z) be such that
(f i

±)∗([D
i, Si−1]) = ei± ∈ Hi(S

i, Si−1). Note that (− id) ◦ f i
+ = f i

− ◦ (− id)
therefore

g · ei+ = (− id)∗(e
i
+) = (f i

−)∗(− id)∗([D
i, Si−1]) = (−1)iei−,

in particular Ccell
i (Sn;Z) is a free Z[π]-module generated by ei+.

The boundary for Ccell
∗ (Sn;Z) is given by the composition

Hi(S
i, Si−1;Z) ∂−→ Hi−1(S

i−1, ∗;Z) j∗−→ Hi−1(S
i−1, Si−2;Z).

By naturality of the long exact sequence of pairs for the map (f i
±)∗ we get

0 0 Hi(D
i, Si−1;Z) Hi−1(S

i−1, ∗;Z) 0

0 Hi(S
i, ∗;Z) Hi(S

i, Si−1;Z) Hi−1(S
i−1, ∗;Z) 0

(fi
±)∗ =

j∗ ∂

∂

Therefore ∂(ei±) = [Si−1] := ∂[Di, Si−1] and by exactness of the second row

j∗[S
i] = ei+ − ei−. Finally ∂ei+ = ei−1

+ − ei− = (1 + (−1)ig)ei+.
This means the cellular chain complex of Sn is given by

0 Z[π] . . . Z[π] Z[π] Z[π] 0
1+(−1)ng 1+g 1−g1−g

and tensoring it with Zρ gives

0 Z . . . Z Z Z 02 0 21+(−1)n+1

Note that if Zτ denotes the Z[π]-module with underlying abelian group Z on
which g acts as the identity then Ccell

∗ (Sn)⊗Z[π] Zτ = Ccell
∗ (RPn;Z).

Taking homology

Hi(RPn;Zρ) =


Z/2 if 0 ≤ i < n even

Z if i = n even

0 otherwise
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By direct comparison we see that if n is even H∗(RPn;Zw) ∼= Hn−∗(RPn;Z).

Example 2.4. Let X = K be the Klein bottle. Its universal cover is R2 with
group of deck transformations given by π = ⟨a, b|abab−1⟩ where a and b act on
R2 as

a · (x, y) = (x+ 1, y), b · (x, y) = (−x, y + 1).

w : π → Aut(Z) is given by w(a) = id, w(b) = − id.
On the Klein bottle we pick the standard CW-structure with one 0-cell, two

1-cells and one 2-cell glued along the path abab−1 (here we think of a and b
as the inclusions of the two 1-cells in the 1-skeleton of K). This lifts to the
following CW-structure on R2

Z× Z (R× Z) ∪ (Z× R) R2

∗ S1 ∨ S1 K

⊆⊆

⊆ ⊆

Since the universal cover is normal π acts freely and transitively on the set
of lifts of any given cell of K so that Ccell

n (R2) is a free Z[π]-module whose rank
is the number of n-cells of K(this is a general fact). Therefore the cellular chain
complex of R2 is

Ccell
∗ (R2) (0 Z[π] Z[π]⊕ Z[π] Z[π] 0)

f g
=

where f(1) = (1 + ba−1, a − 1), g(1, 0) = a − 1 and g(0, 1) = b − 1. Tensoring
with Zw gives

Ccell
∗ (R2)⊗Z[π] Zw (0 Z Z⊕ Z Z 0)0 (0,2)

=

Again by direct comparison we see that H∗(K;Zw) ∼= H2−∗(K;Z)

3 Twisted Poincaré duality

Let M be a d-manifold and E → M a bundle of abelian groups. We can define
an E-orientation on M in the same way we do for singular homology. Note that
the bundle o(M)E := E ⊗Z o(M)Z can be described as

o(M)E =
⋃

x∈M

Hd(M,M \ x;E)

with topology induced by the basis consisting of all sets {αU |x ∀x ∈ M} where
U is any open subset of M , αU ∈ Hd(M,M \U ;E) and αU |x denotes the image
of αU under the map in homology induced by the inclusion (M,M \ U) →
(M,M \ x). From this description it’s easy to see that an E-orientation on M
is just a continuous global section of o(M)E → M such that the image of every
point is a generator of the fiber.
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Whenever (U, h), (V, k) are charts trivializing o(M)Z the transition map

(U ∩ V )× Z → (U ∩ V )× Z

is either the identity or id×(− id). Therefore the transition maps for the bundle
o(M)Z ⊗Z o(M)Z are always the identity. This means that o(M)Z ⊗Z o(M)Z
is the trivial bundle and therefore every manifold admits a o(M)Z-orientation.
This fact is the key ingredient for the proof of twisted Poincaré duality.

For simplicity we define the cap product in local homology only for ”nice”
spaces.

Definition 3.1. Let X be a path-connected, locally path-connected and semi-
locally simply-connected space with fundamental group π. Let M and N be
Z[π]-modules. The cap product in local homology is defined as

φ ∩ (σ̃ ⊗ n) := σ̃|[n,...,n+k] ⊗ φ(σ̃|[0,...,n])⊗ n ∈ Ck(X;M ⊗Z N),

where φ ∈ Cn(X;M) and σ̃ ⊗ n ∈ Cn+k(X;M ⊗Z N).

Remark. In the same way it is done for singular homology it can be proven that
the cap product factors through homology giving a map

Hn(X;M)⊗Z Hn+k(X;N) → Hk(X;M ⊗Z N).

Theorem 3.1. Let M be a d-manifold without boundary and let E → M
be a bundle of abelian groups. Then there exists a fundamental class [M ] ∈
Hd(M ; o(M)Z) and the map

− ∩ [M ] : Hn
cs(M ;E) → Hd−n(M ;E ⊗Z o(M)Z)

is an isomorphism for every n.

Local cohomology with compact support is defined the same way as for
singular homology.

The proof is the same as for orientable manifolds and ordinary coefficients.
Indeed for the base caseM = Rn we get back the ordinary statement of Poincaré
duality since every bundle over Rn is trivial. Also the other steps of the proof
work in the same way since we know that (co-)homology with local coefficients
satisfies properies analogous to the ones of singular homology. In particular we
get excision isomorphisms and Mayer-Vietoris sequences.
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