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As we saw on last week’s talk, we can realize any cohomology theory as homotopy classes
of maps from a space into an Ω-spectrum.

Question 0.1. Can we construct homology theories via homotopy groups/classes?

Question 0.2. If true, do they resemble in any way ordinary homology?

Question 0.3. If true, does every homology theory come from such a construction?

In this talk we will try to give a positive answer to these questions. For that, we will
define the notions of stable homotopy groups and spectra, taking particular interest of
those arising from Eilenberg-McLane spaces.

1. Preliminaries

In this introductory section we will state some definitions and results that will be used
throughout the rest of the talk.

Fact 1.1. Let X be a n-connected CW-complex. Then the suspension map πi(X) →
πi+1(SX) is an isomorphism for i < 2n+ 1. In particular, SX is (n+ 1)-connected.

Hence, for any CW-complex X, regardless of its connectivity, the sequence

πi(X) −→ πi+1(SX) −→ πi+2(S
2X) −→ . . .

stabilizes.

Definition 1.2. Let X be a CW-complex. We define its i-th stable homotopy group
πs
i (X) to be the resulting group in the above sequence.

Remark 1.3. For any CW-complex X, its suspension SX and reduced suspension ΣX
are homotopy equivalent. Thus, we can reformulate the definition of stable homotopy
groups in terms of the sequence
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πi(X) −→ πi+1(ΣX) −→ πi+2(Σ
2X) −→ . . .

which is equivalent to the original one.

Definition 1.4. A reduced homology theory on the category C of basepointed CW-
complexes and basepoint-preserving maps is a sequence of functors hn : C → Ab such
that the following properties hold:

(1) (Homotopy invariance) If f ≃ g : X → Y , then f∗ = g∗ : hn(X) → hn(Y ).

(2) (Exactness) For any A ⊂ X, the sequence hn(A) → hn(X) → hn(X/A) is exact.

(3) (Wedge sum) For any collection (Xi)i of objects in C, the product map induces
an isomorphism

⊕
hn(Xi) → hn(

∨
iXi), where

∨
iXi denotes the wedge sum of

spaces and these maps are induced by the inclusions Xi →
∨

iXi.

(4) (Suspension isomorphism) For any object X of C, there is a natural isomorphism
hn(X) ∼= hn+1(ΣX).

Notice that this is equivalent to the definition given for a reduced cohomology theory
on the same category. One can check, by the same arguments, that this definition agrees
with the usual one of a reduced homology theory.

In the later parts of the talk, we will use the following result that will guarantee us that
a certain homology theory that we will introduce is actually ordinary homology.

Fact 1.5. Let h∗ be an (reduced) homology theory on the category of CW-pairs such
that hn(S

0) = 0 for n ̸= 0. Then, for all CW-pairs (X,A) there is an isomorphism

hn(X,A) ∼= H̃n(X,A, h0(S
0)) for all n ∈ N.

2. Stable homotopy theory

We saw in one of the first talks of the seminar that we can get reduced cohomology
theory from homotopy classes of spaces into Ω-spectra. In this section, we will prove
that we can also obtain an homology theory defined through homotopy groups.

Theorem 2.1. The sequence hi(X) = πs
i (X) forms a reduced homology theory on the

category of basepointed CW-complexes and basepoint-preserving maps.

Proof. (1) is inmediate.

(2) For A ⊂ X, we know that there is an exact sequence πn(A) → πn(X) → πn(X,A). By
proposition 4.28 of Hatcher, there is an isomorphism πn(X,A) → πn(X/A) for n ≤ r+ s
whenX is r-connected and A is s-connected. By taking as many suspensions as necessary,
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this connectivity assumptions will be reached eventually. Thus, this gives exactness of
πs
n(A) → πs

n(X) → πs
n(X/A).

(3) We can restrict ourselves to the case in which we have a finite wedge sum. Indeed,
maps from compact spaces into CW-complexes factor through finite subcomplexes. Thus,
as homotopy groups come from maps from spheres, which are compact, checking the
axiom for finite sums suffices.

Moreover, if we suppose to have a finite wedge sum, we can restrict ourselves to the two
summands case by induction. In this case, we note that, given two complexes X and Y ,
ΣiX ∨ΣiY is the 2i− 1 skeleton of ΣiX ×ΣiY (Think of X = Y = S0 and the resulting
torus). Thus, for n+ i < 2i−1 or i > n+1, we have an isomorphism πn+i(Σ

iX ∨ΣiY ) ∼=
πn+i(Σ

iX ×ΣiY ). We know that the latter is isomorphic to πn+i(Σ
iX)⊕πn+i(Σ

iY ). As
we take the limit on i, we finally obtain the desired result.

(4) Note that the sequences for πs
i (X) and πs

i+1(ΣX) turn out to be the same after the
term πi+1(ΣX). Thus their stable homotopy groups are the same and we get the desired
isomorphism.

The coefficients of this homology theory are given by hn(S
0) = πs

n(S
0), which do not

vanish for n ̸= 0. For example, πs
1(S

0) = Z2.

We can actually generalize this homology theory via the smash product. Recall that the
smash product of two spaces X and Y is defined to be X ∧ Y := X × Y/X ∨ Y . During
the rest of the talk, we will be using the following properties of the smash product.

Fact 2.2. Let X and K be CW-complexes.

i) Σk(X) ∼= X ∧ Sk.

ii) Σ(X ∧K) ∼= (ΣX) ∧K ∼= S1 ∧X ∧K.

iii) (X ∧K)/(A ∧K) ∼= (X/A) ∧K.

iv) For any collection {Xi} of CW-complexes, (
∨

iXi) ∧K =
∨

i(Xi ∧K)

Corollary 2.3. Let K be a CW-complex. The sequence hi(X) = πs
i (X ∧ K) forms a

reduced homology theory on the category of basepointed CW-complexes and basepoint-
preserving maps.

Proof. All the axioms follow either trivially or combining the previous theorem with Fact
2.2.

Remark 2.4. The coefficients of this homology theory are given by hn(S
0) = πs

n(S
0 ∧

K) ∼= πs
n(K). By Fact 1.5, it suffices that these groups vanish for n ̸= 0 to see that this

homology theory agrees with the ordinary one. So, by giving the complex K a certain
structure, one could give a positive answer to Question 0.2. There is where spectra come
into play.
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3. Spectra and Homology theories

Definition 3.1. i) A sequence of pointed CW-complexes K = {Kn}n is said to be
a spectrum if there is a sequence of basepoint-preserving maps ΣKn → Kn+1 for
all n

ii) Given a CW complex X, a suspension spectrum is a spectrum where each Kn is
given by ΣnX, and the maps ΣKn → Kn+1 by the identity map.

Remark 3.2. i) Note this is an immediate generalization of a Ω-spectrum, where
the maps ΣKn → Kn+1 come from homotopy equivalences Kn → ΩKn+1.

ii) If K is a spectrum such that each Kn = K(G,n) for a group G, K is called the
Eilenberg-MacLane spectrum.

Recall the following: Let {Gi}i be a directed system of groups such that for every i ≤ j
there is a homomorphism fij : Gi → Gj that respects compositions, with fii = id for
every i. The direct limit lim−→(Gi) is defined to be the quotient of

⊕
iGi by the subgroup

generated by all elements of the form a − fij(a), for a ∈ Gi, j ≥ i. This object can be
defined in a larger generality via an universal property over a directed systems of objects
and morphisms in any category.

Fact 3.3. Direct limits preserve exact sequences and isomorphisms.

Definition 3.4. Let K be a spectrum. We define its i-th homotopy group πi(K) =
lim−→πi+n(Kn), where the direct limit is given via the following maps

πi+n(Kn)
Σ−→ πi+n+1(ΣKn) −→ πi+n+1(Kn+1)

where the last map is induced by the map ΣKn → Kn+1 that the spectrum structure
gives by definition. Note that we use the same notation for homotopy groups of spectra
and spaces. It should still be clear from context to what homotopy we are referring to.

Remark 3.5. i) Suppose K is the suspension spectrum of a CW-complex X. Then,
by definition, πi(K) = πs

i (X).

ii) LetK be an arbitrary spectrum. Consider the composition πi+n(Kn) → πi+n+j(Kn+j).
This factors through πi+n+j(Σ

jKn), as we will see in a picture during the talk.
Thus, we have that πi(K) = lim−→πs

i+n(Kn).

This view of spectra homotopy groups as stable homotopy groups will allow us to use
our previous results to prove our final theorem. Let us first define how to construct a
new spectrum from a given one and another CW-complex via the smash product.
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Remark 3.6. Given a spectrum K and a CW-complex X, we can construct a new
spectrum X ∧K by putting (X ∧K)n = X ∧Kn, with the maps given by Σ(X ∧Kn) =
X ∧ ΣKn → X ∧ Kn+1, with this last map given by the one the spectra K gives by
definition.

Theorem 3.7. i) Let K be a spectrum. The sequence hi(X) = πi(X ∧ K) forms a
reduced homology theory on the category of pointed CW-complexes with basepoint-
preserving maps.

ii) If K is the Eilenberg-MacLane spectrum, this homology theory agrees with ordinary
homology.

Proof. i) follows from the fact that direct limits preserve exact sequences and iso-
morphisms. Hence, the arguments of Corollary 2.3 still work in this setting.

For ii), let’s look at the coefficients of this homology theory. hi(S
0) = lim−→πs

i+n(K(G,n)),
which by definition turn out to be 0 unless i = 0. By Fact 1.5, we obtain the result.

As we saw for cohomology in the last talk, it is natural to ask if every homology theory
comes from a spectrum. This happens to be true if we replace the wedge sum axiom by
the Direct limit axiom, that states that for any CW-complex X, there is an isomorphism
hi(X) ∼= lim−→hi(Xj), where {Xj}j is the set of finite subcomplexes of X.
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