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Introduction

In todays talk we will introduce the notion of fibrations, a sort of dual notion to cofibrations which we discussed
last term. The structure will be as follows:

1. We introduce fibrations and get a basic feel for their properties

2. We do an explicit example, using fibrations to compute non-trivial homotopy groups

3. Finally we show that, similar to the case of cofibrations, every morphism can be turned into a fibration
up to homotopy.

The talk mostly follows the course notes of last years Algebraic Topology 1 course, which are available online
at the following link:
https://github.com/alvgutcac/AT1/blob/main/Algebraic_Topology_I___Stefan_Schwede__Bonn__Winter_

2021.pdf.
In this document I have only included sketches of proofs. For rigorous proofs I will be refering to the notes.

1 Fibrations

In order to define fibrations we first define the homotopy lifting property (HLP), a dual notion to the homotopy
extension property (HEP) introduced last term in Topology II.

Definition 1 (HLP). We say that a continuous map p : E → B has the HLP for a space X if all solid diagrams
below admits a lifting, given by the dotted arrow:

X E

X × I B

f

H

i0
H̃

p

Here i0(x) := (x, 0), and f,H are any maps such that the diagram commutes. In other words, if given any
homotopy H : X × I → B, and a lift f : X → E of the initial map H(−, 0) we can lift the whole homotopy H.

One also has a relative version of the above:

Definition 2 (Relative HLP). We say that p : E → B has the relative HLP for a pair (X,A) if all solid
diagrams below admits a lifting given by the dotted arrow:

X ∪A× I E

X × I B

f

H

i0
H̃

p

With this we are ready to define fibrations:

Definition 3 (Fibrations). We say that p : E → B is Hurewicz, resp. Serre fibration if it has the HLP for
all spaces X, resp. CW-complexes X

Before we do anything fun we will state some basic (technical) properties of fibrations. We will not give the
proofs as they are not particularly enlightening.

Proposition 1. For a map p : E → B TFAE:
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1. p is a Serre fibration

2. p has the absolute HLP for Dn for all n

3. p has the relative HLP for (Dn, ∂Dn) for all n

4. p has the relative HLP for all relative CW-complexes

Sketch. 3 =⇒ 4 follows by induction + colimits from attaching single cells. So essentially, it is true because
CW complexes are built by cells Dn. The rest of the equivalences are either immediate or just technical. For a
full proof see Lemma II.4 in the notes.

Proposition 2 (Pullback). Both Hurewicz and Serre fibrations are stable under pullback. In other words, if in
the following cartesian diagram p is a Hurewicz (resp. Serre) fibration, then so is p′:

X ×Z Y X

Y Z

pp′

Sketch. Lift the homotopy via p first, and then use the universal property of pullbacks to further lift the
homotopy to X ×Z Y . For a full proof see Theorem II.9 in the notes.

We already know an example of Hurewicz fibrations, namely covering spaces, which we know to satisfy the
homotopy lifting property for all spaces, and hence is an example of a Hurewicz fibration. This generalizes to
the fact that all fiber bundles are Serre fibrations, which already gives us a wide class of examples:

Proposition 3. All fiber bundles are Serre fibrations

Sketch. The proof is essentially the same as for covering spaces. It is divided into two parts:

1. The trivial case: E ∼= B × F where F is the fiber. In this case one can explicitly find a lift: H̃(x, t) :=
(H(x, t), f2(x)) where f = (f1, f2).

2. The general case: Check HLP for all disks Dn, or equivalently for all In. One can now reduce to the
trivial case by decomposing In into small enough cubes by the Lebesgue lemma and then glue the lifts
along intersections.

The following proposition gives a good picture for how fibrations look in general, but as we give no proof as it
is not used and only intended for intuition:

Proposition 4. For p : E → B with B path-connected we get the following:

1. If p is a Hurewicz fibration, then all fibers are homotopy equivalent

2. If p is a Serre fibration, then all fibers that are CW-complexes are homotopy equivalent.

A motivating property for considering fibrations, if being able to lift homotopies isn’t enough motivation by
itself, is that given a fibration p : E → B and b ∈ B we get a long exact sequence:

· · · → πn(p
−1(b), e) → πn(E, e) → πn(B, b)

p∗−→ πn−1(p
−1(b), e) → · · · → π0(p

−1(b), e) → π0(E, e) → π0(B, b) → 0

One can see this LES as being induced by the ”sequence” p−1(b) → E → B. For an immediate, trivial, example
of the above is the case where p : E → B is a covering space. Namely, as the fibers are discrete we get that
πn(p

−1(b), x) = 0 for n ≥ 1 and hence it recovers the familiar statement that covering maps induce isomorphisms
on homotopy groups for n ≥ 2 and an injection for n = 1.

The LES in general follows from the following proposition, combined with the standard LES in homotopy:

Theorem 1. Let p : E → B be a Serre fibration, Y ⊂ B a subspace and x ∈ p−1(Y ), then the projection
induces an isomorphism:

p∗ : πn(E, p−1(Y ), x) ∼= πn(B, Y, p(x))
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Proof. The proof in class was mostly via pictures. One shows surjectivity by using the (relative) HLP to lift the
loop itself. This is possible by describing the elements as maps (I, ∂I, J) → (B, Y, p(x)). One shows injectivity
by lifting the homotopy between two maps. This is slightly trickier than surjectivity, as one needs to make sure
that the lift satisfies the right condition around the edges (i.e. that the lifted homotopy is still a homotopy
between the two loops). See Lemma II.5 in the notes for a proof and nice pictures.

We now use this sequence to compute some non-trivial homotopy groups. Recall the fiber bundles:

C× → Cn+1\{0} → Pn
C

As a special case for n = 1 we get the Hopf fibration:

S1 → S3 → S2

Here we have restricted the projection from Cn+1\{0} to the subspace S3 and used the homeomorphism P1
C
∼= S2.

Now using the associated LES, and since C× ≃ S1, we get that for m ≥ 3:

πm(Cn+1\{0}) ∼= πm(Pn
C)

And for m = 2 we get an injection. The special case of the Hopf fibration then lets us compute:

π3(S
2) ∼= π3(S

3) ∼= Z

We could not do this so easily last term!

2 Turning maps into fibrations

Our next goal is to show how to turn maps into fibrations, up to homotopy. Recall the ”dual” statement that
any map can be turned into a cofibration up to homotopy. This relies on factoring through the mapping cylinder
Cf . The proof for fibrations is also very similar and relies on a ”dual” of the mapping cylinder which we denote
by Ef . In order to define Ef we need to introduce path spaces and for this we might as well talk about loop
spaces and mapping spaces.

2.1 Mapping spaces

A very useful property of Top is the fact that one can endow the set of maps between two topological spaces
with a useful topology. In other words, we can make sense of XY := Hom(X,Y ) as an object in Top. We now
define this topology: for every open O ⊂ Y and K ⊂ X compact, define:

W (K,O) := {f ∈ Y X : f(K) ⊂ O}

The topology is generated by the above sets as a subbasis. For us, the main use of this topology is that it
gives the following adjunction for ”compactly generated spaces” (these include CW-complexes and basically all
spaces we care about):

Hom(X × Y,Z) ∼= Hom(X,ZY )

This can also be written as an ”exponential law”:

ZY×X ∼= (ZY )X

In complete (CG-space) generality, the above is just a bijection, but for locally compact Hausdorff spaces its
actually a homeomorphism! The above is similar to the tensor-hom adjuntion from algebra, which also uses
that the set of module homomorphism can be given the structure of a module.

A special instance of the mapping space, is the path space: Hom(I,X) =: XI . This is what we need to
define Ef . Before we return to fibrations, we migt as well talk about the loop space, another very useful con-
struction that arises as a special case of mapping spaces. To define it, we need to go to the category of pointed
topological spaces Top∗. The above adjunction descends also to this category, except now we need to take the
”pointed product”, i.e. the smash product − ∧ − , and also only consider pointed maps. The adjunction then
becomes (where by abuse of notation the exponential now only consists of pointed maps):

HomTop∗(X ∧ Y, Z) ∼= HomTop∗(X,ZY )

Again, whenever all spaces are locally compact Hausdorff we get that its even a homeomorphism. For pointed
topological spaces, we can also make sense of the ”loop space” defined as: Ω(X,x0) := (X,x0)

(S1,1). This can
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also be shown to be homeomorphic to the subspace of XI consisting of loops at x0. As an instance of the above
adjunction for X = Sn, Y = S1, Z = Z we get the following bijection:

πn+1(Z, z0) ∼= [Sn+1, Z] ∼= [Sn, ZS1

] ∼= πn(ΩZ, ∗)

This actually turns out to be a group isomorphism (by using the LES of some fibration!), but we will not prove
this.

Now we finally define Ef for a morphism f : X → Y . Recall first that the mapping cylinder is defined as
the following pushout:

X X × I

Y Cf

i0

f

⌟

As a ”dual” to this, we then define Ef as the following pullback:

Ef Y I

X Y

ev0

f

⌟

Here ev0 sends a path g to g(0). Thus the points of this space arepaths in Y which have starting point at some
f(x) for x ∈ X. We also get maps X → Ef → Y given by x 7→ (x, constf(x)) and (x, g) 7→ g(1) respectively.
Now we can state the final theorem:

Theorem 2. Every map f : X → Y can be, naturally and functorially, factored as a homotopy equivalence
followed by a fibration as X → Ef → Y where the maps are as defined above.

Sketch. See theorem III.8 in the notes for a full proof. The fact that the first map is a homotopy equivalence
is because all points of Ef are paths starting at some f(x) with x ∈ X and hence one can define the homotopy
by simultaneously collapsing all of these to the constant path at f(x).

The reason that the second map is a fibration comes from describing Ef as the following pullback:

Ef Y I

X × Y Y × Y

⌟

Now if one can show that Y I → Y × Y is a fibration we are done, since Ef → Y = Ef → X × Y → Y and
hence as composition and pullback preserves fibrations we are done. To show that Y I → Y × Y is a fibration
we write it in the following way: Y I → Y {0,1} where the map is now induced by restriction from I to the subset
{0, 1} ⊂ I. Our result then follows by the next lemma:

Lemma 1. For any topological space Z and any relative CW-complex (X,A) we get that the map ZX → ZA

given by f 7→ f |A is a Serre fibration

Sketch. The key idea is to utilize the mapping space adjunction between −× I and (−)I in order to redue the
theorem to the fact that (X,A) is a relative CW-complex and hence satisfies the HEP.
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