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The goal of this talk is to discuss abstract duality in the context of spectra. The
homology and cohomology theories given by a spectrum then can be related using
the dual of a spectrum. And as an application, we get an analogon for Brown’s
representability theorem for homology theories, at least if we restrict our attention
to finite CW-complexes.

To set the stage for this abstract duality, we need to construct a version of the
stable homotopy category.

1. A construction for the stable homotopy category

The construction below almost certainly will appear somewhat arbitrary. Still,
the construction turns out to satisfy an important universal property.

A morphism of spectra f : E → F is called a stable equivalence if the induced
maps on stable homotopy groups πk(f) : πk(E)→ πk(F ) are all isomorphisms.

The stable homotopy category SH has a natural functor Q : Sp → SH which
is (in some sense) universal among the functors sending stable equivalences to iso-
morphisms. So we think of SH as a category in which we have made the stable
equivalences into isomorphisms, universally.

Let’s start with some preliminaries. Let X be a CW-complex with n-cells αn
i .

Then the n-cells of S1 ×X are of either of the following forms:

• Dn
i

(∗,αn
i )−−−−→ S1 ×X

• Dn
∼=−→ D1 ×Dn−1 β×αn−1

i−−−−−→ S1 ×X,
where β denotes the 1-cell for S1. Thus the space ∗ ×X ∪ S1 × ∗ is a subcomplex
of S1 × X. Quotienting this space out yields a CW-structure on the (reduced)
suspension ΣX, whose (n + 1)-cells are precisely the n-cells of X (except for the
basepoint) and with precisely one 0-cell.

Definition 1.1. A CW-spectrum is a (sequential) spectrum E such that all
En carry CW-complex structure and the structure maps

ΣEn → En+1

are subcomplex inclusions.
Now, by the previous discussion, the (non-basepoint) k-cells in En give us

(k + 1)-cells in En+1. Call such a non-basepoint k-cell of En a stable (k − n)-cell.
We consider two stable m-cells to be equal, if their suspensions eventually agree.
Notice that we can have negative stable cells. A CW-spectrum will be called finite,
if it has a finite number of stable cells.

Morphisms in our stable homotopy category are somewhat more involved. We
work towards a definition.

Definition 1.2. Let E, F be CW-spectra.
1
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• A morphism of spectra ι : E → F is a CW-subspectrum if ι is levelwise a
subcomplex inclusion.

• A CW-subspectrum E′ ⊂ E is called cofinal if for each k-cell ek of En,
there is an l such that the corresponding (k+ l)-cell of El+n is already in
E.

Think of a cofinal E′ ⊂ E as a spectrum containing all the cells of E, but
possibly only on higher levels.

Definition 1.3. A eventually-defined map of CW-spectra from E to F is a
pair (X, f), where X is a cofinal X ⊂ E and f is a morphism of spectra X → F .

We consider eventually-defined maps of CW-spectra up to equivalence relation.
Two maps (X, f), (Y, g) are equivalent, if there is a cofinal Z ⊂ X,Y such that
f |Z = g|Z .

Given two eventually-defined maps of CW-spectra (X, f) : E → F , (Y, g) : F →
G, we wish to compose them. One can show that the preimage f−1(Y ) contains a
cofinal spectrum Z (8.13 in [1]). This means we can define the composition of the
two maps of spectra as (Z, g ◦ f |Z).

Now we are ready to construct the stable homotopy category.

Definition 1.4. Let E, F be CW-spectra.
• Let f , g be eventually-defined maps E → F . A homotopy from f to g

is an eventually-defined map H : X ∧ I+ → Y such that H ◦ ι0 = f and
H ◦ ι1 = g.

• Define [E,F ] to be the set of eventually-defined maps E → F up to
eventually-defined homotopy. Define the stable homotopy category SH to
have CW-spectra as objects and homotopy classes of eventually-defined
maps as morphisms.

The full subcategory of spectra spanned by the CW-spectra SpCW has a canon-
ical functor Q : SpCW → SH. By a version of the Whitehead theorem for spectra
([1], Corollary 8.24), it turns out to send stable equivalences to isomorphisms. It
even satisfies the universal property informally discussed in the beginning.1 Ev-
ery functor F : SpCW → SH sending stable equivalences to isomorphisms factors
uniquely through Q, i.e.

Sp C

SHCW

Q ∃!

F

.

We continue by discussing the properties of spectra that we need.
Define the shift functor sh : Sp→ Sp by (shE)n := En+1. Similarly, sh shifts

the structure maps and is defined on morphisms by shifting.

Proposition 1.5. Let E be a CW-spectrum. The suspension ΣE := E ∧ S1 is
naturally isomorphic to the shift shE in the stable homotopy category.

Proof. [1], Theorem 8.26. □

1In the beginning, we did not restrict to CW-spectra, but here our claim uses SpCW instead
of Sp. One can also use Sp if one is willing to approximate by CW-spectra before applying Q,
but then one has to state the universal property slightly differently. Essentially the question is
whether one wants the localization of a category to be determined up to isomorphism or only up
to equivalence.
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Proving this fact is not hard, but surprisingly not obvious. The morphism
E ∧ S1 → shE defined by twisting and using the structure map is not a morphism
of spectra, so one has to find a workaround. If instead we were using a more
structured version of spectra, like orthogonal or symmetric spectra, we could define
such a morphism.

Let E be a spectrum. Define another shift functor sh−1(E) to be ∗ on the 0th
level and En on the (n+1)st level. The 0th structure map is the unique map and
the other structure maps are similarly shifted. Moreover we can make sh−1 into
a functor. We can use sh−1 : SH → SH to define an inverse to sh : SH → SH.
Thus, the suspension functor Σ has an inverse Σ−1.

Finally we can use this fact to prove that the [E,F ] have abelian group struc-
ture, for two CW-spectra E,F . By the above remarks,

[E,F ] ∼= [Σ2E,Σ2F ] ∼= [E ∧ S2, F ∧ S2].

Notice that the pinch map ρ : S2 → S2 ∨ S2 gives us a ’diagonal’

∆ : E ∧ S2 E∧ρ−−−→ E ∧ (S2 ∨ S2) ∼= (E ∧ S2) ∨ (E ∨ S2).

giving us with a way to add f, g : [E ∧ S2, F ∧ S2] by setting
f + g := (f ∨ g) ◦∆,

where f ∨ g ∈ [(E ∧S2)∨ (E ∧S2), F ∧S2] is induced by the universal property
of the wedge sum.

One can now show analogously to how it was done for higher homotopy groups,
that this yields an abelian group structure on [E,F ].

2. E-Homology and E-cohomology

For a CW-spectrum E, we can now define E-homology and E-cohomology.

Definition 2.1. Let X be a CW-spectrum. Define the k-th E-homology of X
as the abelian group

Ek(X) := [Σk S, E ∧X]

and the k-th E-cohomology of X as the abelian group
Ek(X) := [Σ−kΣ∞X,E].

Also define the suspension isomorphisms in the obvious way.

In can be checked that these actually form (co-)homology theories on SH (see
8.40. in [1]).

These formulas for E-homology and E-cohomology can be rewritten to a more
familiar form.

Proposition 2.2. Let E be a CW-spectrum and let X be a CW-complex. We
have an isomorphisms

• Ek(Σ
∞X) ∼= πk(E ∧X)

• Ek(Σ∞X) ∼= [X,Ek] if E is an Ω-spectrum.

Proof. We prove the first part by showing that for every spectrum F , we have
(2.1) [S, F ] ∼= π0(F ).

Notice that the cofinal subspectra of S are the spectra sh−kΣ∞Sk. Also notice that
a map f : sh−kΣ∞Sk → F is given uniquely by it’s kth level fk : Sk → Fk, since
we have fk+1 = σF (Σfk).

So define the map
[S, F ]→ π0(F )

by sending the class of f : sh−kΣ∞Sk → F to [fk].
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By the formula fk+1 = σF (Σfk), we have that two eventually-defined maps are
sent to the same class in the stable homotopy group.

To see that the map is also well-defined on homotopy classes, let H : sh−kΣ∞Sk∧
I+ → F be a homotopy. This now restricts to a (based) homotopy on the kth level,
as required.

The map is also a group homomorphism. So let f, g : sh−kΣ∞Sk → F represent
two classes. Then

(f + g)k = ((f ∨ g) ◦∆)k

= (fk ∨ gk) ◦ ρ
= fk + gk.

Surjectivity is clear. For injectivity, let f : sh−kΣ∞Sk → F represent a class
such that [fk] = 0 in the stable homotopy group. This implies that we have a
homotopy H : Sl+k ∧ I+ → Fl+k between σl

F (Σ
lfk) and the constant map. This

extends to a homotopy
sh−(l+k)Σ∞Sl+k ∧ I+ → F,

as desired.
Now 2.1 can be used to show the formula for E-homology.
The second part is an exercise for the reader :). It can also be found as theorem

8.42. in [1]. □

3. Abstract duality

In order to define duality abstractly in SH, we need to assume the existence
of a well-behaved smash product. This means that we require (SH,∧, S) to form
a symmetric monoidal category, although the reader only needs to know that we
require that we have natural isomorphisms

X ∧ S ∼= X,

(X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

X ∧ Y ∼= Y ∧X

for CW-spectra X, Y and Z.
We will also require the smash product to be compatible with suspension, i.e.

for CW-spectra X and Y :
(ΣX) ∧ Y ∼= Σ(X ∧ Y ) ∼= X ∧ ΣY

Since Σ is invertible, one also gets
(Σ−1X) ∧ Y ∼= Σ−1(X ∧ Y ) ∼= X ∧ Σ−1Y,

which one can see by applying Σ to the whole equation. It now follows that
(ΣkX) ∧ Y ∼= Σk(X ∧ Y ) ∼= X ∧ ΣkY,

for k ∈ Z.
We will also need the symmetric monoidal closed structure on SH. This means

that we have a bifunctor F that is contravariant in its first argument and con-
travariant in its second argument such that we have a natural isomorphism

[X ∧ Y, Z] ∼= [X,F (Y, Z)]

for CW-spectra X,Y and Z. Think of F (X,Y ) as the spectrum of maps from
X to Y .

The construction of the smash product in Switzer ([1] page 254) is quite in-
volved and the construction only yields a symmetric monoidal category after passing
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to the stable homotopy category. It does not seem to be possible to give a direct
construction of a symmetric monoidal smash product on the category of spectra.
However, symmetric and orthogonal were designed to fix this deficiency and have a
relatively simple construction for the smash product, while still yielding the usual
stable homotopy category.

Definition 3.1. A dual of a CW-spectrum X is a CW-spectrum Y equipped
with maps ϵ : X ∧ Y → S and η : S→ Y ∧X such that the following compositions
yield the canonical morphisms:

S∧Y Y ∧X ∧ Y

Y ∧ S

η∧Y

Y ∧ϵ

X ∧ S X ∧ Y ∧X

S∧X

X∧η

ϵ∧X

For a dual Y of X, we get an adjunction ∧X ⊢ ∧Y . By uniqueness of adjoints,
we get

Z ∧ Y ∼= F (X,Z)

for all CW-spectra Z and in fact such an isomorphism that is natural in Z is
equivalent to Y being a dual for X.

In particular, we get Y ∼= F (X, S). It follows that the dual of X is unique, so
if X has a dual, we write DX := F (X, S) for this unique dual. This formula also
lets us make D into a functor by using the contravariant functor structure of F .

Notice that if we have maps ϵ : X ∧DX → S and η : S→ DX ∧X, we can use
the twist to get maps ϵ′ : DX∧X → S and η′ : X∧DX → S. The reader can check
that these prove that X is a dual of DX. Thus we get the formula D2X ∼= X.

Why do we care about duals? It turns out that the homology of the dual is
intimately related to the cohomology of the original space.

Theorem 3.2. Let E be a spectrum. Then we have
Ek(DX) ∼= E−k(X)

for all CW-spectra X.
Proof.

Ek(DX) = [Σk S, E ∧DX]

∼= [ΣkX,E]

= E−k(X)

□
Example 3.3. Define Sp := shp S to be the p-dimensional sphere, for p ∈ Z.

For p ≥ 0 , we get Sp ∼= Σ∞Sp.
Now notice that for p ∈ Z, we get

X ∧ Sp ∼= X ∧ Σp S
∼= ΣpX ∧ S
∼= ΣpX.

Since Σp and Σ−p are inverses to each other, they can be made into an adjunc-
tion Σp ⊢ Σ−p. It follows that ∧ Sp ⊢ ∧ S−p and thus D Sp ∼= S−p.



6 ADRIAN MARTI

Duals of suspensions can be easily computed:
Proposition 3.4. For a dualizable CW-spectrum X, we have a dual DΣpX ∼=

Σ−pDX.
Proof. Notice that the adjunctions ∧X ⊢ ∧DX and Σp ⊢ Σ−p compose to one

adjunction with left adjoint Σp(−∧X) ∼= ∧ΣpX and right adjoint (Σ−p−)∧DX ∼=
∧Σ−pDX. The claim follows. □

Proposition 3.5. For dualizable CW-spectra X1, · · ·Xn, we have a dual D
∨
Xi
∼=∨

DXi.
Proof. One can directly check that one has an adjunction ∧

∨
Xi ⊢ ∧

∨
DXi.

[Y ∧
∨

Xi, Z] ∼= [
∨

(Y ∧Xi), Z]

∼=
∏

[Y ∧Xi, Z]

∼=
∏

[Y, Z ∧DXi]

∼= [Y,
∨

(Z ∧DXi)]

∼= [Y, Z ∧
∨

DXi]

Notice that we used that finite products are finite coproducts in SH. One can
show that the canonical morphism of spectra from the coproduct to the product is
a stable equivalence to show that. Also, the smash product distributes over wedges
since it is left-adjoint. □

Theorem 3.6. Let f : X → Y be a morphism between dualizable CW-spectra.
Then we can give the dual of the cofiber of f by D(Cf) ∼= Σ−1C(Df). Moreover
the dual of a cofiber sequence X → Y → Z is a cofiber sequence DX ←− DY ←− DZ.

Proof. For this proof we use that SH is a triangulated category. We will also
use that the smash product ∧ and the hom-spectrum F preserve exact triangles
(i.e. 3.19. in [2]).

So notice that we have exact triangles X → Y → Cf and C(Df) ←− DX ←−
DY . By suitably rotating, we get a diagram

F (X,W ) F (Y,W ) F (Cf,W ) ΣF (ΣX,W )

W ∧DX W ∧DY W ∧ Σ−1CDf ΣW ∧ Σ−1DX

∼= ∼= ∼=∃

which lets us see that we have a morphism F (Cf,W ) → W ∧ Σ−1C(Df). By
applying [Z,−] to the whole diagram and using the 5-lemma, we see that this map
even induces an isomorphism [Z,F (Cf,W )] ∼= [Z,W ∧Σ−1CDf ]. It finally follows
that

[Z ∧W,Cf ] ∼= [Z,W ∧ Σ−1CDf ],

proving the claim2.
To see that duals preserve cofiber sequences, look at the triangle

DX ←− DY ←− Σ−1C(Df) ∼= DCf.

□
Finally, we get some payoff for our hard labour.
Theorem 3.7. Every finite CW-spectrum has a dual.
2Naturality in W follows from the fact that this map commutes with certain other maps

when applying [Z,−] to the whole diagram above.
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Proof. Let X be a finite CW-complex. Recall that taking the cofiber of the
cell attachments f :

∨
Sn → X(n) gives us X(n+1). Thus, since wedge sums and

cofibers preserve dualizability, the spectrum Σ∞X has a dual.
Now notice that every finite CW-spectrum X has a cofinal subspectrum of

the form sh−kΣ∞X ′ for a finite CW-complex X ′ for 0 ≤ k. Thus in SH we get
X ∼= Σ−kΣ∞X ′. Thus by our compatibility with suspensions, we get our claim for
all finite CW-spectra. □

We wish to prove an analogous result to Brown representability for homology
theories. Let H denote the homotopy category of CW-complexes, i.e. maps are
continuous functions up to homotopy. Let Hfin denote the full subcategory given
by the finite CW-complexes and let SHfin be the full subcategory of SH given by
the finite CW-spectra.

Theorem 3.8. Let h∗ : Hfin → Ab be a homology theory. Then there exists a
CW-spectrum E such that h∗ ∼= E∗.

Proof. First, we extend h∗ to a homology theory on SH by setting
hn(E) := colimkhk+n(Ek)

for any CW-spectrum E.
Clearly the colimit of the suspension isomorphisms gives a valid suspension

isomorphism again. To see that hn actually defines a functor on SH, we need to
show it sends stable equivalences to isomorphisms. By the Freundenthal suspension
theorem, a stable equivalence between CW-complexes f : Σ∞X → Σ∞Y is a weak
equivalence for k > n for some n. Thus, we get that on the colimits, f also induces
an isomorphism hn(Σ

∞X) → hn(Σ
∞Y ). The suspension isomorphism gives us

that hn sends all stable equivalences to isomorphisms. This proves that hn actually
factors through SH.

Since coproducts commute with colimits, the wedge axiom holds.
For exactness, let f : X → Y be a map and Cf its cofiber. Levelwise, we get

exact sequences
hk+n(Xk)→ hk+n(Yk)→ hk+n(Cfk).

Since filtered colimits preserve exact sequences, the exactness axiom also holds.
Now we define a cohomology theory on SHfin we wish to represent:

hn(X) := h−n(DX)

We check the axioms for generalized cohomology. First, the suspension isomor-
phism:

hn+1(ΣX) ∼= h−(n+1)(DΣX)

∼= h−(n+1)(Σ
−1DX)

∼= h−n(DX)

∼= hn(X)

Now the wedge axiom holds since all interesting wedge sums are finite and
finite wedge sums commute with duals. The dual of a cofiber sequence is a cofiber
sequence, which yields the correct exact sequence in homology.

Thus, Brown’s representability theorem yields a spectrum E such that hn(Σ∞X) ∼=
En(Σ∞X) for all finite CW-complexes X.3

Since every for CW-spectrum X we have a CW-complex X ′ such that X ∼=
ΣkΣ∞X ′, the cohomology of X is uniquely determined by the cohomology of X ′.

3This really only should work if the domain of the cohomology theory are all CW-complexes,
but the way [3] proves this by first constructing a π∗ universal CW-complex, makes it obvious
that the statement we need also holds.
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Therefore two cohomology theories that are the same on Sfin are also the same on
SHfin.

Using this, we get that hn(X) ∼= En(X) for all CW-spectra X. Finally, we can
compute

hn(X) ∼= hn(D
2X)

∼= h−n(DX)

∼= E−n(DX)

∼= En(X),

as desired. □
Example 3.9. We can embed every smooth n-manifold X into an Rm. Let

NXRm denote the normal bundle of X in Rm. One can show (using Alexander
duality, see [1] 14.43.) that we have a dual DX+

∼= Σ−mTh(NXRm). For a CW-
spectrum E this implies that

Ek(X+) ∼= E−k(Σ−mTh(NXRm)) ∼= Em−k(Th(NXRn)).

In particular, if X is orientable, we can use the Thom isomorphism to get
Hk(X+) ∼= Em−k(Th(NXRn))

∼= Em−k−(m−n)(X+)

∼= En−k(X+)

in ordinary (co-)homology. This could be used as a proof for Poincare-duality.
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