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The standard reference is [SE]. The reference I was given is [Bre]. Other good textbook
accounts include [Hau], [FF], [MT] and [Swi].

1 Motivation
Recall that singular cohomology with coefficients in some abelian group A is representable on
nice spaces. Specifically, we have so-called Eilenberg-MacLane spaces K(A,n) which are CW
complexes whose only nontrivial homotopy group is πn(K(A,n)) ∼= A. We saw that for CW-
complexes X, there is a natural isomorphism

[X,K(A,n)] ∼= Hn(X;A), [f ] 7→ f∗(ι)

where ι ∈ Hn(K(A,n);A) is to be thought of as the ”universal n-cocycle”. So if we want to study
cohomology, it makes sense to start by studying the cohomology of these special representing
spaces. But by the Yoneda Lemma we then have a natural bijection

Hm(K(A,n);B) ∼= [K(A,n),K(B,m)]
∼= Nat([−,K(A,n)], [−,K(B,m)])
∼= Nat(Hn(−;A), Hm(−;B)),

so this leads us to studying natural transformation Hn(−;A) ⇒ Hm(−;B).

Definition 1.1. A cohomology operation Θ of type (n,m,A,B) is a natural transformation of
singular cohomology functors

Top2 Ab

Hn(−;A)

Hm(−;B)

Θ

We say Θ has degree m− n.

Note that since πk(K(A,n)) = 0 for k < n the Hurewicz and universal coefficient theorems
tell us that also Hk(K(A,n);B) = 0 for k < n. This means that cohomology operations with
negative degree are trivial.

Example 1.2. We have a SES 0 → Z/2 ·2−→ Z/4 → Z/2 → 0, which for any space-pair (X,A)
induces a LES in cohomology

· · · → Hn(X,A;Z/4) → Hn(X,A;Z/2) β−→ Hn+1(X,A;Z/2) → Hn+1(X,A;Z/4) → · · ·

where β is the connecting homomorphism, often called Bockstein-Homomorphism. This gives a
cohomology operation

β : Hn(X,A;Z/2) ⇒ Hn+1(X,A;Z/2)

Example 1.3. For n ≥ 0 the cup-square in Z/2-coefficients is a cohomology operation of degree
n:

Hn(X,A;Z/2) ⇒ H2n(X,A;Z/2), x 7→ x2 = x ∪ x.
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2 Steenrod Squares
Steenrod squares are a particular family of Cohomology operations of singular cohomology with
Z/2 coefficients. They can be seen as refinements of the cup-squaring we saw above. Although
we will not give many proofs here, we will see that Steenrod squares are interesting as they are
very useful for computations, and also since they generate all the ”nice” cohomology operations
of singular cohomology with Z/2-coefficients (see Theorem 2.15). There also exist a so-called
Steenrod powers, an analogue of the Steenrod squares for Z/p coefficients (p prime), although
these will not play a role here. From here on, unless stated otherwise, all (co)homology will be
with Z/2 coefficients.

2.1 Definitions

If x ∈ H∗(X,A) we denote by |x| ∈ N0 its degree, meaning x ∈ H |x|(X,A). When clear from
context we leave out the cup product symbol and just write xy := x ∪ y.

Definition 2.1 (Steenrod Squares). For i ≥ 0, the i-th Steenrod square Sqi denotes a collection
of cohomology operations

Sqin : Hn(X,A) ⇒ Hn+i(X,A), n ≥ 0,

often just written as
Sqi : H∗(X,A) ⇒ H∗+i(X,A),

such that the following axioms hold:

1. Sq0 = id.

2. If |x| = i, then Sqi(x) = x2 = x ∪ x.

3. If |x| < i, then Sqi(x) = 0.

4. The Cartan formula holds:

Sqk(xy) =
∑
i+j=k

Sqi(x) Sqj(y).

Theorem 2.2 ([SE, Section VIII.3]). The Steenrod squares are characterized uniquely by these
axioms.

To get a feel for what these cohomology operations look like, let us try to compute them on
1-cocycles. So let (X,A) be any space-pair and x ∈ H1(X,A). The axioms tell us that

Sq0 x = x, Sq1 x = x2 = x ∪ x Sqi x = 0, i > 1. (1)

Using this, we can use the Cartan formula to compute Sqi(xn) for all i, n ≥ 0. To make things
easier, we define

Sq :=
∞∑
i=0

Sqi .

This is well-defined by the axioms, since for any specific cohomology class y ∈ H∗(X,A), we
have Sqi(y) = 0 for |y| < i. Hence Sq is pointwise finite and can be viewed as a natural
morphism Sq : H∗(X,A) → H∗(X,A). In fact, the Cartan-formula is now equivalent to Sq
being a morphism of rings: For y, z ∈ H∗(X,A), we have

Sq(yz) =
∞∑
i=0

Sqi(yz) =
∞∑
i=0

∑
j+k=i

Sqj(y) Sqk(z) =
∞∑
j=0

∞∑
k=0

Sqj(y) Sqk(z) = Sq(y) Sq(z),
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where in the third step, we can simply reindex the sum because all occuring sums are actually
finite. Now our deduced formulas (1) yield

Sq(xn) = Sq(x)n = (x+ x2)n =
n∑
i=0

(
n

i

)
xn+i.

By gradedness, we obtain the following proposition.

Proposition 2.3. For any 1-cocycle x ∈ H1(X,A), we have

Sqi(xn) =
(
n

i

)
xn+i =

{
xn+i,

(n
i

)
≡ 1 mod 2

0,
(n
i

)
≡ 0 mod 2

∈ Hn+i(X,A).

Definition 2.4. We call a collection of cohomology operations Θ = (Θn : Hn(X,A) ⇒
Hn+i(X,A))n of degree i stable if they commute with the suspension isomorphisms:

Hn(X, ∗) Hn+1(ΣX, ∗)

Hn+i(X, ∗) Hn+i+1(ΣX, ∗)

Σ

Θ Θ

Σ

To give a nice application, we will assume for now that the Steenrod squares are stable
cohomology operations and give the proof later.

Proposition 2.5. The Steenrod squares are stable cohomology operations.

Note also that it is basically impossible to get a nice interaction of just the cup-squares with
suspension, since the cup product on a suspension space is always trivial.1

2.2 Application: The first stable stem

We now want to use Steenrod squares to prove that the first stable stem πs1 = colimn πn+1(Sn) is
Z/2 (here the colimit is taken over the suspension maps Σ : [Sn+1, Sn] → [Sn+2, Sn+1]). Recall
the Freudenthal suspension theorem: If X is well-pointed (inclusion of the point is a cofibration)
and πk(X) = 0 for k ≤ n, then the suspension morphism πk(X) → πk+1(ΣX) is an isomorphism
for k ≤ 2n and surjective for k = 2n + 1. Applying this to spheres, this tells us that we are
taking the colimit over the sequence

π2(S1) π3(S2) π4(S3) π5(S4) · · ·

0 Zη

∼=
Σ Σ

∼=
Σ

So it suffices to determine π4(S3). We know the suspension Σ : π3(S2) → π4(S3) is surjective,
and we saw in the talk on fibrations that π3(S2) = Zη is freely generated by (the class of) the
Hopf fibration η : S3 → S2. So we already know that π4(S3) is generated by (the class of) Ση.

Proposition 2.6. 0 ̸= [Ση] ∈ π4(S3).
1More generally, if X can be covered by n contractible open subsets, then the cup product of any n elements

vanishes in H∗(X).
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Proof. Note that the Hopf fibration is the attaching map used to build CP2 out of CP1 = S2,
as shown on the left below. Since suspension is a left adjoint, it commutes with colimits and we
get the pushout square on the right:

S3 S2 S4 S3

D4 CP2 D6 ΣCP2

η

⌟

Ση

⌟

Now suppose that Ση is nullhomotopic. Since pushouts along homotopic maps yield homotopy-
equivalent results (cf. [Hat, Proposition 0.18]), we obtain ΣCP2 ≃ S3 ∨ S5. But then naturality
and Corollary 2.12 give the commutative diagram

H3(S3) H3(S3 ∨ S5) H3(ΣCP2) H2(CP2)

H5(S3) H5(S3 ∨ S5) H5(ΣCP2) H4(CP2)

Sq2Sq2

pr∗

pr∗

Sq2

∼=∼=

∼=

Σ

Σ

∼=

∼=

Sq2

The UCT yields H∗(CP2) ∼= Z/2[x]/(x3) with |x| = 2, hence the right vertical Sq2 is nontrivial,
as it coincides with the cup-square on H2(CP2). But the diagram shows that it factors through
H5(S3) = 0. Contradiction.

The rest of the proof of showing that πs1 ∼= Z/2 has nothing to do with Steenrod squares,
but we give it for completeness.

Proposition 2.7. 0 = 2[Ση] ∈ π4(S3).

Proof. Viewing S3 as the unit sphere in C2, we can explicitly describe the Hopf fibration as

η : S3 → CP1, (x, y) 7→ [x : y].

This leads to the commutative diagram

S3 S3

CP2 CP2
[x:y] 7→[x,y]

(x,y) 7→(x,y)

η η

σ

τ

It is easy to deduce that σ has degree 1 / is homotopic to the identity, whereas τ has degree
-1 / is a reflection on the sphere S2 ∼= CP1, since [1 : 0] is fixed, and [x : 1] is sent to [x : 1].
Applying suspension and passing to homotopy classes we obtain

[Ση] = [Ση ◦ Σσ] = [Στ ◦ Ση] = −[Ση]

where in the last step we use that Στ is of degree −1, and we can write Σ = S1 ∧ −, so that

[Στ ◦ Ση] = [S1 ∧ (−1) ◦ S1 ∧ η] = [(−1) ∧ S2 ◦ S1 ∧ η] = [S1 ∧ η ◦ (−1) ∧ S2] = −[S1 ∧ η].

Here (−1) : S1 → S1 denotes any map of degree −1. Thus [Ση] = −[Ση], i.e. 2[Ση] = 0 ∈
π4(S3).

Corollary 2.8. The first stable stem is πs1 = colimn πn+1(Sn) ∼= π4(S3) ∼= Z/2.
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2.3 Properties of Steenrod Squares

Proposition 2.9. The first Steenrod square Sq1 : Hn(X,A) ⇒ Hn+1(X,A) agrees with the
Bockstein Homomorphism β from Example 1.2.

Proof. By the Yoneda argument in the first section, we have

Nat(Hn(−;Z/2), Hn+1(−;Z/2)) ∼= Hn+1(K(Z/2, n);Z/2).

As both the Bockstein and Sq1 are nontrivial, it suffices to show that the latter cohomology group
is just Z/2. Recall from a previous talk that we can construct K(Z/2, n) by first considering
the free resolution 0 → Z ·2−→ Z → Z/2 → 0 and constructing

Sn Sn

Dn+1 X

f

⌟

where f is some map of degree 2. This already yields πk(X) = 0 for k < n and πn(X) ∼= Z/2.
Now we kill all homotopy groups πk(X) for k ≥ n+ 1 by attaching cells of dimension ≥ n+ 2,
which results in a model of K(Z/2, n) that has only a single n+1-cell. Thus Hn+1(K(Z/2, n+1))
is either Z/2 or 0, and the existence of the Bockstein homomorphism implies it must be Z/2.

Proposition 2.10. The Cartan-formula also works for the cross-product. Specifically, for x ∈
H∗(X,A) and y ∈ H∗(Y,B)

Sqk(x× y) =
∑
i+j=k

Sqi(x) × Sqj(y) ∈ H∗(X × Y, X ×B ∪A× Y )

Proof. Recall that x× y = p∗
X(x) ∪ p∗

Y (y) where pX : X × Y → X and pY : X × Y → Y are the
projections. Using naturality and the Cartan-formula we get

Sqk(x× y) =
∑
i+j=k

Sqi(p∗
X(x)) ∪ Sqj(p∗

Y (y))

=
∑
i+j=k

p∗
X(Sqi(x)) ∪ p∗

Y (Sqj(y))

=
∑
i+j=k

Sqi(x) × Sqj(y).

Proposition 2.11 ([Bre, Proposition VI.15.2]). The Steenrod squares commute with the bound-
ary operators:

Hn(A) Hn+1(X,A)

Hn+i(A) Hn+i+1(X,A)

δ

Sqi

δ

Sqi

Proof. One can show that we can reduce to the case of the pair (A× I, A× ∂I). This involves
standard arguments of naturality, excision and homotopy invariance, so we will just assume
this here and refer the interested reader to [Bre, Proposition VI.15.2]. Now since we work with
Z/2-coefficients, the Künneth formula gives us an isomorphism

Hn(A) ⊗H0(∂I) ×−→∼= Hn(A× ∂I)
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which means that every cohomology class in Hn(A× ∂I) can be written as x× y for x ∈ Hn(A)
and y ∈ H0(∂I). Recall how the cross product interacts with the connecting homomorphism δ:

Hn(A) ⊗H0(∂I) Hn(A× ∂I)

Hn(A) ⊗H1(I, ∂I) Hn+1(A× I, A× ∂I)

id ⊗δ0

×

δn

×

So in our case we get δn(x× y) = x× δ0y ∈ Hn+1(A× I, A× ∂I). With this formula, Proposi-
tion 2.10, and the axiom that Sqi(x) = 0 for |x| < i we obtain

Sqi(δn(x× y)) = Sqi(x× δ0y)
=

∑
j+k=i

Sqj(x) × Sqk(δ0y)

= Sqi(x) × Sq0(δ0y) + Sqi−1(x) × Sq1(δ0y)︸ ︷︷ ︸
∈H2(I,∂I)=0

= Sqi(x) × δ0y

= δn+i(Sqi(x) × y)
= δn+i(Sqi(x× y))

where in the last step we used Proposition 2.10 again.

Corollary 2.12. The Steenrod squares are stable cohomology operations, so that we have
commutative diagrams

Hn(X, ∗) Hn+1(ΣX, ∗)

Hn+i(X, ∗) Hn+i+1(ΣX, ∗)

Σ

Sqi Sqi

Σ

Proof. Writing CX for the cone, recall that ΣX is (homotopy equivalent to) the cofiber CX/X
and the map q : (CX,X) → (ΣX, ∗) induces an isomorphism q∗ : Hn(ΣX, ∗) ∼= Hn(CX,X).
Now Proposition 2.11 and naturality give the commuting diagram

Hn(X, ∗) Hn+1(CX,X) Hn+1(ΣX, ∗)

Hn+i(X, ∗) Hn+i+1(CX,X) Hn+i+1(ΣX, ∗)

Sqi Sqi

δn q∗

δn+i q∗

Sqi

Σ

Σ

If we want to be very pedantic, then the above connecting homomorphism is actually the one in
the triple sequence for (CX,X, ∗), which is defined as Hn(X, ∗) inc∗

−−→ Hn(X) δn

−→ Hn+1(CX,X),
and hence also commutes with the Steenrod squares by naturality.
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Definition 2.13. The Steenrod Algebra A is the graded Z/2-algebra generated by all stable
cohomology operations under composition. Composition is defined in the obvious way: if α, β ∈
A with |α| = p and |β| = q, then

(αβ)n := αn+qβn : Hn(X,A) ⇒ Hn+p+q(X,A), n ≥ 0.

The operations of degree p are exactly those that raise the cohomology degree by p.
Remark 2.14. For any space-pair (X,A), the graded cohomology ringH∗(X,A) =

⊕∞
n=0H

n(X,A)
is canonically endowed with the structure of a graded A-module,

A ×H∗(X,A) → H∗(X,A)

where the action is just application of the cohomology operations.
Theorem 2.15 ([FF, Sections 30]). The Steenrod Algebra A is generated by the Steenrod
squares, subject to the Adem relations:

Sqa Sqb =
⌊a/2⌋∑
i=0

(
b− i− 1
a− 2i

)
Sqa+b−i Sqi, 0 < a < 2b.

Here the binomial coefficients are taken mod 2. Call a sequence of natural numbers I =
(i1, . . . , in) admissible if ij ≥ 2ij+1. Then

(SqI = Sqi1 · · · Sqin | I admissible)

forms a Z/2-Basis of the Steenrod Algebra A, called the Serre-Cartan basis.
Proposition 2.16. If i is not a power of 2, then Sqi is decomposable, meaning that we can
write it as a sum of compositions of Steenrod squares of smaller degree than i.
Proof. We can rewrite the Adem relations as(

b− 1
a

)
Sqa+b = Sqa Sqb +

⌊a/2⌋∑
i=1

(
b− i− 1
a− 2i

)
Sqa+b−i Sqi, 0 < a < 2b.

So if
(b−1
a

)
≡ 1 mod 2 then Sqa+b is decomposable. Now if i = a+b with b = 2k and a = 0 < a <

2k, then a calculation shows that indeed
(b−1
a

)
≡ 1 mod 2, see [Bre, Proposition VI.15.6].

Example 2.17. A few of the obtained Adem relations are:

Sq1 Sq2n = Sq2n+1, Sq1 Sq2n+1 = 0, Sq2 Sq2 = Sq3 Sq1, n ≥ 0.

Corollary 2.18. We have the following immediate consequences of Proposition 2.16:
1. If i is not a power of 2 and if X is a space such that Hk(X) = 0 for n < k < n + i, then

0 = Sqi : Hn(X) → Hn+i(X).

2. If x ∈ Hn(X) and x2 ̸= 0, then Sq2i(x) ̸= 0 for some i with 0 < 2i ≤ n.

3. If H∗(X) ∼= (Z/2)[x] or (Z/2)[x]/(xq) for some q > 2, then |x| is a power of 2.

4. If M2n is a closed 2n-manifold with Hi(M) = 0 for 0 < i < n and Hn(M) ∼= Z/2, then n
is a power of 2.

Corollary 2.19. If there exists a fiber bundle Sn−1 → S2n−1 f−→ Sn, then n is a power of 2.
Proof. In this case Mf is a 2n-manifold with boundary S2n−1 and hence Cf is a closed 2n-
manifold with homology as in Corollary 2.18(4.).

Adams [Ada] showed that in Corollary 2.18(3.) and hence also in the next two corollaries the
only possible powers of 2 are in fact 1,2,4 or 8. This is connected via the Hopf-invariant to the
classical problem of when Rn can be given the structure of a division algebra, where the only
possibilities are R,C, the 4-dimensional quaternions H, and the 8-dimensional octonions O.
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3 Construction of the Steenrod Squares
For some space X, let CX = C(X;Z/2) denote the singular chain complex with Z/2-coefficients,
and C∗X = Hom(CX,Z/2) the singular cochain complex with Z/2-coefficients. We follow [Swi,
Chapter 18].

Definition 3.1. A diagonal approximation is a natural chain map

∆ : C(X) → C(X) ⊗ C(X)

such that ∆0(x) = x⊗ x on 0-simplices x ∈ C0(X).

Remark 3.2.

1. Any two diagonal approximations are naturally chain-homotopic by a routine application
of the method of acyclic models.

2. Any diagonal approximation ∆ can be used to compute the cup-product via

Hp(X) ⊗Hq(X) [φ]⊗[ψ] 7→[φψ]−−−−−−−−→ Hp+q(Hom(CX ⊗ CX,Z/2)) ∆∗
−−→ Hp+q(X).

Here φ : Cp → Z/2 and ψ : Cq → Z/2 and φψ : Cp ⊗Cq → Z/2 is their pointwise product.

3. The Alexander-Whitney map is a diagonal approximation giving the usual formula for the
singular cup-product.

The existence of Steenrod squares rests on the subtle fact that while the cup product is
(graded) commutative on cohomology, on the chain-level such diagonal approximations need
not be commutative (and in fact, cannot be2) in the following sense. Consider the twist

T : CX ⊗ CX → CX ⊗ CX, a⊗ b 7→ b⊗ a.

This is a chain map (usually we would need some signs, but recall all chain complexes are
over Z/2). Now if ∆0 : CX → CX ⊗ CX is any diagonal approximation, then T∆0 is one as
well. The method of acyclic models provides a natural chain homotopy ∆1 = (∆1

n : CnX →
(CX ⊗ CX)n+1)n with

∂∆1 + ∆1∂ = T∆0 − ∆0 = (T − 1)∆0.

Similarly T∆1 need not agree with ∆1 (and in fact cannot, just as for ∆0), but the method of
acyclic models provides a natural chain homotopy ∆2 = (∆2

n : CnX → (CX ⊗ CX)n+2)n with

∂∆2 + ∆2∂ = T∆1 − ∆1.

Continuing this process by induction would be one way to prove the following proposition

Proposition 3.3 ([Swi, Proposition 18.1]). There are natural homomorphisms ∆k = (∆k
n :

CnX → (CX ⊗ CX)n+k)n of degree +k for each k ≥ 0 such that

1. ∆0 is a diagonal approximation.

2. ∂∆k+1 + ∆k+1∂ = T∆k − ∆k.

We can now define refined versions of the cup product as follows:

∪i : CpX ⊗ CqX
φ⊗ψ 7→φ·ψ−−−−−−→ Hom(CpX ⊗ CqX, Z/2) (∆i)∗

−−−→ Cp+q−i(X).

and in fact since ∆0 is a diagonal approximation ∪0 induces the usual cup product on cohomology.
The following two lemmata are just straightforward calculations.

2Were the diagonal approximations commutative, then in the construction of the Steenrod squares we could
take ∆1 = 0 and the following development would be trivial, implying that Sqi(x) = 0 for |x| ≠ i. As this is not
the case, diagonal approximations cannot be commutative on the nose.
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Lemma 3.4. In the above setting, we have
1. ∪i is natural, meaning f∗(c ∪i d) = f∗c ∪i f∗d for any map f : X → Y and c, d ∈ C∗Y .

2. ∪i is bilinear, meaning (c1 + c2) ∪i (d1 + d2) = c1 ∪i d1 + c1 ∪i d2 + c2 ∪i d1 + c2 ∪i d2.

3. For c ∈ CnX and d ∈ CmX we have

δ(c ∪i d) = δc ∪i d+ c ∪i δd+ c ∪i−1 d+ d ∪i−1 c

Proof. The first two statements are clear. For (3.), if a ∈ CX, then

δ(c ∪i d)(a) = (c · d)(∆i∂a)
= (c · d)([(T − 1)∆i−1 − ∂∆i]a)
= (d · c)(∆i−1a) − (c · d)(∆i−1a) − δ(c · d)(∆ia)
= (d ∪i c)(a) − (c ∪i d)(a) − δ(c · d)(∆ia)
= (d ∪i c− c ∪i d)(a) − (δc · d+ c · δd)(∆ia)
= (d ∪i c− c ∪i d− δc ∪i d− c ∪i δd)(a)
= (d ∪i c+ c ∪i d+ δc ∪i d+ c ∪i δd)(a).

where in the last line we use that we are working in Z/2 coefficients.

We can now define

Sqin : CnX ⇒ Cn+iX, x 7→
{
x ∪n−i x, i ≤ n

0, i > n.

Lemma 3.5. In the above setting, we have that
1. Sqi is natural in that f∗ Sqi x = Sqi f∗x. In particular, if x ∈ C∗X vanishes on C∗A for
A ⊆ X, then so does Sqi x, and hence Sqi : C∗(X,A) ⇒ C∗+i(X,A) is well-defined.

2. Sqi sends cocycles to cocycles, and coboundaries to coboundaries.

3. Sqi(x+ y) = Sqi x+ Sqi y + δ(x ∪n−i+1 y) for cocycles x, y ∈ C∗X.
Proof. Again the first statement is clear from the definition. Suppose δc = 0. Then

δ Sqi c = δ(c ∪n−i c) = δc ∪n−i c+ c ∪n−i δc+ 2(c ∪n−i−1 c) = 0.

If c = δd, then

δ[d ∪n−i +d ∪n−i−1 d] = δd ∪n−i c+ d ∪n−i δc+ d ∪n−i−1 c+ c ∪n−i−1 d

+ δd ∪n−i−1 d+ d ∪n−i−1 δd+ 2(d ∪n−i−2 d)
= δd ∪n−i c+ d ∪n−i δδc+ 2(d ∪n−i−1 c+ c ∪n−i−1 d+ d ∪n−i−2 d)
= c ∪n−i c

= Sqi c.

Lastly, let x, y ∈ Cn(X) by cocycles. The additivity is obvious for n < i. Otherwise

δ(x ∪n−i+1 y) = δx ∪n−i+1 y + x ∪n−i+1 δy + x ∪n−i y + y ∪n−i x

= x ∪n−i y + y ∪n−i x.

Hence

Sqi(x+ y) = (x+ y) ∪n−i (x+ y)
= x ∪n−i x+ x ∪n−i y + y ∪n−i x+ y ∪n−i y

= Sqi x+ Sqi y + δ(x ∪n−i+1 y).
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Overall, the above Lemma shows that Sqi induces natural homomorphisms on cohomology

Sqi : Hn(X,A) ⇒ Hn+i(X,A)

for all n ≥ 0 and (X,A). Note that by construction we already have Sqi(x) = x2 for |x| = i and
Sqi(x) = 0 for |x| < i. For the other two axioms, we refer to [Swi] or [Bre].

Proposition 3.6 ([Swi, Proposition 18.12] or [Bre, p.418-420]). The operations Sqi satisfy the
axioms from Definition 2.1.
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