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1 Existence and uniqueness

A Postnikov tower of a space is a decomposition into spaces where higher homotopy groups are killed. Intuitively it is
some sort of approximation of the space. The main application of Postnikov towers in this seminar is obstruction theory,
which will be discussed in talk 4 .

Definition 1.1. A Postnikov tower for a path-connected space X is a commutative diagram

...

X3

X2

X X1

such that

(P1) the map X → Xn induces an isomorphism on πi for i ≤ n.

(P2) πi(Xn) = 0 for i > n.

Example 1.2. Let X be a K(G,n) space (e.g., X = S1). Then a Postnikov tower of X consists of spaces

Xi =

{
K(G,n) if i ≥ n,

∗ else.

with maps either constant or the identity.

Proposition 1.3. Every connected CW complex has a Postnikov tower.

The following lemma will be used in the proof of the above proposition.

Lemma 1.4 (Extension lemma). Let (X,A) be a CW pair, f : A→ Y a map with Y path-connected. Assume πn−1(Y ) = 0
for all n such that X \A has cells of dimension n. Then f extends to a map X → Y .

Proof. Assume inductively that f has been extended over the (n− 1)-skeleton. Then an extension over an n-cell exists if
and only if the composition of the cell’s attaching map Sn−1 → X with f : Xn−1 → Y is nullhomotopic.

Proof. (Proposition 1.3). Let n ≥ 1 and X a connected CW complex. Construct CW complex Xn from X by first
attaching cells of dimension n+ 2 to cellular maps f : Sn+1 → X that generate πn+1(X). This makes πn+1 trivial. Next
attach cells of dimension n + 3 to cellular generators of πn+2 of the newly formed space. Continue this procedure on to
kill all higher homotopy groups.

To obtain the maps in the tower, apply the extension lemma on (Xn+1, X) and the inclusion X → Xn. Here Xn+1 \X
only has cells of dimension greater than n as Xn+1 is obtained from X by attaching cells of dimension greater than n+2.
Moreover, πi(Xn) = 0 for all i > n, thus the inclusion X → Xn extends to Xn+1 → Xn.
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Remark 1.5. For a connected CW complex the Postnikov tower is unique up to homotopy equivalence. As a reference
use Hatcher Corollary 4.19.

The next proposition states that every space with a Postnikov tower has an equivalent Postnikov tower where all
maps in the tower are fibrations. This is nice as fibrations have for example a long exact sequence in homotopy groups.
Furthermore, the fibers of these fibrations turn out the be Eilenberg-MacLane spaces.

Proposition 1.6. For every space X that has a Postnikov tower, there is a Postnikov tower of X satisfying

(P3) the maps Xn → Xn−1 is a fibration with fiber K(πn(X), n).

Proof. Recall that for any map f : A→ B there exists a homotopy equivalence A→ C and a fibration C → B such that
the composition is f . Use this construction to replace X2 → X1 by a fibration X ′

2 → X1. Next inductively replace the
map Xn → Xn−1 → X ′

n−1 by a fibration X ′
n → X ′

n−1.
It remains to show that the fibers are Eilenberg-MacLane spaces. Consider the long exact sequence of the fibration

Fn → Xn → Xn−1

· · · → πi+1(Xn)→ πi+1(Xn−1)→ πi(Fn)→ πi(Xn)→ πi(Xn−1)→ · · ·

Inspecting this sequence shows that Fn = K(πn(X), n).

To retrieve a space from its Postnikov tower a limit process is needed. Recall that the inverse limit of a sequence of
spaces · · · → X2 → X1 is a subspace of

∏
Xn consisting of points xn ∈ Xn such that xn is send to xn−1 under the map

Xn → Xn−1. The inverse limit is denoted lim←−Xn. The same definition holds for groups.

Theorem 1.7. For the Postnikov tower of a connected CW complex X, the natural map (from the universal property)
X → lim←−Xn is a weak homotopy equivalence.

The next lemma states when the homotopy group commutes with the inverse limit. This will be used in proving the
above theorem. We omitted it during the talk, as a reference see Hatcher Proposition 4.67.

Lemma 1.8. Let · · · → X2 → X1 be a sequence of fibrations. Then

(i) The natural map (from the universal property) λ : πi(lim←−n
Xn)→ lim←−n

πi(Xn) is surjective.

(ii) If πi+1(Xn)→ πi+1(Xn−1) is surjective for large enough n, then λ is injective.

Proof. (Theorem 1.7). First of all, for n ≥ i there is an isomorphism πi(X)→ πi(Xn) by (P1). Thus πi(X)→ lim←−n
πi(Xn)

is an isomorphism by the universal property. Secondly, πi(Xn)→ πi(Xn−1) is an isomorphism for n > i (as they are both
isomorphic to πi(X)). Thus by Lemma 1.8 the map λ : πi(lim←−n

Xn)→ lim←−n
πi(Xn) is an isomorphism. Finally, two out of

three maps in the commutative diagram

πi(X) πi(lim←−n
Xn)

lim←−n
πi(Xn)

∼=
∼=

are isomorphisms, thus it follows that the third map is also an isomorphism.

2 k-invariant

Given a connected CW complex we saw how to construct it’s Postnikov tower. In this section we investigate whether
given an infinite sequence of abelian groups G1, G2, . . . , can we construct a Postnikov tower such that K(Gn, n) is the
homotopy fiber of the map Xn → Xn−1. In other words, in which cases does knowing all the homotopy groups determine
the space uniquely up to weak homotopy equivalence?

We start with an useful proposition.

Proposition 2.1. Let p : E → B be a fibration, and let f, g : A→ B be homotopic. Then the pullbacks f∗(E) and g∗(E)
along the fibration are homotopy equivalent.

Proof. Let H : A × I → B be a homotopy from f to g. As p : E → B is a fibration, it follows that the pullback
H∗(E) → A × I is also a fibration (see Talk 1 Proposition 2). The fibers of a fibration are all homotopy equivalent (see
Talk 1 Proposition 4). Here f∗(E) is the fiber of A× {0} and g∗(E) the fiber of A× {1}.
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To answer the above question, the idea is to extend the fibration K(Gn, n) → Xn → Xn−1 in the Postnikov tower to
a sequence of fibrations

K(Gn, n)→ Xn → Xn−1 → K(Gn, n+ 1).

The motivation for this is that now Xn is the homotopy fiber of Xn−1 → K(Gn, n + 1). And such homotopy fiber is
the same as the pullback of the path fibration K(Gn, n + 1)I → K(Gn, n + 1). Thus by Proposition 2.1 the homotopy
type of Xn only depends on the homotopy class of Xn−1 → K(Gn, n + 1). And [Xn−1,K(Gn, n + 1)] is isomorphic to
Hn+1(Xn−1;Gn) (see Talk 2 Theorem 4). Thus the homotopy type of Xn only depends on a cohomology class if the
fibration can be extended to a sequence of fibrations. In a more general setting we have the following definition.

Definition 2.2. A fibration F → E → B is principal if there exists a commutative diagram

F E B

ΩB′ F ′ E′ B′

≃ ≃ ≃

such that the second row is a sequence of fibrations and the vertical maps are weak homotopy equivalences.

In the above setting principal means there is a commutative diagram

K(Gn, n) Xn Xn−1

ΩK(Gn, n+ 1) Xn Xn−1 K(Gn, n+ 1)

≃

Recall that indeed ΩK(Gn, n+ 1) ≃ K(Gn, n). Thus if all fibrations in a Postnikov tower are principal, then

...

K(G3, 3) X3 K(G4, 5)

K(G2, 2) X2 K(G3, 4)

K(G1, 1) X1 K(G2, 3)

k3

k2

k1

So inductively, Xn+1 can be constructed as the homotopy fiber of kn : Xn → K(Gn+1, n+2). Now notice that the groups
G1, G2, . . . together with the maps k1, k2, . . . unique determine a space X up to weak homotopy equivalence by inductively
constructing all Xn and taking the inverse limit. Therefore the kn’s are important.

Definition 2.3. The nth k-invariant of X is the class in Hn+2(Xn;πn+1(X)) that is equivalent to the map kn.

These k-invariants show how to construct X from the K(πn(X), n)’s.

Example 2.4. Consider the space S1 × CP∞ (notice this is K(Z, 1)×K(Z, 2)). The Postnikov tower is

...

∗ = K(0, 3) S1 × CP∞ K(0, 5) = ∗

CP∞ = K(Z, 2) S1 × CP∞ K(0, 4) = ∗

K(Z, 1) S1 K(Z, 3)

k3

k2

k1

Now [S1,K(Z, 3)] ∼= H3(S1;Z) = 0, thus k1 is nullhomotopic. Furthermore, clearly all ki are nullhomotopic for i ≥ 2. In
general, if X is the product of Eilenberg-MacLane spaces, then all k-invariants are zero. The converse is also true.
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The next result states tells us when a Postnikov tower is principal, that is, when we can build a space from its
k-invariants.

Theorem 2.5. A connected CW complex X has a Postnikov tower of principal fibrations ⇐⇒ the action of π1(X) on
πn(X) is trivial for all n ≥ 2 (i.e., the space X is simple).

Lemma 2.6. Let (X,A) be a CW pair with X and A connected such that the homotopy fiber of the inclusion is K(G,n).
Then the following are equivalent

(i) there exists a fibration F → E → B and a map (X,A)→ (E,F ) inducing weak homotopy equivalences X → E and
A→ F .

(ii) the action of π1(A) on πn+1(X,A) is trivial.

Proof. (i) =⇒ (ii): the action of π1(A) on πn+1(X,A) is trivial if and only if π1(F ) acting on πn+1(E,F ) is trivial. And
this statement always holds for fibrations as the image of the action is send to zero under the isomorphism p∗ : πn+1(E,F )→
πn+1(B, b0) as for γ ∈ π1(F ) we have p∗(γ) = cb0 ∈ π1(b0) is nullhomotopic.

(ii) =⇒ (i): note that πi(X,A) is isomorphic to πi−1 of the homotopy fiber of the inclusion A → X which is by
assumption K(G,n). Thus πi(X,A) ∼= 0 except πn+1(X,A) ∼= G. Thus the pair (X,A) is n-connected, hence X/A is
n-connected, thus by Hurewicz πn+1(X/A) ∼= Hn+1(X/A). Furthermore, π1(A) acts trivially on πn+1(X,A), hence by
relative Hurewicz πn+1(X,A) ∼= Hn+1(X,A). Now Hn+1(X,A) ∼= Hn+1(X/A), thus the quotient map X → X/A induces
isomorphism on πn+1. The quotient space X/A is n-connected by the above observation, now we can attaching cells of
dimension ≥ n+ 3 to make X/A a K(G,n+ 1). This results in a map X/A→ K(G,n+ 1). Define k as the composition
of the quotient and this map. Next replace k by a fibration. This results in commutative diagram

A X X/A

Fk Ek K(G,n+ 1)

≃
k

The second row is a fibration where Ek → K(G,n+ 1) replaces k, hence X → Ek is a homotopy fibration. Furthermore,
A → Fk is a weak homotopy equivalence by inspecting the map of long exact sequences induced by (X,A) → (Ek, Fk)
and applying the 5-lemma.

Proof. (Theorem 2.5). Consider the long exact sequence of the pair (Xn−1, Xn) (here Xn is seen as the homotopy fiber
of Xn−1 → K(Gn, n+ 1)),

· · · → πn+1(Xn−1)→ πn+1(Xn−1, Xn)→ πn(Xn)→ πn(Xn−1)→ · · ·

The map ∂ : πn+1(Xn−1, Xn)→ πn(Xn) is an isomorphism respecting the action of π1(Xn) ∼= π1(X). Thus the action of
π1(X) on πn(X) can be identified with the action of π1(Xn) on πn+1(Xn−1, Xn). Applying Lemma 2.6 gives the required
equivalence.

3 Moore-Postnikov tower

A Moore-Postnikov tower is a natural generalization of a Postnikov tower.

Definition 3.1. Let f : X → Y be a map between path-connected spaces. AMoore-Postnikov tower for f is a commutative
diagram

...

Z3

Z2

X Z1 Y

with each composition X → Zn → Y homotopic to f such that

(MP1) the map X → Zn induces an isomorphism on πi for i < n and a surjection for i = n.
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(MP2) the map Zn → Y induces an isomrophism on πi for i > n and an injection for i = n.

(MP3) the map Zn+1 → Zn is a fibration with fiber a K(πn(F ), n) where F is the homotopy fiber of f .

Remark 3.2. A Moore-Postnikov tower specializes to a Postnikov tower by taking Y to be a point and then setting
Xn = Zn+1 discarding the space Z1 which has trivial homotopy groups.

The next theorem shows that everything we have done also holds in the general case. We omit the proof and refer to
Hatcher Theorem 4.71.

Theorem 3.3. Every map f : X → Y between connected CW complexes has a Moore-Postnikov tower, which is unique
up to homotopy equivalence. Moreover, a Moore-Postnikov tower of principal fibrations exists ⇐⇒ π1(X) acts trivially
on πn(Mf , X) for all n ≥ 2, where Mf is the mapping cylinder of f .

Remark 3.4. Taking the map ∗ → Y results in a tower where Zn is n-connected and Zn → Y induces an isomorphism
on πi for i > n. Such a tower is called a Whitehead tower of Y .
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